liger-kernel 0.0.0__tar.gz → 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. liger_kernel-0.1.0/LICENSE +23 -0
  2. liger_kernel-0.1.0/NOTICE +4 -0
  3. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/PKG-INFO +3 -1
  4. liger_kernel-0.1.0/README.md +205 -0
  5. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/setup.py +1 -1
  6. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/ops/cross_entropy.py +4 -33
  7. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/ops/fused_linear_cross_entropy.py +6 -6
  8. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/ops/geglu.py +14 -3
  9. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/ops/rms_norm.py +40 -22
  10. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/ops/swiglu.py +16 -16
  11. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/ops/utils.py +12 -0
  12. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/__init__.py +1 -0
  13. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/model/llama.py +3 -0
  14. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/monkey_patch.py +35 -8
  15. liger_kernel-0.1.0/src/liger_kernel/transformers/trainer_integration.py +45 -0
  16. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/triton/monkey_patch.py +0 -2
  17. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/PKG-INFO +3 -1
  18. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/SOURCES.txt +4 -0
  19. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/setup.cfg +0 -0
  20. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/ops/__init__.py +0 -0
  21. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/ops/rope.py +0 -0
  22. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/cross_entropy.py +0 -0
  23. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
  24. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/geglu.py +0 -0
  25. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/model/__init__.py +0 -0
  26. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/rms_norm.py +0 -0
  27. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/rope.py +0 -0
  28. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/transformers/swiglu.py +0 -0
  29. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel/triton/__init__.py +0 -0
  30. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/dependency_links.txt +0 -0
  31. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/requires.txt +0 -0
  32. {liger_kernel-0.0.0 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/top_level.txt +0 -0
@@ -0,0 +1,23 @@
1
+ BSD 2-CLAUSE LICENSE
2
+ Copyright 2024 LinkedIn Corporation
3
+ All Rights Reserved.
4
+ Redistribution and use in source and binary forms, with or
5
+ without modification, are permitted provided that the following
6
+ conditions are met:
7
+ 1. Redistributions of source code must retain the above copyright
8
+ notice, this list of conditions and the following disclaimer.
9
+ 2. Redistributions in binary form must reproduce the above
10
+ copyright notice, this list of conditions and the following
11
+ disclaimer in the documentation and/or other materials provided
12
+ with the distribution.
13
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
14
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
15
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
16
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
17
+ HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
18
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
19
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@@ -0,0 +1,4 @@
1
+ Copyright 2024 LinkedIn Corporation
2
+ All Rights Reserved.
3
+
4
+ Licensed under the BSD 2-Clause License (the "License"). See License in the project root for license information.
@@ -1,4 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel
3
- Version: 0.0.0
3
+ Version: 0.1.0
4
4
  Provides-Extra: dev
5
+ License-File: LICENSE
6
+ License-File: NOTICE
@@ -0,0 +1,205 @@
1
+ # Liger Kernel: Efficient Triton Kernels for LLM Training
2
+
3
+ [![Downloads](https://static.pepy.tech/badge/liger-kernel)](https://pepy.tech/project/liger-kernel) [![PyPI version](https://badge.fury.io/py/liger-kernel.svg)](https://badge.fury.io/py/liger-kernel) [![PyPI version](https://badge.fury.io/py/liger-kernel-nightly.svg)](https://badge.fury.io/py/liger-kernel-nightly)
4
+
5
+
6
+ [Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [APIs](#apis) | [Structure](#structure) | [Contributing](#contributing)
7
+
8
+ **Liger (Linkedin GPU Efficient Runtime) Kernel** is a collection of Triton kernels designed specifically for LLM training. We have implemented **Hugging Face Compatible** `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. It can effectively increase multi-GPU **training throughput by 20%** and reduces **memory usage by 60%**. The kernel works out of the box with [flash attention](https://github.com/Dao-AILab/flash-attention), PyTorch FSDP, and Microsoft DeepSpeed. We welcome contributions from the community to gather the best kernels for LLM training.
9
+
10
+
11
+
12
+ ## Supercharge Your Model with Liger Kernel
13
+
14
+ ![Banner](/docs/images/banner.GIF)
15
+
16
+ Gain +20% throughput and reduce memory usage by 60%. Achieve longer context lengths and larger batch sizes. It’s also useful if you want to scale up your model to multi-head training or large vocabulary sizes.
17
+
18
+ | Speed Up | Memory Reduction |
19
+ |--------------------------|-------------------------|
20
+ | ![Speed up](docs/images/e2e-tps.png) | ![Memory](docs/images/e2e-memory.png) |
21
+
22
+
23
+ > - Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Data Type = bf16, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
24
+ > - Hugging Face models start to OOM at a 4K context length, whereas Liger Kernel scales up to 16K.
25
+
26
+ ## Examples
27
+
28
+ ### Basic
29
+
30
+ | **Example** | **Description** | **Lightning Studio** |
31
+ |------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
32
+ | [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train llama3 8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP | TBA |
33
+ | [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 | TBA |
34
+
35
+ ### Advanced
36
+
37
+ | **Example** | **Description** | **Lightning Studio** |
38
+ |------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
39
+ | [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | TBA |
40
+
41
+ ## Key Features
42
+
43
+ - **Ease of use:** Simply patch your Hugging Face model with one line of code, or compose your own model using our kernels.
44
+ - **Time- and memory-efficient:** In the same spirit as Flash-Attn, but for layers like **RMSNorm**, **RoPE**, **CrossEntropy**! Increases multi-GPU training throughput by 20% and reduces memory usage by 60% with **kernel fusion**, **in-place replacement**, and **chunking** techniques.
45
+ - **Exact:** Exact kernels—no approximations. Both forward and backward are implemented with rigorous unit and convergence testing to ensure accuracy.
46
+ - **Lightweight:** The kernels have minimal dependencies, requiring only Torch and Triton—no extra libraries needed! Say goodbye to dependency headaches!
47
+ - **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP and DeepSpeed).
48
+
49
+ ## Target Audiences
50
+
51
+ - **Researchers**: Looking to compose models using efficient and reliable kernels for frontier experiments.
52
+ - **ML Practitioners**: Focused on maximizing GPU training efficiency with optimal, high-performance kernels.
53
+ - **Curious Novices**: Eager to learn how to write reliable Triton kernels to enhance training efficiency.
54
+
55
+
56
+ ## Installation
57
+
58
+ ### Dependencies
59
+
60
+ - `torch >= 2.1.2`
61
+ - `triton >= 2.3.0`
62
+ - `transformers >= 4.40.1`
63
+
64
+ To install the stable version:
65
+
66
+ ```bash
67
+ $ pip install liger-kernel
68
+ ```
69
+
70
+ To install the nightly version:
71
+
72
+ ```bash
73
+ $ pip install liger-kernel-nightly
74
+ ```
75
+
76
+ ## Getting Started
77
+
78
+ ### 1. Patch Existing Hugging Face Models
79
+
80
+ Using [patching APIs](#patching), you can swap Hugging Face models with optimized Liger Kernels.
81
+
82
+ ```python
83
+ import transformers
84
+ from liger_kernel.transformers import apply_liger_kernel_to_llama
85
+
86
+ model = transformers.AutoModelForCausalLM.from_pretrained("<some llama model>")
87
+
88
+ # By adding this line, it automatically monkey patches the model with the optimized kernels
89
+ apply_liger_kernel_to_llama()
90
+ ```
91
+
92
+ ### 2. Compose Your Own Model
93
+
94
+ You can take individual [kernels](#kernels) to compose your models.
95
+
96
+ ```python
97
+ from liger_kernel.transformers import LigerFusedLinearCrossEntropyLoss
98
+ import torch.nn as nn
99
+ import torch
100
+
101
+ model = nn.Linear(128, 256).to("cuda")
102
+
103
+ # LigerFusedLinearCrossEntropyLoss fuses linear and cross entropy layers together and performs chunk-by-chunk computation to reduce memory
104
+ loss_fn = LigerFusedLinearCrossEntropyLoss()
105
+
106
+ input = torch.randn(4, 128, requires_grad=True, device="cuda")
107
+ target = torch.empty(4, dtype=torch.long, device="cuda").random_(256)
108
+
109
+ loss = loss_fn(model.weight, input, target)
110
+ loss.backward()
111
+ ```
112
+
113
+
114
+ ## Structure
115
+
116
+ ### Source Code
117
+
118
+ - `ops/`: Core Triton operations.
119
+ - `transformers/`: PyTorch `nn.Module` implementations built on Triton operations, compliant with the `transformers` API.
120
+
121
+ ### Tests
122
+
123
+ - `transformers/`: Correctness tests for the Triton-based layers.
124
+ - `convergence/`: Patches Hugging Face models with all kernels, runs multiple iterations, and compares weights, logits, and loss layer by layer.
125
+
126
+ ### Benchmark
127
+
128
+ - `benchmark/`: Execution time and memory benchmarks compared to Hugging Face layers.
129
+
130
+ ## APIs
131
+
132
+ ### Patching
133
+
134
+ | **Model** | **API** | **Supported Operations** |
135
+ |-------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
136
+ | LLaMA (2 & 3) | `liger_kernel.transformers.apply_liger_kernel_to_llama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
137
+ | Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
138
+ | Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
139
+ | Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss |
140
+
141
+ ### Kernels
142
+
143
+ | **Kernel** | **API** |
144
+ |---------------------------------|-------------------------------------------------------------|
145
+ | RMSNorm | `liger_kernel.transformers.LigerRMSNorm` |
146
+ | RoPE | `liger_kernel.transformers.liger_rotary_pos_emb` |
147
+ | SwiGLU | `liger_kernel.transformers.LigerSwiGLUMLP` |
148
+ | GeGLU | `liger_kernel.transformers.LigerGEGLUMLP` |
149
+ | CrossEntropy | `liger_kernel.transformers.LigerCrossEntropyLoss` |
150
+ | FusedLinearCrossEntropy | `liger_kernel.transformers.LigerFusedLinearCrossEntropyLoss`|
151
+
152
+ - **RMSNorm**: RMSNorm, which normalizes tensor activations using their root mean square, is accelerated by fusing the normalization and scaling steps into a single triton kernel, achieved ~3X speedup with ~3X peak memory reduction. [RMSNorm Paper](https://arxiv.org/pdf/1910.07467)
153
+ - **RoPE**: Fused the operations of query and key embedding rotary into a single kernel with inplace replacement, achieved ~3X speedup with ~3X peak memory reduction. [RoPE Paper](https://arxiv.org/pdf/2104.09864)
154
+ - **SwiGLU**: Leveraging the fused triton kernel for the elementwise transformation in $$SwiGLU_{\beta=1}$$ ($$\sigma(A) \odot B$$) with inplace replacement, achieved parity speed with ~1.5X peak memory reduction. [SwiGLU Paper](https://arxiv.org/pdf/2002.05202)
155
+ - **GeGLU**: Leveraging the fused triton kernel for the elementwise transformation in GeGLU with [tanh approximation form of GELU](https://pytorch.org/docs/stable/generated/torch.nn.GELU.html) and inplace replacement, achieved parity speed with ~1.5X peak memory reduction. [GeGLU paper](https://arxiv.org/pdf/2002.05202)
156
+ - **CrossEntropy**: Computes both loss and the gradient in the forward path with inplace replacement of input to reduce the peak memory (avoid the materialization of both input logits and gradient), achieved >2X speedup and >4X memory reduction for common vocab sizes. [PyTorch CrossEntropyLoss Documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html)
157
+ - **FusedLinearCrossEntropy**: Further improves upon the basic Liger Cross Entropy kernel on reducing the peak memory usage by fusing the model last output head layer with the CE loss and chunking the input for block-wise loss and gradient calculation, inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy), achieved >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocab size model** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
158
+
159
+
160
+ > * Reported speedups and memory reductions are compared with Llama3 8B Hugging Face layer implementations with 4k default hidden size and 4k sequence length for single forward and backward pass on single NVIDIA A100 80G GPU with small batch sizes. Liger kernels exhibits more efficient scaling to larger batch sizes of tokens. See [Benchmark](./benchmark) folder for details.
161
+
162
+ ## Note on ML Compiler
163
+
164
+ ### 1. Torch Compile
165
+
166
+ Since Liger Kernel is 100% Triton-based, it works seamlessly with Torch Compile. In the following example, Liger Kernel can further optimize the model on top of Torch Compile, reducing the memory by more than half.
167
+
168
+ | Configuration | Throughput (tokens/sec) | Memory Reserved (MB) |
169
+ |--------------------------------|----------------------------|-------------------------|
170
+ | Torch Compile | 3780 | 66358 |
171
+ | Torch Compile + Liger Kernel | 3702 | 31000 |
172
+
173
+ > **Note:**
174
+ > 1. Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Seq Len = 4096, Data Type = bf16, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
175
+ > 2. Tested on torch `2.5.0.dev20240731+cu118`
176
+
177
+ ### 2. Lightning Thunder
178
+
179
+ *WIP*
180
+
181
+ ## Contributing
182
+
183
+ [CONTRIBUTING GUIDE](https://github.com/linkedin/Liger-Kernel/blob/main/CONTRIBUTING.md)
184
+
185
+ ## Acknowledgement
186
+
187
+ - [flash-attn](https://github.com/Dao-AILab/flash-attention) and [Unsloth](https://github.com/unslothai/unsloth) for inspiration in Triton kernels for training
188
+ - [tiny shakespeare dataset](https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt) for convergence testing by andrej karpathy
189
+
190
+
191
+ ## License
192
+
193
+ [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE)
194
+
195
+ ## Cite this work
196
+
197
+ Biblatex entry:
198
+ ```bib
199
+ @software{liger2024,
200
+ title = {Liger-Kernel: Efficient Triton Kernels for LLM Training},
201
+ author = {Hsu, Pin-Lun and Dai, Yun and Kothapalli, Vignesh and Song, Qingquan and Tang, Shao and Zhu, Siyu},
202
+ url = {https://github.com/linkedin/Liger-Kernel},
203
+ year = {2024}
204
+ }
205
+ ```
@@ -1,6 +1,6 @@
1
1
  from setuptools import find_namespace_packages, setup
2
2
 
3
- __version__ = "0.0.0"
3
+ __version__ = "0.1.0"
4
4
 
5
5
  setup(
6
6
  name="liger_kernel",
@@ -17,7 +17,7 @@ def liger_cross_entropy_kernel(
17
17
  BLOCK_SIZE: tl.constexpr,
18
18
  ):
19
19
  """
20
- This kernel computes both cross entropy loss and the gradient of the _input.
20
+ This kernel computes both cross entropy loss and the gradient of the input.
21
21
  We only consider hard label + mean reduction for now. Please refer to https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html for the math.
22
22
 
23
23
  Parameters:
@@ -34,7 +34,7 @@ def liger_cross_entropy_kernel(
34
34
  """
35
35
 
36
36
  # https://github.com/triton-lang/triton/issues/1058
37
- # Essentially if B*T*V is too large, program_id * stride will overflow out of int32
37
+ # If B*T*V is too large, program_id * stride will overflow out of int32, so we convert to int64
38
38
  program_id = tl.program_id(0).to(tl.int64)
39
39
 
40
40
  # 1. Load Y_ptr first because if the target is ignore_index, we can return right away
@@ -90,13 +90,7 @@ def liger_cross_entropy_kernel(
90
90
  tl.debug_barrier()
91
91
 
92
92
  # 5. Calculate the loss
93
- # Old Approach: Problematic LogSoftmax
94
- # min of bfloat16 and float32 is 1e-38, so we set a value larger than that but small enough
95
- # This will overflow if X_y * n_non_ignore is too small. Even if we add a tiny epsilon, it will still overflow
96
- # loss = -tl.log(X_y * n_non_ignore)
97
93
 
98
- # New Approach: Safe LogSoftmax
99
- # Therefore, we propose to use safe logsoftmax by reordering the formula.
100
94
  # loss = log (softmax(X_y)) = log ((e ^ (X_y - max(X)) / sum(e ^ (X - max(X))))
101
95
  # = (X_y - max(X)) - log(sum(e ^ (X - max(X))))
102
96
  # sum(e ^ (X - max(X))) must >= 1 because the max term is e ^ 0 = 1
@@ -114,7 +108,7 @@ def liger_cross_entropy_kernel(
114
108
  # The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576 https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
115
109
  # However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
116
110
  # The optimal maximum block size depends on your hardware, your kernel, and your dtype
117
- MAX_FUSED_SIZE = 65536 // 2 # manual tune a bit
111
+ MAX_FUSED_SIZE = 65536 // 2 # the best size we found by manually tuning
118
112
 
119
113
 
120
114
  @triton.jit
@@ -184,28 +178,6 @@ class LigerCrossEntropyFunction(torch.autograd.Function):
184
178
  n_non_ignore = (target != ignore_index).sum().item()
185
179
 
186
180
  # ensure _input and target are contiguous in the last dimension
187
- # there are examples that are NOT contiguous overall but contiguous in the last dimension
188
- ####################################################################
189
- # tensor = torch.arange(1, 21).reshape(5, -1)
190
- # print(tensor)
191
- # tensor([[ 1, 2, 3, 4],
192
- # [ 5, 6, 7, 8],
193
- # [ 9, 10, 11, 12],
194
- # [13, 14, 15, 16],
195
- # [17, 18, 19, 20]])
196
- # print(tensor.is_contiguous())
197
- # True
198
- # slice = tensor[::2, :]
199
- # print(slice)
200
- # tensor([[ 1, 2, 3, 4],
201
- # [ 9, 10, 11, 12],
202
- # [17, 18, 19, 20]])
203
- # print(slice.is_contiguous())
204
- # False
205
- # print(slice.stride())
206
- # (8, 1)
207
- # slice is NOT a contiguous tensor but is contiguous in the last dimension, CE kernel can execute because the stride is 8, and each triton program will jump by 8
208
- ####################################################################
209
181
  if _input.stride(-1) != 1:
210
182
  _input = _input.contiguous()
211
183
  if target.stride(-1) != 1:
@@ -252,10 +224,9 @@ class LigerCrossEntropyFunction(torch.autograd.Function):
252
224
  # If cross entropy is the last layer, grad_output is 1.0. Skip the mul to save time
253
225
  if torch.equal(grad_output, torch.tensor(1.0, device=grad_output.device)):
254
226
  pass
227
+
255
228
  # We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
256
229
  # for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
257
- # Although the Brew trainer should only perform backward once, it encounters this issue.
258
- # https://github.com/triton-lang/triton/issues/4004
259
230
  else:
260
231
  BT, V = _input.shape
261
232
  n_rows = BT
@@ -1,8 +1,3 @@
1
- """Fusing the last linear layer with cross-entropy loss
2
-
3
- Reference: https://github.com/mgmalek/efficient_cross_entropy
4
- """
5
-
6
1
  import torch
7
2
  import triton
8
3
 
@@ -11,13 +6,16 @@ from liger_kernel.ops.cross_entropy import element_mul, liger_cross_entropy_kern
11
6
  # The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576 https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
12
7
  # However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
13
8
  # The optimal maximum block size depends on your hardware, your kernel, and your dtype
14
- MAX_FUSED_SIZE = 65536 // 2 # manual tune a bit
9
+ MAX_FUSED_SIZE = 65536 // 2
15
10
 
16
11
 
17
12
  class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
18
13
  @staticmethod
19
14
  def forward(ctx, _input, linear, target, ignore_index):
20
15
  """
16
+ Fusing the last linear layer with cross-entropy loss
17
+ Reference: https://github.com/mgmalek/efficient_cross_entropy
18
+
21
19
  Handle the forward and backward pass of the final linear layer via cross-entropy loss by avoiding
22
20
  the materialization of the large logits tensor. Since Cross Entropy Loss is the last layer, we can
23
21
  compute the gradient at the forward pass. By doing so, we don't have to store the _input and target
@@ -54,6 +52,8 @@ class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
54
52
 
55
53
  grad_linear = torch.zeros_like(linear, device=device)
56
54
  grad_input = torch.zeros_like(_input, device=device)
55
+
56
+ # we use fp32 for loss accumulator
57
57
  loss_1d = torch.zeros(BT, dtype=torch.float32, device=device)
58
58
 
59
59
  total_n_non_ignore = (target != ignore_index).sum().item()
@@ -1,8 +1,19 @@
1
+ import operator
2
+
1
3
  import torch
2
4
  import triton
3
5
  import triton.language as tl
4
6
 
5
- from liger_kernel.ops.utils import calculate_settings, ensure_contiguous
7
+ from liger_kernel.ops.utils import (
8
+ calculate_settings,
9
+ compare_version,
10
+ ensure_contiguous,
11
+ )
12
+
13
+ if compare_version("triton", operator.ge, "3.0.0"):
14
+ from triton.language.extra.libdevice import tanh
15
+ else:
16
+ from triton.language.math import tanh
6
17
 
7
18
 
8
19
  @triton.jit
@@ -26,7 +37,7 @@ def _geglu_tanh_forward_kernel(
26
37
  sqrt_2_over_pi = 0.7978845608028654 # sqrt(2 / pi)
27
38
  a_cubed = a_row * a_row * a_row
28
39
  tanh_arg = sqrt_2_over_pi * (a_row + 0.044715 * a_cubed)
29
- tanh_result = tl.math.tanh(tanh_arg)
40
+ tanh_result = tanh(tanh_arg)
30
41
  geglu_a = 0.5 * a_row * (1 + tanh_result)
31
42
  c_row = geglu_a * b_row
32
43
  tl.store(c + col_offsets, c_row, mask=mask)
@@ -54,7 +65,7 @@ def _geglu_tanh_backward_kernel(
54
65
  sqrt_2_over_pi = 0.7978845608028654 # sqrt(2 / pi)
55
66
  a_cubed = a_row * a_row * a_row
56
67
  tanh_arg = sqrt_2_over_pi * (a_row + 0.044715 * a_cubed)
57
- tanh_result = tl.math.tanh(tanh_arg)
68
+ tanh_result = tanh(tanh_arg)
58
69
  geglu_a = 0.5 * a_row * (1 + tanh_result)
59
70
 
60
71
  db_row = dc_row * geglu_a
@@ -20,9 +20,12 @@ def _rms_norm_forward(
20
20
  BLOCK_SIZE: tl.constexpr,
21
21
  ):
22
22
  """
23
+ y_i = (x_i / (RMS)) * wi, RMS = sqrt(sum(x_i^2) / N)
24
+
23
25
  Reference:
24
26
  1. https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
25
27
  2. https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/rms_layernorm.py#L22
28
+ 3. https://arxiv.org/pdf/1910.07467
26
29
  """
27
30
 
28
31
  row_idx = tl.program_id(0)
@@ -36,16 +39,17 @@ def _rms_norm_forward(
36
39
  X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
37
40
  W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
38
41
 
39
- row_var = tl.sum(X_row * X_row, axis=0) / n_cols
40
- inv_var = tl.math.rsqrt(row_var + eps)
42
+ mean_square = tl.sum(X_row * X_row, axis=0) / n_cols
43
+ inv_rms = tl.math.rsqrt(mean_square + eps)
41
44
 
42
- # trick: row_var is tiny compared to X_row because it just has one per row we can save 4 ops (*, sum, /, rqrt) if we cache it
43
- tl.store(r_ptr, inv_var)
45
+ # We can save time by caching rms with minimal memory overhead
46
+ # because rms is much smaller compared to X_row, as rms is for each row.
47
+ # However, on the computation side, it can save 4 operations (*, sum, /, sqrt).
48
+ tl.store(r_ptr, inv_rms)
44
49
 
45
- normed = X_row * inv_var
50
+ Y_row = X_row * inv_rms * W_row
46
51
 
47
- output = normed * W_row
48
- tl.store(Y_ptr + col_offsets, output, mask=mask)
52
+ tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
49
53
 
50
54
 
51
55
  @triton.jit
@@ -65,9 +69,10 @@ def _rms_norm_backward(
65
69
  BLOCK_SIZE: tl.constexpr,
66
70
  ):
67
71
  """
68
- dx = (1 / var(x)) * (dy * w - (1/N) * (dy * w) dot x) * x
69
- dw = sum(dy * (x / var(x)))
72
+ dx = (1 / RMS) * [dy * w - (1 / N) * (1 / RMS^2) * ((dy * w) dot x) * x]. * means element-wise multiplication, whileas dot means dot product
73
+ dw = sum(dy * (x / RMS)). summation over BxT dimension
70
74
  """
75
+
71
76
  row_idx = tl.program_id(0)
72
77
  col_offsets = tl.arange(0, BLOCK_SIZE)
73
78
  mask = col_offsets < n_cols
@@ -81,34 +86,42 @@ def _rms_norm_backward(
81
86
  X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
82
87
  W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
83
88
 
84
- # Get saved row variance
85
- inv_var = tl.load(r_ptr)
86
-
87
- normed = X_row * inv_var
89
+ # Get cached rms
90
+ inv_rms_row = tl.load(r_ptr)
88
91
 
89
- dY_W = dY_row * W_row
90
- dY_normed = dY_row * normed
91
-
92
- rowsum_dY_normed = tl.sum(dY_W * normed, axis=0)
93
- output = inv_var / n_cols * (n_cols * dY_W - normed * rowsum_dY_normed)
94
- tl.store(dY_ptr + col_offsets, output, mask=mask)
92
+ dX_row = (inv_rms_row) * (
93
+ dY_row * W_row
94
+ - (1 / n_cols)
95
+ * inv_rms_row
96
+ * inv_rms_row
97
+ * tl.sum(dY_row * W_row * X_row, axis=0)
98
+ * X_row
99
+ )
100
+ tl.store(dY_ptr + col_offsets, dX_row, mask=mask)
95
101
 
96
102
  # calculate the gradient of W
97
- tl.store(dW_ptr + col_offsets, dY_normed, mask=mask)
103
+ dW_row = dY_row * X_row * inv_rms_row
104
+ tl.store(dW_ptr + col_offsets, dW_row, mask=mask)
98
105
 
99
106
 
100
107
  class LigerRMSNormFunction(torch.autograd.Function):
101
108
  @staticmethod
102
109
  @ensure_contiguous
103
110
  def forward(ctx, X, W, eps):
111
+ """
112
+ X: (B, T, H) or (BxT, H)
113
+ W: (H,)
114
+ """
115
+
104
116
  shape = X.shape
105
117
  dim = shape[-1]
106
118
  X = X.view(-1, dim)
107
119
  n_rows, n_cols = X.shape
108
120
  BLOCK_SIZE, num_warps = calculate_settings(n_cols)
109
121
 
110
- Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device="cuda")
111
- r = torch.empty(n_rows, dtype=X.dtype, device="cuda")
122
+ Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
123
+ # r is to cache (1/rms) for each row
124
+ r = torch.empty(n_rows, dtype=X.dtype, device=X.device)
112
125
 
113
126
  # Check constraints.
114
127
  assert (
@@ -139,6 +152,10 @@ class LigerRMSNormFunction(torch.autograd.Function):
139
152
  @staticmethod
140
153
  @ensure_contiguous
141
154
  def backward(ctx, dY):
155
+ """
156
+ Y: (B, T, H) or (BxT, H)
157
+ """
158
+
142
159
  shape = dY.shape
143
160
  dim = shape[-1]
144
161
  dY = dY.view(-1, dim)
@@ -146,6 +163,7 @@ class LigerRMSNormFunction(torch.autograd.Function):
146
163
  n_rows, n_cols = dY.shape
147
164
  dW = torch.zeros_like(X)
148
165
 
166
+ # Here we use dY to store the value of dX to save memory
149
167
  _rms_norm_backward[(n_rows,)](
150
168
  dY,
151
169
  dY.stride(0),
@@ -12,43 +12,43 @@ def silu(x):
12
12
 
13
13
  @triton.jit
14
14
  def _swiglu_forward_kernel(
15
- a, b, c, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
15
+ a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
16
16
  ):
17
17
  program_id = tl.program_id(0)
18
18
 
19
19
  # locate start index
20
- a += program_id * stride
21
- b += program_id * stride
22
- c += program_id * stride
20
+ a_ptr += program_id * stride
21
+ b_ptr += program_id * stride
22
+ c_ptr += program_id * stride
23
23
 
24
24
  col_offsets = tl.arange(0, BLOCK_SIZE)
25
25
  mask = col_offsets < n_cols
26
26
 
27
27
  # sigmoid requires type float32
28
- a_row = tl.load(a + col_offsets, mask=mask, other=0).to(tl.float32)
29
- b_row = tl.load(b + col_offsets, mask=mask, other=0)
28
+ a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
29
+ b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
30
30
  c_row = silu(a_row) * b_row
31
- tl.store(c + col_offsets, c_row, mask=mask)
31
+ tl.store(c_ptr + col_offsets, c_row, mask=mask)
32
32
 
33
33
 
34
34
  @triton.jit
35
35
  def _swiglu_backward_kernel(
36
- dc, a, b, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
36
+ dc_ptr, a_ptr, b_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
37
37
  ):
38
38
  program_id = tl.program_id(0)
39
39
 
40
40
  # locate start index
41
- dc += program_id * stride
42
- a += program_id * stride
43
- b += program_id * stride
41
+ dc_ptr += program_id * stride
42
+ a_ptr += program_id * stride
43
+ b_ptr += program_id * stride
44
44
 
45
45
  col_offsets = tl.arange(0, BLOCK_SIZE)
46
46
  mask = col_offsets < n_cols
47
47
 
48
- dc_row = tl.load(dc + col_offsets, mask=mask, other=0)
48
+ dc_row = tl.load(dc_ptr + col_offsets, mask=mask, other=0)
49
49
  # sigmoid requires type float32
50
- a_row = tl.load(a + col_offsets, mask=mask, other=0).to(tl.float32)
51
- b_row = tl.load(b + col_offsets, mask=mask, other=0)
50
+ a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
51
+ b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
52
52
 
53
53
  # recomputation to save memory
54
54
  sig_a = tl.sigmoid(a_row)
@@ -56,8 +56,8 @@ def _swiglu_backward_kernel(
56
56
  db_row = dc_row * silu_a
57
57
  da_row = dc_row * (silu_a * (1 - sig_a) + sig_a) * b_row
58
58
 
59
- tl.store(a + col_offsets, da_row, mask=mask)
60
- tl.store(b + col_offsets, db_row, mask=mask)
59
+ tl.store(a_ptr + col_offsets, da_row, mask=mask)
60
+ tl.store(b_ptr + col_offsets, db_row, mask=mask)
61
61
 
62
62
 
63
63
  class LigerSiLUMulFunction(torch.autograd.Function):
@@ -1,7 +1,10 @@
1
1
  import functools
2
+ import importlib
3
+ from typing import Callable
2
4
 
3
5
  import torch
4
6
  import triton
7
+ from packaging.version import Version
5
8
 
6
9
 
7
10
  def ensure_contiguous(fn):
@@ -36,3 +39,12 @@ def calculate_settings(n):
36
39
  elif BLOCK_SIZE >= 2048:
37
40
  num_warps = 8
38
41
  return BLOCK_SIZE, num_warps
42
+
43
+
44
+ def compare_version(package: str, operator: Callable, target: str):
45
+ try:
46
+ pkg = importlib.import_module(package)
47
+ except ImportError:
48
+ return False
49
+ pkg_version = Version(pkg.__version__)
50
+ return operator(pkg_version, Version(target))
@@ -1,4 +1,5 @@
1
1
  from liger_kernel.transformers.monkey_patch import ( # noqa: F401
2
+ apply_liger_kernel_to_gemma,
2
3
  apply_liger_kernel_to_llama,
3
4
  apply_liger_kernel_to_mistral,
4
5
  apply_liger_kernel_to_mixtral,
@@ -37,6 +37,9 @@ def lce_forward(
37
37
  cache_position: Optional[torch.LongTensor] = None,
38
38
  ) -> Union[Tuple, CausalLMOutputWithPast]:
39
39
  r"""
40
+ Copy paste llama forward but replace torch cross entropy with liger fused linear cross entropy
41
+
42
+
40
43
  Args:
41
44
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
42
45
  Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
@@ -1,27 +1,26 @@
1
1
  from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
2
+ from liger_kernel.transformers.geglu import LigerGEGLUMLP
2
3
  from liger_kernel.transformers.model.llama import lce_forward
3
4
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
4
5
  from liger_kernel.transformers.rope import liger_rotary_pos_emb
5
6
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP, LigerSwiGLUMLP
6
7
 
7
8
 
8
- # TODO: probably rename utils.py as hf_patcher.py to be more descriptive
9
9
  def apply_liger_kernel_to_llama(
10
10
  rope: bool = True,
11
- cross_entropy: bool = True,
12
- fused_linear_cross_entropy: bool = False,
11
+ cross_entropy: bool = False,
12
+ fused_linear_cross_entropy: bool = True,
13
13
  rms_norm: bool = True,
14
14
  swiglu: bool = True,
15
15
  ) -> None:
16
16
  """
17
17
  Apply Liger kernels to replace original implementation in HuggingFace Llama models (2 and 3)
18
- to make GPU go burrr.
19
18
 
20
19
  Args:
21
20
  rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
22
- cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is True.
21
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
23
22
  fused_linear_cross_entropy (bool):
24
- Whether to apply Liger's fused lienar cross entropy loss. Default is False.
23
+ Whether to apply Liger's fused lienar cross entropy loss. Default is True.
25
24
  `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
26
25
  If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
27
26
  rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
@@ -54,7 +53,6 @@ def apply_liger_kernel_to_mistral(
54
53
  ) -> None:
55
54
  """
56
55
  Apply Liger kernels to replace original implementation in HuggingFace Mistral models
57
- to make GPU go burrr.
58
56
 
59
57
  Args:
60
58
  rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
@@ -83,12 +81,12 @@ def apply_liger_kernel_to_mixtral(
83
81
  ) -> None:
84
82
  """
85
83
  Apply Liger kernels to replace original implementation in HuggingFace Mixtral models
86
- to make GPU go burrr.
87
84
 
88
85
  Args:
89
86
  rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
90
87
  cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is True.
91
88
  rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
89
+ swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
92
90
  """
93
91
 
94
92
  from transformers.models.mixtral import modeling_mixtral
@@ -101,3 +99,32 @@ def apply_liger_kernel_to_mixtral(
101
99
  modeling_mixtral.CrossEntropyLoss = LigerCrossEntropyLoss
102
100
  if swiglu:
103
101
  modeling_mixtral.MixtralBlockSparseTop2MLP = LigerBlockSparseTop2MLP
102
+
103
+
104
+ def apply_liger_kernel_to_gemma(
105
+ rope: bool = True,
106
+ cross_entropy: bool = True,
107
+ rms_norm: bool = True,
108
+ geglu: bool = True,
109
+ ) -> None:
110
+ """
111
+ Apply Liger kernels to replace original implementation in HuggingFace Gemma2 models
112
+ to make GPU go burrr.
113
+
114
+ Args:
115
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
116
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is True.
117
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
118
+ geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
119
+ """
120
+ # TODO(yundai424): add convergence test for gemma
121
+ from transformers.models.gemma import modeling_gemma
122
+
123
+ if rope:
124
+ modeling_gemma.apply_rotary_pos_emb = liger_rotary_pos_emb
125
+ if rms_norm:
126
+ modeling_gemma.GemmaRMSNorm = LigerRMSNorm
127
+ if cross_entropy:
128
+ modeling_gemma.CrossEntropyLoss = LigerCrossEntropyLoss
129
+ if geglu:
130
+ modeling_gemma.GemmaMLP = LigerGEGLUMLP
@@ -0,0 +1,45 @@
1
+ import logging
2
+
3
+ from liger_kernel.transformers.monkey_patch import (
4
+ apply_liger_kernel_to_gemma,
5
+ apply_liger_kernel_to_llama,
6
+ apply_liger_kernel_to_mistral,
7
+ apply_liger_kernel_to_mixtral,
8
+ )
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+ # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
13
+ MODEL_TYPE_TO_APPLY_LIGER_FN = {
14
+ "gemma": apply_liger_kernel_to_gemma,
15
+ "llama": apply_liger_kernel_to_llama,
16
+ "mistral": apply_liger_kernel_to_mistral,
17
+ "mixtral": apply_liger_kernel_to_mixtral,
18
+ }
19
+
20
+
21
+ def _apply_liger_kernel(model_type: str = "", **kwargs) -> None:
22
+ """
23
+ Applies Liger kernels based on the specified model type. The custom
24
+ kernels for the specified model type will be applied with the provided
25
+ keyword arguments, otherwise the default configuration will be used.
26
+
27
+ Args:
28
+ - model_type: the model types as defined in transformers/models/auto/modeling_auto.py
29
+ and specified in the model's config.json
30
+ - kwargs: keyword arguments that are passed to the corresponding apply_liger_kernel_to_* function.
31
+ """
32
+
33
+ if not model_type:
34
+ logger.info("Model type was not provided. No Liger kernels will be applied.")
35
+ return
36
+
37
+ if model_type not in MODEL_TYPE_TO_APPLY_LIGER_FN.keys():
38
+ logger.info(
39
+ f"There are currently no Liger kernels supported for model type: {model_type}."
40
+ )
41
+ return
42
+
43
+ logger.info(f"Applying Liger kernels for model type: {model_type}.")
44
+ # Apply the default combination of liger kernels available for the model
45
+ MODEL_TYPE_TO_APPLY_LIGER_FN[model_type](**kwargs)
@@ -1,12 +1,10 @@
1
1
  import os
2
2
  import random
3
3
 
4
- from overrides import override
5
4
  from triton.runtime.cache import FileCacheManager
6
5
 
7
6
 
8
7
  class LigerTritonFileCacheManager(FileCacheManager):
9
- @override
10
8
  def put(self, data, filename, binary=True) -> str:
11
9
  if not self.cache_dir:
12
10
  raise RuntimeError("Could not create or locate cache dir")
@@ -1,4 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger-kernel
3
- Version: 0.0.0
3
+ Version: 0.1.0
4
4
  Provides-Extra: dev
5
+ License-File: LICENSE
6
+ License-File: NOTICE
@@ -1,3 +1,6 @@
1
+ LICENSE
2
+ NOTICE
3
+ README.md
1
4
  setup.py
2
5
  src/liger_kernel.egg-info/PKG-INFO
3
6
  src/liger_kernel.egg-info/SOURCES.txt
@@ -20,6 +23,7 @@ src/liger_kernel/transformers/monkey_patch.py
20
23
  src/liger_kernel/transformers/rms_norm.py
21
24
  src/liger_kernel/transformers/rope.py
22
25
  src/liger_kernel/transformers/swiglu.py
26
+ src/liger_kernel/transformers/trainer_integration.py
23
27
  src/liger_kernel/transformers/model/__init__.py
24
28
  src/liger_kernel/transformers/model/llama.py
25
29
  src/liger_kernel/triton/__init__.py
File without changes