liger-kernel-nightly 0.5.9.dev20250517045825__tar.gz → 0.5.9.dev20250519015630__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/PKG-INFO +1 -1
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_dyt.py +37 -34
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/pyproject.toml +1 -1
- liger_kernel_nightly-0.5.9.dev20250519015630/src/liger_kernel/ops/dyt.py +159 -0
- liger_kernel_nightly-0.5.9.dev20250519015630/src/liger_kernel/ops/grpo_loss.py +310 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/dyt.py +5 -3
- liger_kernel_nightly-0.5.9.dev20250519015630/src/liger_kernel/transformers/grpo_loss.py +98 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel_nightly.egg-info/PKG-INFO +1 -1
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel_nightly.egg-info/SOURCES.txt +3 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_dyt.py +40 -20
- liger_kernel_nightly-0.5.9.dev20250519015630/test/transformers/test_grpo_loss.py +190 -0
- liger_kernel_nightly-0.5.9.dev20250517045825/src/liger_kernel/ops/dyt.py +0 -225
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.github/ISSUE_TEMPLATE/bug_report.yaml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.github/ISSUE_TEMPLATE/feature_request.yaml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.github/pull_request_template.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.github/workflows/amd-ci.yml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.github/workflows/docs.yml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.github/workflows/intel-ci.yml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.github/workflows/nvi-ci.yml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.github/workflows/publish-nightly.yml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.github/workflows/publish-release.yml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.gitignore +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/.idea/workspace.xml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/Makefile +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/README.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/README.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/benchmarks_visualizer.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/data/all_benchmark_data.csv +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_cpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_distill_jsd_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_dpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_embedding.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_geglu.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_group_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_jsd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_kl_div.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_kto_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_orpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_rope.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_simpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_sparsemax.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_swiglu.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/benchmark_tvd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/benchmark/scripts/utils.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/dev/fmt-requirements.txt +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/dev/modal/tests.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/dev/modal/tests_bwd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/Examples.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/Getting-Started.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/High-Level-APIs.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/Low-Level-APIs.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/acknowledgement.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/contributing.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/images/banner.GIF +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/images/compose.gif +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/images/e2e-memory.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/images/e2e-tps.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/images/logo-banner.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/images/patch.gif +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/images/post-training.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/index.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/docs/license.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/alignment/accelerate_config.yaml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/alignment/run_orpo.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/README.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/callback.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/config/fsdp_config.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/img/gemma_7b_mem.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/img/gemma_7b_tp.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/img/llama_mem_alloc.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/img/llama_tps.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/img/qwen_mem_alloc.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/img/qwen_tps.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/launch_on_modal.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/requirements.txt +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/run_benchmarks.sh +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/run_gemma.sh +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/run_llama.sh +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/run_qwen.sh +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/run_qwen2_vl.sh +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/training.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/huggingface/training_multimodal.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/lightning/README.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/lightning/requirements.txt +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/lightning/training.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/README.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/callback.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/docs/images/Memory_Stage1_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/docs/images/Memory_Stage1_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/docs/images/Memory_Stage2_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/docs/images/Memory_Stage2_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/docs/images/Throughput_Stage1_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/docs/images/Throughput_Stage1_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/docs/images/Throughput_Stage2_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/docs/images/Throughput_Stage2_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/fsdp/acc-fsdp.conf +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/medusa_util.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/requirements.txt +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/scripts/llama3_8b_medusa.sh +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/examples/medusa/train.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/licenses/LICENSE-Apache-2.0 +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/licenses/LICENSE-MIT-AutoAWQ +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/licenses/LICENSE-MIT-Efficient-Cross-Entropy +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/licenses/LICENSE-MIT-llmc +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/licenses/LICENSE-MIT-triton +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/mkdocs.yml +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/setup.cfg +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/setup.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/README.md +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/cpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/dpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/functional.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/fused_linear_distillation.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/fused_linear_ppo.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/fused_linear_preference.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/grpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/jsd_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/kto_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/orpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/chunked_loss/simpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/env_report.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/geglu.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/group_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/jsd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/kl_div.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/rope.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/sparsemax.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/swiglu.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/tvd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/ops/utils.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/auto_model.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/functional.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/geglu.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/gema3_rms.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/group_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/jsd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/kl_div.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/gemma.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/gemma2.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/gemma3.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/glm4.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/llama.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/llava.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/loss_utils.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/mistral.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/mixtral.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/mllama.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/olmo2.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/paligemma.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/phi3.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/qwen2.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/qwen2_5_vl.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/qwen2_vl.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/qwen3.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/model/qwen3_moe.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/monkey_patch.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/rope.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/sparsemax.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/swiglu.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/trainer/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/trainer/orpo_trainer.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/trainer_integration.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/transformers/tvd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/triton/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/triton/monkey_patch.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel/utils.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel_nightly.egg-info/dependency_links.txt +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel_nightly.egg-info/requires.txt +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/src/liger_kernel_nightly.egg-info/top_level.txt +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/chunked_loss/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/chunked_loss/test_cpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/chunked_loss/test_dpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/chunked_loss/test_grpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/chunked_loss/test_jsd_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/chunked_loss/test_kto_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/chunked_loss/test_orpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/chunked_loss/test_simpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/conftest.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/convergence/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/convergence/bf16/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/convergence/bf16/test_mini_models.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/convergence/bf16/test_mini_models_multimodal.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/convergence/bf16/test_mini_models_with_logits.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/convergence/fp32/__init__.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/convergence/fp32/test_mini_models.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/convergence/fp32/test_mini_models_multimodal.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/convergence/fp32/test_mini_models_with_logits.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/fake_configs/Google/Gemma3/gemma-3-4b-it/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/fake_configs/Google/Paligemma/paligemma-3b-pt-224/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/fake_configs/Llava/llava-1.5-7b-hf/preprocessor_config.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/fake_configs/Llava/llava-1.5-7b-hf/processor_config.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/fake_configs/Llava/llava-1.5-7b-hf/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/fake_configs/Qwen/Qwen2-VL-7B-Instruct/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/fake_configs/Qwen/Qwen2.5-VL-7B-Instruct/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/fake_configs/meta-llama/Llama-3.2-11B-Vision-Instruct/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/scripts/generate_tokenized_dataset.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/tiny_shakespeare.txt +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/tiny_shakespeare_tokenized/data-00000-of-00001.arrow +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/tiny_shakespeare_tokenized/dataset_info.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/resources/tiny_shakespeare_tokenized/state.json +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_auto_model.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_embedding.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_flex_attention.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_geglu.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_group_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_jsd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_kl_div.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_mm_int8int2.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_monkey_patch.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_rope.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_sparsemax.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_swiglu.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_trainer_integration.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_transformers.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/transformers/test_tvd.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/triton/test_triton_monkey_patch.py +0 -0
- {liger_kernel_nightly-0.5.9.dev20250517045825 → liger_kernel_nightly-0.5.9.dev20250519015630}/test/utils.py +0 -0
@@ -22,17 +22,18 @@ def bench_speed_dyt(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput:
|
|
22
22
|
from test.transformers.test_dyt import LigerDyT
|
23
23
|
from test.transformers.test_dyt import TorchDyT
|
24
24
|
|
25
|
-
|
25
|
+
hidden_size = input.x
|
26
26
|
provider = input.kernel_provider
|
27
27
|
mode = input.kernel_operation_mode
|
28
28
|
extra_benchmark_config = input.extra_benchmark_config
|
29
|
-
|
29
|
+
BT = extra_benchmark_config["BT"]
|
30
|
+
beta = extra_benchmark_config["beta"]
|
30
31
|
dtype = extra_benchmark_config["dtype"]
|
31
32
|
|
32
33
|
x_shape = (BT, hidden_size)
|
33
|
-
torch_dyt = TorchDyT(hidden_size=hidden_size).to(device)
|
34
|
-
torch_compile_dyt = torch.compile(TorchDyT(hidden_size=hidden_size).to(device))
|
35
|
-
triton_dyt = LigerDyT(hidden_size=hidden_size).to(device)
|
34
|
+
torch_dyt = TorchDyT(hidden_size=hidden_size, beta=beta).to(device)
|
35
|
+
torch_compile_dyt = torch.compile(TorchDyT(hidden_size=hidden_size, beta=beta).to(device))
|
36
|
+
triton_dyt = LigerDyT(hidden_size=hidden_size, beta=beta).to(device)
|
36
37
|
|
37
38
|
x = torch.randn(x_shape, dtype=dtype, device=device)
|
38
39
|
dy = torch.randn_like(x)
|
@@ -75,16 +76,17 @@ def bench_memory_dyt(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput
|
|
75
76
|
from test.transformers.test_dyt import LigerDyT
|
76
77
|
from test.transformers.test_dyt import TorchDyT
|
77
78
|
|
78
|
-
|
79
|
+
hidden_size = input.x
|
79
80
|
provider = input.kernel_provider
|
80
81
|
extra_benchmark_config = input.extra_benchmark_config
|
81
|
-
|
82
|
+
BT = extra_benchmark_config["BT"]
|
83
|
+
beta = extra_benchmark_config["beta"]
|
82
84
|
dtype = extra_benchmark_config["dtype"]
|
83
85
|
|
84
86
|
x_shape = (BT, hidden_size)
|
85
|
-
torch_dyt = TorchDyT(hidden_size=hidden_size).to(device)
|
86
|
-
torch_compile_dyt = torch.compile(TorchDyT(hidden_size=hidden_size).to(device))
|
87
|
-
triton_dyt = LigerDyT(hidden_size=hidden_size).to(device)
|
87
|
+
torch_dyt = TorchDyT(hidden_size=hidden_size, beta=beta).to(device)
|
88
|
+
torch_compile_dyt = torch.compile(TorchDyT(hidden_size=hidden_size, beta=beta).to(device))
|
89
|
+
triton_dyt = LigerDyT(hidden_size=hidden_size, beta=beta).to(device)
|
88
90
|
|
89
91
|
x = torch.randn(x_shape, dtype=dtype, device=device)
|
90
92
|
dy = torch.randn_like(x)
|
@@ -113,27 +115,28 @@ def bench_memory_dyt(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput
|
|
113
115
|
if __name__ == "__main__":
|
114
116
|
args = parse_benchmark_script_args()
|
115
117
|
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
118
|
+
for beta in [False, True]:
|
119
|
+
common_configs = {
|
120
|
+
"kernel_name": f"dyt_beta={beta}",
|
121
|
+
"x_name": "hidden_size",
|
122
|
+
"x_label": "hidden_size",
|
123
|
+
"x_values": [1024 * i for i in range(1, 17)],
|
124
|
+
"kernel_providers": ["liger", "torch", "torch_compile"],
|
125
|
+
"extra_benchmark_configs": [{"BT": 4096, "dtype": torch.bfloat16, "beta": beta}],
|
126
|
+
"overwrite": args.overwrite,
|
127
|
+
}
|
128
|
+
|
129
|
+
run_benchmarks(
|
130
|
+
bench_test_fn=bench_speed_dyt,
|
131
|
+
kernel_operation_modes=["forward", "backward", "full"],
|
132
|
+
metric_name="speed",
|
133
|
+
metric_unit="ms",
|
134
|
+
**common_configs,
|
135
|
+
)
|
136
|
+
run_benchmarks(
|
137
|
+
bench_test_fn=bench_memory_dyt,
|
138
|
+
kernel_operation_modes=["full"],
|
139
|
+
metric_name="memory",
|
140
|
+
metric_unit="MB",
|
141
|
+
**common_configs,
|
142
|
+
)
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
4
4
|
|
5
5
|
[project]
|
6
6
|
name = "liger_kernel_nightly"
|
7
|
-
version = "0.5.9.
|
7
|
+
version = "0.5.9.dev20250519015630"
|
8
8
|
description = "Efficient Triton kernels for LLM Training"
|
9
9
|
urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
|
10
10
|
readme = { file = "README.md", content-type = "text/markdown" }
|
@@ -0,0 +1,159 @@
|
|
1
|
+
import operator
|
2
|
+
|
3
|
+
import torch
|
4
|
+
import triton
|
5
|
+
import triton.language as tl
|
6
|
+
|
7
|
+
from triton.language.extra.libdevice import tanh
|
8
|
+
|
9
|
+
from liger_kernel.ops.utils import compare_version
|
10
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
11
|
+
from liger_kernel.ops.utils import infer_device
|
12
|
+
|
13
|
+
if compare_version("triton", operator.ge, "3.0.0"):
|
14
|
+
try:
|
15
|
+
# typical import path with dispatch available
|
16
|
+
from triton.language.extra.libdevice import tanh
|
17
|
+
except ModuleNotFoundError:
|
18
|
+
# for working with NGC containers
|
19
|
+
from triton.language.extra.cuda.libdevice import tanh
|
20
|
+
else:
|
21
|
+
from triton.language.math import tanh
|
22
|
+
|
23
|
+
|
24
|
+
# @triton.autotune([triton.Config({"BLOCK_N":bn}, num_stages=ns, num_warps=nw)
|
25
|
+
# for bn in [1024, 2048, 4096]
|
26
|
+
# for ns in [1,2,4]
|
27
|
+
# for nw in [4, 8, 16, 32]
|
28
|
+
# ],
|
29
|
+
# key=['N'])
|
30
|
+
@triton.jit
|
31
|
+
def _dyt_fwd_kernel(X, Y, Alpha, Gamma, Beta, HAVE_BETA: tl.constexpr, N: tl.constexpr, BLOCK_N: tl.constexpr = 1024):
|
32
|
+
col = tl.cast(tl.program_id(0), tl.int64) * BLOCK_N + tl.arange(0, BLOCK_N)
|
33
|
+
mask = col < N
|
34
|
+
row_id = tl.cast(tl.program_id(1), tl.int64)
|
35
|
+
|
36
|
+
X += row_id * N
|
37
|
+
Y += row_id * N
|
38
|
+
alpha = tl.load(Alpha).to(tl.float32)
|
39
|
+
|
40
|
+
gamma = tl.load(Gamma + col, mask=mask, other=0.0).to(tl.float32)
|
41
|
+
|
42
|
+
x = tl.load(X + col, mask=mask, other=0.0).to(tl.float32)
|
43
|
+
|
44
|
+
tanh_x = tanh(alpha * x)
|
45
|
+
y = tanh_x * gamma
|
46
|
+
if HAVE_BETA:
|
47
|
+
beta = tl.load(Beta + col, mask=mask, other=0.0).to(tl.float32)
|
48
|
+
y += beta
|
49
|
+
tl.store(Y + col, y, mask=mask)
|
50
|
+
|
51
|
+
|
52
|
+
# @triton.autotune([triton.Config({"BLOCK_N":bn}, num_stages=ns, num_warps=nw)
|
53
|
+
# for bn in [1024, 2048, 4096]
|
54
|
+
# for ns in [1,2,4]
|
55
|
+
# for nw in [4, 8, 16]
|
56
|
+
# ],
|
57
|
+
# key=['N'])
|
58
|
+
@triton.jit
|
59
|
+
def _dyt_bwd_kernel(
|
60
|
+
DY, DX, DA, DG, DB, X, Alpha, Gamma, HAVE_BETA: tl.constexpr, M, N: tl.constexpr, BLOCK_N: tl.constexpr = 1024
|
61
|
+
):
|
62
|
+
col = tl.cast(tl.program_id(0), tl.int64) * BLOCK_N + tl.arange(0, BLOCK_N)
|
63
|
+
mask = col < N
|
64
|
+
start_row_id = tl.cast(tl.program_id(1), tl.int64)
|
65
|
+
|
66
|
+
alpha = tl.load(Alpha).to(tl.float32)
|
67
|
+
da = 0.0
|
68
|
+
gamma = tl.load(Gamma + col, mask=mask, other=0.0).to(tl.float32)
|
69
|
+
dg = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
70
|
+
if HAVE_BETA:
|
71
|
+
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
72
|
+
for row_id in range(start_row_id, M, tl.num_programs(1)):
|
73
|
+
x = tl.load(X + row_id * N + col, mask=mask, other=0.0).to(tl.float32)
|
74
|
+
dy = tl.load(DY + row_id * N + col, mask=mask, other=0.0).to(tl.float32)
|
75
|
+
tanh_x = tanh(alpha * x)
|
76
|
+
if HAVE_BETA:
|
77
|
+
db += dy
|
78
|
+
dg += dy * tanh_x
|
79
|
+
tmp = (1 - tanh_x * tanh_x) * dy * gamma
|
80
|
+
da += tl.sum(x * tmp, 0)
|
81
|
+
dx = alpha * tmp
|
82
|
+
tl.store(DX + row_id * N + col, dx, mask=mask)
|
83
|
+
|
84
|
+
tl.store(DG + start_row_id * N + col, dg, mask=mask)
|
85
|
+
if HAVE_BETA:
|
86
|
+
tl.store(DB + start_row_id * N + col, db, mask=mask)
|
87
|
+
tl.store(DA + start_row_id * tl.cdiv(N, 512) + tl.program_id(0), da)
|
88
|
+
|
89
|
+
|
90
|
+
def liger_dyt_fwd(x, alpha, gamma, beta):
|
91
|
+
assert x.is_contiguous()
|
92
|
+
HAVE_BETA = True if beta is not None else False
|
93
|
+
input_shape = x.shape
|
94
|
+
x = x.view(-1, input_shape[-1])
|
95
|
+
M, N = x.shape
|
96
|
+
|
97
|
+
y = torch.empty_like(x)
|
98
|
+
|
99
|
+
if N >= 4096:
|
100
|
+
kwargs = {"BLOCK_N": min(triton.next_power_of_2(N), 2048), "num_warps": 4, "num_stages": 1}
|
101
|
+
else:
|
102
|
+
kwargs = {"BLOCK_N": min(triton.next_power_of_2(N), 1024), "num_warps": 4, "num_stages": 1}
|
103
|
+
|
104
|
+
grid = lambda meta: (triton.cdiv(N, meta["BLOCK_N"]), M)
|
105
|
+
_dyt_fwd_kernel[(grid)](
|
106
|
+
x,
|
107
|
+
y,
|
108
|
+
alpha,
|
109
|
+
gamma,
|
110
|
+
beta,
|
111
|
+
HAVE_BETA,
|
112
|
+
N,
|
113
|
+
**kwargs,
|
114
|
+
)
|
115
|
+
return y.view(input_shape)
|
116
|
+
|
117
|
+
|
118
|
+
def liger_dyt_bwd(dy, x, alpha, gamma, beta):
|
119
|
+
assert dy.is_contiguous()
|
120
|
+
input_shape = x.shape
|
121
|
+
x = x.view(-1, input_shape[-1])
|
122
|
+
M, N = x.shape
|
123
|
+
HAVE_BETA = True if beta is not None else False
|
124
|
+
|
125
|
+
device = infer_device()
|
126
|
+
if device == "cuda":
|
127
|
+
NUM_SMS = torch.cuda.get_device_properties(x.device).multi_processor_count
|
128
|
+
elif device == "xpu":
|
129
|
+
NUM_SMS = torch.xpu.get_device_properties(x.device).gpu_subslice_count
|
130
|
+
|
131
|
+
da = torch.zeros(NUM_SMS, triton.cdiv(N, 512), dtype=torch.float32, device=x.device)
|
132
|
+
dg = torch.empty(NUM_SMS, N, dtype=torch.float32, device=x.device)
|
133
|
+
db = torch.empty(NUM_SMS, N, dtype=torch.float32, device=x.device) if HAVE_BETA else None
|
134
|
+
dx = torch.empty_like(dy)
|
135
|
+
|
136
|
+
kwargs = {"BLOCK_N": min(triton.next_power_of_2(N), 1024), "num_warps": 8, "num_stages": 2}
|
137
|
+
grid = lambda meta: (triton.cdiv(N, meta["BLOCK_N"]), NUM_SMS)
|
138
|
+
_dyt_bwd_kernel[grid](dy, dx, da, dg, db, x, alpha, gamma, HAVE_BETA, M, N, **kwargs)
|
139
|
+
if HAVE_BETA:
|
140
|
+
db = db.sum(0).to(x.dtype)
|
141
|
+
dg = dg.sum(0).to(gamma.dtype)
|
142
|
+
da = da.sum().to(x.dtype).unsqueeze(0)
|
143
|
+
return dx.view(input_shape), da, dg, db
|
144
|
+
|
145
|
+
|
146
|
+
class LigerDyTFunction(torch.autograd.Function):
|
147
|
+
@staticmethod
|
148
|
+
@ensure_contiguous
|
149
|
+
def forward(ctx, x, alpha, gamma, beta):
|
150
|
+
y = liger_dyt_fwd(x, alpha, gamma, beta)
|
151
|
+
ctx.save_for_backward(x, alpha, gamma, beta)
|
152
|
+
return y
|
153
|
+
|
154
|
+
@staticmethod
|
155
|
+
@ensure_contiguous
|
156
|
+
def backward(ctx, dy):
|
157
|
+
x, alpha, gamma, beta = ctx.saved_tensors
|
158
|
+
dx, dalpha, dgamma, dbeta = liger_dyt_bwd(dy, x, alpha, gamma, beta)
|
159
|
+
return dx, dalpha, dgamma, dbeta
|
@@ -0,0 +1,310 @@
|
|
1
|
+
import torch
|
2
|
+
import triton
|
3
|
+
import triton.language as tl
|
4
|
+
|
5
|
+
|
6
|
+
@triton.jit
|
7
|
+
def _selective_log_softmax_kernel(
|
8
|
+
LOGITS,
|
9
|
+
INPUT_IDS,
|
10
|
+
LOG_P,
|
11
|
+
MASK,
|
12
|
+
TEMPERATURE,
|
13
|
+
stride_input_ids_b,
|
14
|
+
L: tl.constexpr,
|
15
|
+
N: tl.constexpr,
|
16
|
+
BLOCK_N: tl.constexpr = 4096,
|
17
|
+
):
|
18
|
+
off_b = tl.program_id(0).cast(tl.int64)
|
19
|
+
off_l = tl.program_id(1).cast(tl.int64)
|
20
|
+
|
21
|
+
LOGITS += off_b * (L + 1) * N + off_l * N
|
22
|
+
INPUT_IDS += off_b * stride_input_ids_b + off_l
|
23
|
+
LOG_P += off_b * L + off_l
|
24
|
+
|
25
|
+
if MASK is not None:
|
26
|
+
MASK += off_b * stride_input_ids_b + off_l
|
27
|
+
not_skip = tl.load(MASK)
|
28
|
+
if not_skip == 0:
|
29
|
+
return
|
30
|
+
|
31
|
+
m_i = float("-inf")
|
32
|
+
l_i = 0.0
|
33
|
+
for start in range(0, N, BLOCK_N):
|
34
|
+
cols = start + tl.arange(0, BLOCK_N)
|
35
|
+
logits = tl.load(LOGITS + cols, mask=cols < N, other=float("-inf")).to(tl.float32) / TEMPERATURE
|
36
|
+
new_m_i = tl.maximum(m_i, tl.max(logits))
|
37
|
+
alpha = tl.exp(m_i - new_m_i)
|
38
|
+
l_i = l_i * alpha + tl.sum(tl.exp(logits - new_m_i))
|
39
|
+
m_i = new_m_i
|
40
|
+
lse = m_i + tl.log(l_i)
|
41
|
+
|
42
|
+
ids = tl.load(INPUT_IDS)
|
43
|
+
x = tl.load(LOGITS + ids).to(tl.float32) / TEMPERATURE
|
44
|
+
logp = x - lse
|
45
|
+
tl.store(LOG_P, logp)
|
46
|
+
|
47
|
+
|
48
|
+
# compue old_logp and ref_logp, it reduce 10G peak Memory. it does not requires grad
|
49
|
+
@torch.no_grad
|
50
|
+
def fused_selective_log_softmax(logits: torch.Tensor, input_ids: torch.Tensor, temperature: float = 0.9, mask=None):
|
51
|
+
assert logits.is_contiguous()
|
52
|
+
B, L_ADD_1, N = logits.shape
|
53
|
+
L = L_ADD_1 - 1
|
54
|
+
input_ids = input_ids[:, -L:]
|
55
|
+
if mask is not None:
|
56
|
+
mask = mask[:, -L:]
|
57
|
+
log_p = torch.zeros(B, L, dtype=torch.float32, device=logits.device)
|
58
|
+
kwargs = {"BLOCK_N": 2048, "num_stages": 4, "num_warps": 1}
|
59
|
+
_selective_log_softmax_kernel[(B, L)](
|
60
|
+
logits, input_ids, log_p, mask, temperature, input_ids.stride(0), L, N, **kwargs
|
61
|
+
)
|
62
|
+
return log_p
|
63
|
+
|
64
|
+
|
65
|
+
# @triton.autotune([triton.Config({"BLOCK_N":BLOCK_N}, num_stages=ns, num_warps=nw)
|
66
|
+
# for BLOCK_N in [2048, 4096, 8192]
|
67
|
+
# for ns in [1, 2, 4]
|
68
|
+
# for nw in [1, 2, 4, 8, 16]],
|
69
|
+
# key=['N'])
|
70
|
+
@triton.jit
|
71
|
+
def _grpo_loss_fwd_kernel(
|
72
|
+
LOGITS,
|
73
|
+
OLD_LOGP,
|
74
|
+
REF_LOGP,
|
75
|
+
INPUT_IDS,
|
76
|
+
COMPLETION_MASK,
|
77
|
+
ADVANTAGES,
|
78
|
+
LOSS,
|
79
|
+
LSE,
|
80
|
+
KL,
|
81
|
+
IS_CLIPPED,
|
82
|
+
TEMPERATURE,
|
83
|
+
BETA: tl.constexpr,
|
84
|
+
EPS_LOW,
|
85
|
+
EPS_HIGH,
|
86
|
+
L: tl.constexpr,
|
87
|
+
N: tl.constexpr,
|
88
|
+
BLOCK_N: tl.constexpr = 4096,
|
89
|
+
):
|
90
|
+
off_b = tl.program_id(0).cast(tl.int64)
|
91
|
+
off_l = tl.program_id(1).cast(tl.int64)
|
92
|
+
|
93
|
+
if COMPLETION_MASK is not None:
|
94
|
+
COMPLETION_MASK += off_b * L + off_l
|
95
|
+
not_skip = tl.load(COMPLETION_MASK)
|
96
|
+
if not_skip == 0:
|
97
|
+
return
|
98
|
+
|
99
|
+
LOGITS += off_b * (L + 1) * N + off_l * N
|
100
|
+
INPUT_IDS += off_b * L + off_l
|
101
|
+
ADVANTAGES += off_b
|
102
|
+
LOSS += off_b * L + off_l
|
103
|
+
LSE += off_b * L + off_l
|
104
|
+
IS_CLIPPED += off_b * L + off_l
|
105
|
+
|
106
|
+
m_i = float("-inf")
|
107
|
+
l_i = 0.0
|
108
|
+
for start in range(0, N, BLOCK_N):
|
109
|
+
cols = start + tl.arange(0, BLOCK_N)
|
110
|
+
logits = tl.load(LOGITS + cols, mask=cols < N, other=float("-inf")).to(tl.float32) / TEMPERATURE
|
111
|
+
new_m_i = tl.maximum(m_i, tl.max(logits))
|
112
|
+
alpha = tl.exp(m_i - new_m_i)
|
113
|
+
l_i = l_i * alpha + tl.sum(tl.exp(logits - new_m_i))
|
114
|
+
m_i = new_m_i
|
115
|
+
lse = m_i + tl.log(l_i)
|
116
|
+
|
117
|
+
idx = tl.load(INPUT_IDS)
|
118
|
+
x = tl.load(LOGITS + idx).to(tl.float32) / TEMPERATURE
|
119
|
+
logp = x - lse
|
120
|
+
if OLD_LOGP is None:
|
121
|
+
old_logp = logp
|
122
|
+
else:
|
123
|
+
OLD_LOGP += off_b * L + off_l
|
124
|
+
old_logp = tl.load(OLD_LOGP).to(tl.float32)
|
125
|
+
coef_1 = tl.exp(logp - old_logp)
|
126
|
+
coef_2 = tl.clamp(coef_1, 1 - EPS_LOW, 1 + EPS_HIGH)
|
127
|
+
advantage = tl.load(ADVANTAGES).to(tl.float32)
|
128
|
+
per_token_loss1 = coef_1 * advantage
|
129
|
+
per_token_loss2 = coef_2 * advantage
|
130
|
+
per_token_loss = -tl.minimum(per_token_loss1, per_token_loss2)
|
131
|
+
is_clipped = per_token_loss1 < per_token_loss2
|
132
|
+
|
133
|
+
if BETA != 0.0:
|
134
|
+
REF_LOGP += off_b * L + off_l
|
135
|
+
KL += off_b * L + off_l
|
136
|
+
ref_logp = tl.load(REF_LOGP).to(tl.float32)
|
137
|
+
kl = tl.exp(ref_logp - logp) - (ref_logp - logp) - 1
|
138
|
+
per_token_loss += BETA * kl
|
139
|
+
tl.store(KL, kl)
|
140
|
+
|
141
|
+
tl.store(LOSS, per_token_loss)
|
142
|
+
tl.store(LSE, lse)
|
143
|
+
tl.store(IS_CLIPPED, is_clipped)
|
144
|
+
|
145
|
+
|
146
|
+
# @triton.autotune([triton.Config({"BLOCK_N":BLOCK_N}, num_stages=ns, num_warps=nw)
|
147
|
+
# for BLOCK_N in [2048, 4096, 8192]
|
148
|
+
# for ns in [1, 2, 4]
|
149
|
+
# for nw in [1, 2, 4, 8, 16]],
|
150
|
+
# key=['N'])
|
151
|
+
@triton.jit
|
152
|
+
def _grpo_loss_bwd_kernel(
|
153
|
+
DLOSS,
|
154
|
+
DLOGITS,
|
155
|
+
LOGITS,
|
156
|
+
OLD_LOGP,
|
157
|
+
REF_LOGP,
|
158
|
+
INPUT_IDS,
|
159
|
+
ADVANTAGES,
|
160
|
+
COMPLETION_MASK,
|
161
|
+
LSE,
|
162
|
+
TEMPERATURE,
|
163
|
+
BETA: tl.constexpr,
|
164
|
+
EPS_LOW,
|
165
|
+
EPS_HIGH,
|
166
|
+
loss_stride0,
|
167
|
+
loss_stride1,
|
168
|
+
L: tl.constexpr,
|
169
|
+
N: tl.constexpr,
|
170
|
+
BLOCK_N: tl.constexpr = 4096,
|
171
|
+
):
|
172
|
+
off_b = tl.program_id(0).cast(tl.int64)
|
173
|
+
off_l = tl.program_id(1).cast(tl.int64)
|
174
|
+
|
175
|
+
DLOGITS += off_b * (L + 1) * N + off_l * N
|
176
|
+
if COMPLETION_MASK is not None:
|
177
|
+
COMPLETION_MASK += off_b * L + off_l
|
178
|
+
not_skip = tl.load(COMPLETION_MASK)
|
179
|
+
if not_skip == 0:
|
180
|
+
for start in range(0, N, BLOCK_N):
|
181
|
+
cols = tl.arange(0, BLOCK_N) + start
|
182
|
+
tl.store(DLOGITS + cols, 0.0, mask=cols < N)
|
183
|
+
return
|
184
|
+
|
185
|
+
LOGITS += off_b * (L + 1) * N + off_l * N
|
186
|
+
DLOSS += off_b * loss_stride0 + off_l * loss_stride1
|
187
|
+
INPUT_IDS += off_b * L + off_l
|
188
|
+
ADVANTAGES += off_b
|
189
|
+
LSE += off_b * L + off_l
|
190
|
+
|
191
|
+
dloss = tl.load(DLOSS).to(tl.float32)
|
192
|
+
lse = tl.load(LSE).to(tl.float32)
|
193
|
+
|
194
|
+
idx = tl.load(INPUT_IDS)
|
195
|
+
x = tl.load(LOGITS + idx).to(tl.float32) / TEMPERATURE
|
196
|
+
logp = x - lse
|
197
|
+
if OLD_LOGP is None:
|
198
|
+
old_logp = logp
|
199
|
+
else:
|
200
|
+
OLD_LOGP += off_b * L + off_l
|
201
|
+
old_logp = tl.load(OLD_LOGP).to(tl.float32)
|
202
|
+
coef_1 = tl.exp(logp - old_logp)
|
203
|
+
coef_2 = tl.clamp(coef_1, 1 - EPS_LOW, 1 + EPS_HIGH)
|
204
|
+
advantage = tl.load(ADVANTAGES).to(tl.float32)
|
205
|
+
per_token_loss1 = coef_1 * advantage
|
206
|
+
per_token_loss2 = coef_2 * advantage
|
207
|
+
mask = per_token_loss2 >= per_token_loss1
|
208
|
+
|
209
|
+
dlogp = -per_token_loss1 * mask
|
210
|
+
if BETA != 0.0:
|
211
|
+
REF_LOGP += off_b * L + off_l
|
212
|
+
ref_logp = tl.load(REF_LOGP).to(tl.float32)
|
213
|
+
dlogp += BETA * (1 - tl.exp(ref_logp - logp))
|
214
|
+
|
215
|
+
dlogp = dlogp * dloss / TEMPERATURE
|
216
|
+
tl.debug_barrier()
|
217
|
+
for start_n in tl.range(0, N, BLOCK_N):
|
218
|
+
cols = start_n + tl.arange(0, BLOCK_N)
|
219
|
+
logits = tl.load(LOGITS + cols, mask=cols < N, other=-float("inf")).to(tl.float32) / TEMPERATURE
|
220
|
+
probs = tl.exp(logits - lse)
|
221
|
+
dlogits = tl.where(cols == idx, 1 - probs, -probs) * dlogp
|
222
|
+
tl.store(DLOGITS + cols, dlogits, mask=cols < N)
|
223
|
+
|
224
|
+
|
225
|
+
class GrpoLossFunction(torch.autograd.Function):
|
226
|
+
@staticmethod
|
227
|
+
def forward(
|
228
|
+
ctx,
|
229
|
+
logits,
|
230
|
+
old_logp,
|
231
|
+
ref_logp,
|
232
|
+
completion_ids,
|
233
|
+
advantages,
|
234
|
+
completion_mask,
|
235
|
+
temperature,
|
236
|
+
beta,
|
237
|
+
eps_low,
|
238
|
+
eps_high,
|
239
|
+
inplace,
|
240
|
+
):
|
241
|
+
assert logits.is_contiguous() and completion_ids.is_contiguous()
|
242
|
+
assert old_logp is None or old_logp.is_contiguous()
|
243
|
+
assert (ref_logp is not None and ref_logp.is_contiguous()) if beta != 0.0 else True
|
244
|
+
|
245
|
+
B, L_ADD_1, N = logits.shape
|
246
|
+
L = L_ADD_1 - 1
|
247
|
+
|
248
|
+
if completion_mask is not None:
|
249
|
+
assert completion_mask.is_contiguous()
|
250
|
+
|
251
|
+
loss = torch.zeros(B, L, device=logits.device, dtype=torch.float32)
|
252
|
+
lse = torch.zeros_like(loss)
|
253
|
+
is_clipped = torch.zeros_like(loss)
|
254
|
+
kl = torch.zeros_like(loss) if beta != 0.0 else None
|
255
|
+
kwargs = {"BLOCK_N": 2048, "num_stages": 2, "num_warps": 1}
|
256
|
+
_grpo_loss_fwd_kernel[(B, L)](
|
257
|
+
logits,
|
258
|
+
old_logp,
|
259
|
+
ref_logp,
|
260
|
+
completion_ids,
|
261
|
+
completion_mask,
|
262
|
+
advantages,
|
263
|
+
loss,
|
264
|
+
lse,
|
265
|
+
kl,
|
266
|
+
is_clipped,
|
267
|
+
temperature,
|
268
|
+
beta,
|
269
|
+
eps_low,
|
270
|
+
eps_high,
|
271
|
+
L,
|
272
|
+
N,
|
273
|
+
**kwargs,
|
274
|
+
)
|
275
|
+
ctx.save_for_backward(logits, old_logp, ref_logp, completion_ids, advantages, completion_mask, lse)
|
276
|
+
ctx.infos = (temperature, beta, eps_low, eps_high, inplace)
|
277
|
+
# return loss
|
278
|
+
return loss, kl, is_clipped
|
279
|
+
|
280
|
+
@staticmethod
|
281
|
+
def backward(ctx, *args):
|
282
|
+
dloss = args[0]
|
283
|
+
# print(dloss.shape)
|
284
|
+
logits, old_logp, ref_logp, completion_ids, advantages, completion_mask, lse = ctx.saved_tensors
|
285
|
+
temperature, beta, eps_low, eps_high, inplace = ctx.infos
|
286
|
+
B, L_ADD_1, N = logits.shape
|
287
|
+
L = L_ADD_1 - 1
|
288
|
+
dlogits = logits.data if inplace else torch.empty_like(logits)
|
289
|
+
kwargs = {"BLOCK_N": 4096, "num_stages": 1, "num_warps": 16}
|
290
|
+
_grpo_loss_bwd_kernel[(B, L)](
|
291
|
+
dloss,
|
292
|
+
dlogits,
|
293
|
+
logits,
|
294
|
+
old_logp,
|
295
|
+
ref_logp,
|
296
|
+
completion_ids,
|
297
|
+
advantages,
|
298
|
+
completion_mask,
|
299
|
+
lse,
|
300
|
+
temperature,
|
301
|
+
beta,
|
302
|
+
eps_low,
|
303
|
+
eps_high,
|
304
|
+
*dloss.stride(),
|
305
|
+
L,
|
306
|
+
N,
|
307
|
+
**kwargs,
|
308
|
+
)
|
309
|
+
dlogits[:, -1, :] = 0
|
310
|
+
return dlogits, None, None, None, None, None, None, None, None, None, None
|
@@ -5,16 +5,18 @@ from liger_kernel.ops.dyt import LigerDyTFunction
|
|
5
5
|
|
6
6
|
|
7
7
|
class LigerDyT(nn.Module):
|
8
|
-
def __init__(self, hidden_size, init_alpha=0.5):
|
8
|
+
def __init__(self, hidden_size, beta=True, init_alpha=0.5):
|
9
9
|
super().__init__()
|
10
10
|
self.hidden_size = hidden_size
|
11
11
|
self.init_alpha = init_alpha
|
12
12
|
self.alpha = nn.Parameter(torch.ones(1) * init_alpha)
|
13
13
|
self.gamma = nn.Parameter(torch.ones(hidden_size))
|
14
|
-
self.beta =
|
14
|
+
self.beta = None
|
15
|
+
if beta:
|
16
|
+
self.beta = nn.Parameter(torch.zeros(hidden_size))
|
15
17
|
|
16
18
|
def forward(self, x):
|
17
19
|
return LigerDyTFunction.apply(x, self.alpha, self.gamma, self.beta)
|
18
20
|
|
19
21
|
def extra_repr(self):
|
20
|
-
return f"{self.hidden_size}, init_alpha={self.init_alpha}"
|
22
|
+
return f"{self.hidden_size}, init_alpha={self.init_alpha}, beta={self.beta}"
|