liger-kernel-nightly 0.5.6.dev20250402215200__tar.gz → 0.5.6.dev20250403001329__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/PKG-INFO +3 -1
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/README.md +2 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/pyproject.toml +1 -1
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/__init__.py +2 -0
- liger_kernel_nightly-0.5.6.dev20250403001329/src/liger_kernel/transformers/gema3_rms.py +8 -0
- liger_kernel_nightly-0.5.6.dev20250403001329/src/liger_kernel/transformers/model/gemma3.py +335 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/monkey_patch.py +173 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel_nightly.egg-info/PKG-INFO +3 -1
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel_nightly.egg-info/SOURCES.txt +3 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/convergence/bf16/test_mini_models.py +59 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/convergence/bf16/test_mini_models_multimodal.py +100 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/convergence/bf16/test_mini_models_with_logits.py +59 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/convergence/fp32/test_mini_models.py +55 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/convergence/fp32/test_mini_models_multimodal.py +96 -2
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/convergence/fp32/test_mini_models_with_logits.py +55 -0
- liger_kernel_nightly-0.5.6.dev20250403001329/test/resources/fake_configs/Google/Gemma3/gemma-3-4b-it/tokenizer_config.json +90 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_monkey_patch.py +150 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/utils.py +29 -1
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.github/ISSUE_TEMPLATE/bug_report.yaml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.github/ISSUE_TEMPLATE/feature_request.yaml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.github/pull_request_template.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.github/workflows/amd-ci.yml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.github/workflows/docs.yml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.github/workflows/intel-ci.yml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.github/workflows/nvi-ci.yml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.github/workflows/publish-nightly.yml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.github/workflows/publish-release.yml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/.gitignore +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/Makefile +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/README.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/benchmarks_visualizer.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/data/all_benchmark_data.csv +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_cpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_distill_jsd_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_dpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_dyt.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_embedding.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_geglu.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_group_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_jsd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_kl_div.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_kto_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_orpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_rope.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_simpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_swiglu.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/benchmark_tvd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/benchmark/scripts/utils.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/dev/fmt-requirements.txt +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/dev/modal/tests.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/dev/modal/tests_bwd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/Examples.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/Getting-Started.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/High-Level-APIs.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/Low-Level-APIs.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/acknowledgement.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/contributing.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/images/banner.GIF +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/images/compose.gif +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/images/e2e-memory.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/images/e2e-tps.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/images/logo-banner.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/images/patch.gif +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/images/post-training.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/index.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/docs/license.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/alignment/accelerate_config.yaml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/alignment/run_orpo.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/README.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/callback.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/config/fsdp_config.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/img/gemma_7b_mem.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/img/gemma_7b_tp.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/img/llama_mem_alloc.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/img/llama_tps.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/img/qwen_mem_alloc.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/img/qwen_tps.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/launch_on_modal.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/requirements.txt +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/run_benchmarks.sh +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/run_gemma.sh +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/run_llama.sh +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/run_qwen.sh +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/run_qwen2_vl.sh +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/training.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/huggingface/training_multimodal.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/lightning/README.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/lightning/requirements.txt +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/lightning/training.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/README.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/callback.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/docs/images/Memory_Stage1_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/docs/images/Memory_Stage1_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/docs/images/Memory_Stage2_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/docs/images/Memory_Stage2_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/docs/images/Throughput_Stage1_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/docs/images/Throughput_Stage1_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/docs/images/Throughput_Stage2_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/docs/images/Throughput_Stage2_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/fsdp/acc-fsdp.conf +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/medusa_util.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/requirements.txt +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/scripts/llama3_8b_medusa.sh +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/examples/medusa/train.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/licenses/LICENSE-Apache-2.0 +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/licenses/LICENSE-MIT-AutoAWQ +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/licenses/LICENSE-MIT-Efficient-Cross-Entropy +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/licenses/LICENSE-MIT-llmc +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/licenses/LICENSE-MIT-triton +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/mkdocs.yml +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/setup.cfg +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/setup.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/README.md +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/cpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/dpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/functional.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/fused_linear_distillation.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/fused_linear_ppo.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/fused_linear_preference.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/grpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/jsd_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/kto_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/orpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/chunked_loss/simpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/env_report.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/dyt.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/geglu.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/group_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/jsd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/kl_div.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/rope.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/swiglu.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/tvd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/ops/utils.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/auto_model.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/dyt.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/functional.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/geglu.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/group_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/jsd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/kl_div.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/gemma.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/gemma2.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/llama.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/llava.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/loss_utils.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/mistral.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/mixtral.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/mllama.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/olmo2.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/paligemma.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/phi3.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/qwen2.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/qwen2_5_vl.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/model/qwen2_vl.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/rope.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/swiglu.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/trainer/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/trainer/orpo_trainer.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/trainer_integration.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/transformers/tvd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/triton/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/triton/monkey_patch.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel/utils.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel_nightly.egg-info/dependency_links.txt +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel_nightly.egg-info/requires.txt +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/src/liger_kernel_nightly.egg-info/top_level.txt +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/chunked_loss/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/chunked_loss/test_cpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/chunked_loss/test_dpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/chunked_loss/test_grpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/chunked_loss/test_jsd_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/chunked_loss/test_kto_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/chunked_loss/test_orpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/chunked_loss/test_simpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/conftest.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/convergence/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/convergence/bf16/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/convergence/fp32/__init__.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/fake_configs/Google/Paligemma/paligemma-3b-pt-224/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/fake_configs/Llava/llava-1.5-7b-hf/preprocessor_config.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/fake_configs/Llava/llava-1.5-7b-hf/processor_config.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/fake_configs/Llava/llava-1.5-7b-hf/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/fake_configs/Qwen/Qwen2-VL-7B-Instruct/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/fake_configs/Qwen/Qwen2.5-VL-7B-Instruct/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/fake_configs/meta-llama/Llama-3.2-11B-Vision-Instruct/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/scripts/generate_tokenized_dataset.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/tiny_shakespeare.txt +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/tiny_shakespeare_tokenized/data-00000-of-00001.arrow +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/tiny_shakespeare_tokenized/dataset_info.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/resources/tiny_shakespeare_tokenized/state.json +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_auto_model.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_dyt.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_embedding.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_flex_attention.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_geglu.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_group_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_jsd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_kl_div.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_mm_int8int2.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_rope.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_swiglu.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_trainer_integration.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_transformers.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/transformers/test_tvd.py +0 -0
- {liger_kernel_nightly-0.5.6.dev20250402215200 → liger_kernel_nightly-0.5.6.dev20250403001329}/test/triton/test_triton_monkey_patch.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: liger_kernel_nightly
|
3
|
-
Version: 0.5.6.
|
3
|
+
Version: 0.5.6.dev20250403001329
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
@@ -311,6 +311,8 @@ loss.backward()
|
|
311
311
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
312
312
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
313
313
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
314
|
+
| Gemma3 (Text) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3_text` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
315
|
+
| Gemma3 (Multimodal) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
314
316
|
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
315
317
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
316
318
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
@@ -263,6 +263,8 @@ loss.backward()
|
|
263
263
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
264
264
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
265
265
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
266
|
+
| Gemma3 (Text) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3_text` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
267
|
+
| Gemma3 (Multimodal) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
266
268
|
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
267
269
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
268
270
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
4
4
|
|
5
5
|
[project]
|
6
6
|
name = "liger_kernel_nightly"
|
7
|
-
version = "0.5.6.
|
7
|
+
version = "0.5.6.dev20250403001329"
|
8
8
|
description = "Efficient Triton kernels for LLM Training"
|
9
9
|
urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
|
10
10
|
readme = { file = "README.md", content-type = "text/markdown" }
|
@@ -10,6 +10,8 @@ from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa:
|
|
10
10
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
|
11
11
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
|
12
12
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
13
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
14
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
13
15
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
14
16
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
15
17
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
@@ -0,0 +1,8 @@
|
|
1
|
+
from .rms_norm import LigerRMSNorm
|
2
|
+
|
3
|
+
|
4
|
+
class LigerRMSNormForGemma3(LigerRMSNorm):
|
5
|
+
"""Gemma3RMSNorm has a dim argument not hidden_size used in q_norm and k_norm."""
|
6
|
+
|
7
|
+
def __init__(self, dim, eps=0.000001, offset=1.0, casting_mode="gemma", init_fn="zeros", in_place=False):
|
8
|
+
super().__init__(dim, eps, offset, casting_mode, init_fn, in_place)
|
@@ -0,0 +1,335 @@
|
|
1
|
+
from typing import List
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Tuple
|
4
|
+
from typing import Union
|
5
|
+
|
6
|
+
import torch
|
7
|
+
import torch.nn as nn
|
8
|
+
|
9
|
+
from transformers.cache_utils import Cache
|
10
|
+
from transformers.cache_utils import HybridCache
|
11
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
12
|
+
from transformers.models.gemma3.modeling_gemma3 import _CONFIG_FOR_DOC
|
13
|
+
from transformers.models.gemma3.modeling_gemma3 import GEMMA3_INPUTS_DOCSTRING
|
14
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast
|
15
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
16
|
+
from transformers.utils import is_torchdynamo_compiling
|
17
|
+
from transformers.utils import logging
|
18
|
+
from transformers.utils import replace_return_docstrings
|
19
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
20
|
+
|
21
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
22
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
23
|
+
|
24
|
+
logger = logging.get_logger(__name__)
|
25
|
+
|
26
|
+
|
27
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
28
|
+
@add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
|
29
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
30
|
+
def causal_forward(
|
31
|
+
self,
|
32
|
+
input_ids: torch.LongTensor = None,
|
33
|
+
attention_mask: Optional[torch.Tensor] = None,
|
34
|
+
position_ids: Optional[torch.LongTensor] = None,
|
35
|
+
past_key_values: Optional[HybridCache] = None,
|
36
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
37
|
+
labels: Optional[torch.LongTensor] = None,
|
38
|
+
use_cache: Optional[bool] = None,
|
39
|
+
output_attentions: Optional[bool] = None,
|
40
|
+
output_hidden_states: Optional[bool] = None,
|
41
|
+
return_dict: Optional[bool] = None,
|
42
|
+
cache_position: Optional[torch.LongTensor] = None,
|
43
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
44
|
+
**loss_kwargs,
|
45
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
46
|
+
r"""
|
47
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
48
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
49
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
50
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
51
|
+
|
52
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
53
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
54
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
55
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
56
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
57
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
58
|
+
|
59
|
+
Returns:
|
60
|
+
|
61
|
+
Example:
|
62
|
+
|
63
|
+
```python
|
64
|
+
>>> from transformers import AutoTokenizer, Gemma3ForCausalLM
|
65
|
+
|
66
|
+
>>> model = Gemma3ForCausalLM.from_pretrained("google/gemma-2-9b")
|
67
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
68
|
+
|
69
|
+
>>> prompt = "What is your favorite condiment?"
|
70
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
71
|
+
|
72
|
+
>>> # Generate
|
73
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
74
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
75
|
+
"What is your favorite condiment?"
|
76
|
+
```"""
|
77
|
+
|
78
|
+
if self.training and self.config._attn_implementation != "eager":
|
79
|
+
logger.warning_once(
|
80
|
+
"It is strongly recommended to train Gemma3 models with the `eager` attention implementation "
|
81
|
+
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
82
|
+
)
|
83
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
84
|
+
output_hidden_states = (
|
85
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
86
|
+
)
|
87
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
88
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
89
|
+
outputs = self.model(
|
90
|
+
input_ids=input_ids,
|
91
|
+
attention_mask=attention_mask,
|
92
|
+
position_ids=position_ids,
|
93
|
+
past_key_values=past_key_values,
|
94
|
+
inputs_embeds=inputs_embeds,
|
95
|
+
use_cache=use_cache,
|
96
|
+
output_attentions=output_attentions,
|
97
|
+
output_hidden_states=output_hidden_states,
|
98
|
+
return_dict=return_dict,
|
99
|
+
cache_position=cache_position,
|
100
|
+
**loss_kwargs,
|
101
|
+
)
|
102
|
+
|
103
|
+
hidden_states = outputs[0]
|
104
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
105
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
106
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
107
|
+
loss = None
|
108
|
+
logits = None
|
109
|
+
if self.training and (labels is not None):
|
110
|
+
loss = LigerForCausalLMLoss(
|
111
|
+
hidden_states=kept_hidden_states,
|
112
|
+
lm_head_weight=self.lm_head.weight,
|
113
|
+
labels=labels,
|
114
|
+
hidden_size=self.config.hidden_size,
|
115
|
+
softcap=self.config.final_logit_softcapping,
|
116
|
+
**loss_kwargs,
|
117
|
+
)
|
118
|
+
|
119
|
+
else:
|
120
|
+
logits = self.lm_head(kept_hidden_states)
|
121
|
+
if self.config.final_logit_softcapping is not None:
|
122
|
+
logits = logits / self.config.final_logit_softcapping
|
123
|
+
logits = torch.tanh(logits)
|
124
|
+
logits = logits * self.config.final_logit_softcapping
|
125
|
+
if labels is not None:
|
126
|
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
127
|
+
|
128
|
+
if not return_dict:
|
129
|
+
output = (logits,) + outputs[1:]
|
130
|
+
return (loss,) + output if loss is not None else output
|
131
|
+
|
132
|
+
return CausalLMOutputWithPast(
|
133
|
+
loss=loss,
|
134
|
+
logits=logits,
|
135
|
+
past_key_values=outputs.past_key_values,
|
136
|
+
hidden_states=outputs.hidden_states,
|
137
|
+
attentions=outputs.attentions,
|
138
|
+
)
|
139
|
+
|
140
|
+
|
141
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
142
|
+
@add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
|
143
|
+
@replace_return_docstrings(output_type=Gemma3CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
144
|
+
def multimodal_forward(
|
145
|
+
self,
|
146
|
+
input_ids: torch.LongTensor = None,
|
147
|
+
pixel_values: torch.FloatTensor = None,
|
148
|
+
attention_mask: Optional[torch.Tensor] = None,
|
149
|
+
position_ids: Optional[torch.LongTensor] = None,
|
150
|
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
151
|
+
token_type_ids: Optional[torch.LongTensor] = None,
|
152
|
+
cache_position: Optional[torch.LongTensor] = None,
|
153
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
154
|
+
labels: Optional[torch.LongTensor] = None,
|
155
|
+
use_cache: Optional[bool] = None,
|
156
|
+
output_attentions: Optional[bool] = None,
|
157
|
+
output_hidden_states: Optional[bool] = None,
|
158
|
+
return_dict: Optional[bool] = None,
|
159
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
160
|
+
**lm_kwargs,
|
161
|
+
) -> Union[Tuple, Gemma3CausalLMOutputWithPast]:
|
162
|
+
r"""
|
163
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
164
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
165
|
+
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
166
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
|
167
|
+
|
168
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
169
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
170
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
171
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
172
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
173
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
174
|
+
|
175
|
+
Returns:
|
176
|
+
|
177
|
+
Example:
|
178
|
+
|
179
|
+
```python
|
180
|
+
>>> from PIL import Image
|
181
|
+
>>> import requests
|
182
|
+
>>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration
|
183
|
+
|
184
|
+
>>> model = Gemma3ForConditionalGeneration.from_pretrained("google/Gemma3-test-224px-hf")
|
185
|
+
>>> processor = AutoProcessor.from_pretrained("google/Gemma3-test-224px-hf")
|
186
|
+
|
187
|
+
>>> prompt = "answer en Where is the cow standing?"
|
188
|
+
>>> url = "https://huggingface.co/gv-hf/Gemma3-test-224px-hf/resolve/main/cow_beach_1.png"
|
189
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
190
|
+
|
191
|
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
192
|
+
|
193
|
+
>>> # Generate
|
194
|
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
195
|
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
196
|
+
"answer en Where is the cow standing?\nbeach"
|
197
|
+
```"""
|
198
|
+
|
199
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
200
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
201
|
+
|
202
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
203
|
+
output_hidden_states = (
|
204
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
205
|
+
)
|
206
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
207
|
+
|
208
|
+
is_training = token_type_ids is not None and labels is not None
|
209
|
+
|
210
|
+
# Replace image id woth PAD if the image token if OOV, to avoid index-errors
|
211
|
+
if input_ids is not None and self.config.image_token_index >= self.vocab_size:
|
212
|
+
special_image_mask = input_ids == self.config.image_token_index
|
213
|
+
llm_input_ids = input_ids.clone()
|
214
|
+
llm_input_ids[special_image_mask] = 0
|
215
|
+
else:
|
216
|
+
llm_input_ids = input_ids
|
217
|
+
|
218
|
+
if inputs_embeds is None:
|
219
|
+
inputs_embeds = self.get_input_embeddings()(llm_input_ids)
|
220
|
+
|
221
|
+
if cache_position is None:
|
222
|
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
223
|
+
cache_position = torch.arange(
|
224
|
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
225
|
+
)
|
226
|
+
|
227
|
+
if position_ids is None:
|
228
|
+
position_ids = cache_position.unsqueeze(0) + 1 # Gemma3 positions are 1-indexed
|
229
|
+
|
230
|
+
# Merge text and images
|
231
|
+
if pixel_values is not None:
|
232
|
+
image_features = self.get_image_features(pixel_values)
|
233
|
+
|
234
|
+
if input_ids is None:
|
235
|
+
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
236
|
+
torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
|
237
|
+
)
|
238
|
+
else:
|
239
|
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
240
|
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
241
|
+
|
242
|
+
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
243
|
+
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
|
244
|
+
raise ValueError(
|
245
|
+
f"Number of images does not match number of special image tokens in the input text. "
|
246
|
+
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
|
247
|
+
"tokens from image embeddings."
|
248
|
+
)
|
249
|
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
250
|
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
251
|
+
|
252
|
+
# mask out pad-token-ids in labels for BC
|
253
|
+
if labels is not None and self.pad_token_id in labels:
|
254
|
+
logger.warning_once(
|
255
|
+
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
|
256
|
+
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
|
257
|
+
)
|
258
|
+
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
|
259
|
+
|
260
|
+
causal_mask = self._update_causal_mask(
|
261
|
+
attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
|
262
|
+
)
|
263
|
+
outputs = self.language_model.model(
|
264
|
+
attention_mask=causal_mask,
|
265
|
+
position_ids=position_ids,
|
266
|
+
past_key_values=past_key_values,
|
267
|
+
inputs_embeds=inputs_embeds,
|
268
|
+
use_cache=use_cache,
|
269
|
+
output_attentions=output_attentions,
|
270
|
+
output_hidden_states=output_hidden_states,
|
271
|
+
return_dict=return_dict,
|
272
|
+
cache_position=cache_position,
|
273
|
+
logits_to_keep=logits_to_keep,
|
274
|
+
**lm_kwargs,
|
275
|
+
)
|
276
|
+
|
277
|
+
hidden_states = outputs[0]
|
278
|
+
loss = None
|
279
|
+
logits = None
|
280
|
+
|
281
|
+
if self.training and (labels is not None):
|
282
|
+
shift_hidden_states = hidden_states[..., :-1, :]
|
283
|
+
shift_labels = labels[..., 1:]
|
284
|
+
|
285
|
+
hidden_device = shift_hidden_states.device
|
286
|
+
if attention_mask is not None:
|
287
|
+
# we use the input attention mask to shift the hidden_states and labels, because it is 2D.
|
288
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
289
|
+
shift_attention_mask = attention_mask[:, -shift_hidden_states.shape[1] :].to(hidden_device)
|
290
|
+
shift_hidden_states = shift_hidden_states[shift_attention_mask.to(hidden_device) != 0].contiguous()
|
291
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
292
|
+
else:
|
293
|
+
shift_hidden_states = shift_hidden_states.contiguous()
|
294
|
+
shift_labels = shift_labels.contiguous()
|
295
|
+
|
296
|
+
# Flatten hidden state
|
297
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
|
298
|
+
shift_labels = shift_labels.view(-1).to(hidden_device)
|
299
|
+
|
300
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
301
|
+
loss = lce(self.language_model.lm_head.weight, shift_hidden_states, shift_labels)
|
302
|
+
else:
|
303
|
+
logits = self.language_model.lm_head(hidden_states)
|
304
|
+
if labels is not None:
|
305
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
306
|
+
logits = logits.float()
|
307
|
+
shift_logits = logits[..., :-1, :]
|
308
|
+
shift_labels = labels[..., 1:]
|
309
|
+
if attention_mask is not None:
|
310
|
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
311
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
312
|
+
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
|
313
|
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
314
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
315
|
+
else:
|
316
|
+
shift_logits = shift_logits.contiguous()
|
317
|
+
shift_labels = shift_labels.contiguous()
|
318
|
+
# Flatten the tokens
|
319
|
+
loss_fct = nn.CrossEntropyLoss()
|
320
|
+
|
321
|
+
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
322
|
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
323
|
+
loss = loss_fct(flat_logits, flat_labels)
|
324
|
+
if not return_dict:
|
325
|
+
output = (logits,) + outputs[1:]
|
326
|
+
return (loss,) + output if loss is not None else output
|
327
|
+
|
328
|
+
return Gemma3CausalLMOutputWithPast(
|
329
|
+
loss=loss,
|
330
|
+
logits=logits,
|
331
|
+
past_key_values=outputs.past_key_values,
|
332
|
+
hidden_states=outputs.hidden_states,
|
333
|
+
attentions=outputs.attentions,
|
334
|
+
image_hidden_states=image_features if pixel_values is not None else None,
|
335
|
+
)
|
@@ -694,6 +694,177 @@ def apply_liger_kernel_to_gemma2(
|
|
694
694
|
_patch_rms_norm_module_for_gemma2(decoder_layer.post_feedforward_layernorm)
|
695
695
|
|
696
696
|
|
697
|
+
def apply_liger_kernel_to_gemma3_text(
|
698
|
+
rope: bool = True,
|
699
|
+
cross_entropy: bool = False,
|
700
|
+
fused_linear_cross_entropy: bool = True,
|
701
|
+
rms_norm: bool = True,
|
702
|
+
geglu: bool = True,
|
703
|
+
model: PreTrainedModel = None,
|
704
|
+
) -> None:
|
705
|
+
"""
|
706
|
+
Apply Liger kernels to replace original implementation in HuggingFace Gemma3
|
707
|
+
|
708
|
+
Args:
|
709
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
710
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
711
|
+
fused_linear_cross_entropy (bool):
|
712
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
713
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
714
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
715
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
716
|
+
geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
|
717
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
718
|
+
loaded. Default is None.
|
719
|
+
"""
|
720
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
721
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
722
|
+
)
|
723
|
+
|
724
|
+
from transformers.models.gemma3 import modeling_gemma3
|
725
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3DecoderLayer
|
726
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3ForCausalLM
|
727
|
+
|
728
|
+
from liger_kernel.transformers.gema3_rms import LigerRMSNormForGemma3
|
729
|
+
from liger_kernel.transformers.model.gemma3 import causal_forward
|
730
|
+
|
731
|
+
_patch_rms_norm_module_for_gemma3 = partial(
|
732
|
+
_patch_rms_norm_module, offset=1.0, casting_mode="gemma", in_place=False
|
733
|
+
)
|
734
|
+
|
735
|
+
if rope:
|
736
|
+
modeling_gemma3.apply_rotary_pos_emb = liger_rotary_pos_emb
|
737
|
+
|
738
|
+
if rms_norm:
|
739
|
+
modeling_gemma3.Gemma3RMSNorm = LigerRMSNormForGemma3
|
740
|
+
|
741
|
+
if geglu:
|
742
|
+
modeling_gemma3.Gemma3MLP = LigerGEGLUMLP
|
743
|
+
|
744
|
+
# Handle loss function
|
745
|
+
if cross_entropy:
|
746
|
+
from transformers.loss.loss_utils import nn
|
747
|
+
|
748
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
749
|
+
|
750
|
+
if fused_linear_cross_entropy:
|
751
|
+
modeling_gemma3.Gemma3ForCausalLM.forward = causal_forward
|
752
|
+
|
753
|
+
if model is not None:
|
754
|
+
# The model instance already exists, so we need to additionally patch the
|
755
|
+
# instance variables that reference already-instantiated modules
|
756
|
+
|
757
|
+
if isinstance(model, Gemma3ForCausalLM):
|
758
|
+
# get the base model from the model instance
|
759
|
+
base_model = model.model
|
760
|
+
|
761
|
+
if rms_norm:
|
762
|
+
_patch_rms_norm_module_for_gemma3(base_model.norm)
|
763
|
+
|
764
|
+
for decoder_layer in base_model.layers:
|
765
|
+
decoder_layer: Gemma3DecoderLayer
|
766
|
+
if geglu:
|
767
|
+
_bind_method_to_module(decoder_layer.mlp, "forward", LigerGEGLUMLP.forward)
|
768
|
+
if rms_norm:
|
769
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.input_layernorm)
|
770
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.post_attention_layernorm)
|
771
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.pre_feedforward_layernorm)
|
772
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.post_feedforward_layernorm)
|
773
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.self_attn.q_norm)
|
774
|
+
_patch_rms_norm_module_for_gemma3(decoder_layer.self_attn.k_norm)
|
775
|
+
|
776
|
+
else:
|
777
|
+
raise TypeError("The model must be Gemma3ForCausalLM.")
|
778
|
+
|
779
|
+
|
780
|
+
def apply_liger_kernel_to_gemma3(
|
781
|
+
rope: bool = True,
|
782
|
+
cross_entropy: bool = False,
|
783
|
+
fused_linear_cross_entropy: bool = True,
|
784
|
+
layer_norm: bool = True,
|
785
|
+
rms_norm: bool = True,
|
786
|
+
geglu: bool = True,
|
787
|
+
model: PreTrainedModel = None,
|
788
|
+
) -> None:
|
789
|
+
"""
|
790
|
+
Apply Liger kernels to replace original implementation in HuggingFace Gemma3
|
791
|
+
|
792
|
+
Args:
|
793
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
794
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
795
|
+
fused_linear_cross_entropy (bool):
|
796
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
797
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
798
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
799
|
+
layer_norm (bool): Whether to apply Liger's LayerNorm. Default is True.
|
800
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
801
|
+
geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
|
802
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
803
|
+
loaded. Default is None.
|
804
|
+
"""
|
805
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
806
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
807
|
+
)
|
808
|
+
|
809
|
+
from transformers.models.gemma3 import modeling_gemma3
|
810
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3ForConditionalGeneration
|
811
|
+
from transformers.models.siglip import modeling_siglip
|
812
|
+
from transformers.models.siglip.modeling_siglip import SiglipEncoderLayer
|
813
|
+
from transformers.models.siglip.modeling_siglip import SiglipVisionModel
|
814
|
+
|
815
|
+
from liger_kernel.transformers.model.gemma3 import multimodal_forward
|
816
|
+
|
817
|
+
_patch_rms_norm_module_for_gemma3 = partial(
|
818
|
+
_patch_rms_norm_module, offset=1.0, casting_mode="gemma", in_place=False
|
819
|
+
)
|
820
|
+
|
821
|
+
if layer_norm:
|
822
|
+
modeling_siglip.nn.LayerNorm = LigerLayerNorm
|
823
|
+
|
824
|
+
apply_liger_kernel_to_gemma3_text(
|
825
|
+
rope=rope, cross_entropy=False, fused_linear_cross_entropy=False, rms_norm=rms_norm, geglu=geglu
|
826
|
+
)
|
827
|
+
|
828
|
+
if cross_entropy:
|
829
|
+
modeling_gemma3.nn.CrossEntropyLoss = LigerCrossEntropyLoss
|
830
|
+
|
831
|
+
if fused_linear_cross_entropy:
|
832
|
+
modeling_gemma3.Gemma3ForConditionalGeneration.forward = multimodal_forward
|
833
|
+
|
834
|
+
if model is not None:
|
835
|
+
# The model instance already exists, so we need to additionally patch the
|
836
|
+
# instance variables that reference already-instantiated modules
|
837
|
+
|
838
|
+
if isinstance(model, Gemma3ForConditionalGeneration):
|
839
|
+
if isinstance(model.vision_tower, SiglipVisionModel):
|
840
|
+
vision_tower = model.vision_tower
|
841
|
+
|
842
|
+
_patch_layer_norm_module(vision_tower.vision_model.post_layernorm)
|
843
|
+
|
844
|
+
for layer in vision_tower.vision_model.encoder.layers:
|
845
|
+
layer: SiglipEncoderLayer
|
846
|
+
if layer_norm:
|
847
|
+
_patch_layer_norm_module(layer.layer_norm1)
|
848
|
+
_patch_layer_norm_module(layer.layer_norm2)
|
849
|
+
else:
|
850
|
+
raise TypeError("The vision tower must be SiglipVisionModel")
|
851
|
+
|
852
|
+
if rms_norm:
|
853
|
+
_patch_rms_norm_module_for_gemma3(model.multi_modal_projector.mm_soft_emb_norm)
|
854
|
+
|
855
|
+
apply_liger_kernel_to_gemma3_text(
|
856
|
+
rope=rope,
|
857
|
+
cross_entropy=False,
|
858
|
+
fused_linear_cross_entropy=False,
|
859
|
+
rms_norm=rms_norm,
|
860
|
+
geglu=geglu,
|
861
|
+
model=model.language_model,
|
862
|
+
)
|
863
|
+
|
864
|
+
else:
|
865
|
+
raise TypeError("The model must be Gemma3ForConditionalGeneration.")
|
866
|
+
|
867
|
+
|
697
868
|
def apply_liger_kernel_to_paligemma(
|
698
869
|
rope: bool = True,
|
699
870
|
cross_entropy: bool = False,
|
@@ -1152,6 +1323,8 @@ def apply_liger_kernel_to_olmo2(
|
|
1152
1323
|
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
1153
1324
|
"gemma": apply_liger_kernel_to_gemma,
|
1154
1325
|
"gemma2": apply_liger_kernel_to_gemma2,
|
1326
|
+
"gemma3_text": apply_liger_kernel_to_gemma3_text,
|
1327
|
+
"gemma3": apply_liger_kernel_to_gemma3,
|
1155
1328
|
"llama": apply_liger_kernel_to_llama,
|
1156
1329
|
"llava": apply_liger_kernel_to_llava,
|
1157
1330
|
"granite": apply_liger_kernel_to_granite,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: liger_kernel_nightly
|
3
|
-
Version: 0.5.6.
|
3
|
+
Version: 0.5.6.dev20250403001329
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
@@ -311,6 +311,8 @@ loss.backward()
|
|
311
311
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
312
312
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
313
313
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
314
|
+
| Gemma3 (Text) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3_text` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
315
|
+
| Gemma3 (Multimodal) | `liger_kernel.transformers.apply_liger_kernel_to_gemma3` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
314
316
|
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
315
317
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
316
318
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
@@ -146,6 +146,7 @@ src/liger_kernel/transformers/functional.py
|
|
146
146
|
src/liger_kernel/transformers/fused_linear_cross_entropy.py
|
147
147
|
src/liger_kernel/transformers/fused_linear_jsd.py
|
148
148
|
src/liger_kernel/transformers/geglu.py
|
149
|
+
src/liger_kernel/transformers/gema3_rms.py
|
149
150
|
src/liger_kernel/transformers/group_norm.py
|
150
151
|
src/liger_kernel/transformers/jsd.py
|
151
152
|
src/liger_kernel/transformers/kl_div.py
|
@@ -161,6 +162,7 @@ src/liger_kernel/transformers/experimental/embedding.py
|
|
161
162
|
src/liger_kernel/transformers/model/__init__.py
|
162
163
|
src/liger_kernel/transformers/model/gemma.py
|
163
164
|
src/liger_kernel/transformers/model/gemma2.py
|
165
|
+
src/liger_kernel/transformers/model/gemma3.py
|
164
166
|
src/liger_kernel/transformers/model/llama.py
|
165
167
|
src/liger_kernel/transformers/model/llava.py
|
166
168
|
src/liger_kernel/transformers/model/loss_utils.py
|
@@ -203,6 +205,7 @@ test/convergence/fp32/test_mini_models.py
|
|
203
205
|
test/convergence/fp32/test_mini_models_multimodal.py
|
204
206
|
test/convergence/fp32/test_mini_models_with_logits.py
|
205
207
|
test/resources/tiny_shakespeare.txt
|
208
|
+
test/resources/fake_configs/Google/Gemma3/gemma-3-4b-it/tokenizer_config.json
|
206
209
|
test/resources/fake_configs/Google/Paligemma/paligemma-3b-pt-224/tokenizer_config.json
|
207
210
|
test/resources/fake_configs/Llava/llava-1.5-7b-hf/preprocessor_config.json
|
208
211
|
test/resources/fake_configs/Llava/llava-1.5-7b-hf/processor_config.json
|