liger-kernel-nightly 0.5.5.dev20250314203927__py3-none-any.whl → 0.5.5.dev20250315175408__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

@@ -15,6 +15,7 @@ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral
15
15
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
16
16
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
17
17
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
18
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
18
19
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
19
20
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
20
21
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
@@ -0,0 +1,213 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from torch.nn import CrossEntropyLoss
9
+ from transformers.cache_utils import Cache
10
+ from transformers.models.paligemma.modeling_paligemma import _CONFIG_FOR_DOC
11
+ from transformers.models.paligemma.modeling_paligemma import PALIGEMMA_INPUTS_DOCSTRING
12
+ from transformers.models.paligemma.modeling_paligemma import PaliGemmaCausalLMOutputWithPast
13
+ from transformers.utils import add_start_docstrings_to_model_forward
14
+ from transformers.utils import is_torchdynamo_compiling
15
+ from transformers.utils import logging
16
+ from transformers.utils import replace_return_docstrings
17
+ from transformers.utils.deprecation import deprecate_kwarg
18
+
19
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
25
+ @add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING)
26
+ @replace_return_docstrings(output_type=PaliGemmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
27
+ def lce_forward(
28
+ self,
29
+ input_ids: torch.LongTensor = None,
30
+ pixel_values: torch.FloatTensor = None,
31
+ attention_mask: Optional[torch.Tensor] = None,
32
+ position_ids: Optional[torch.LongTensor] = None,
33
+ past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
34
+ token_type_ids: Optional[torch.LongTensor] = None,
35
+ cache_position: Optional[torch.LongTensor] = None,
36
+ inputs_embeds: Optional[torch.FloatTensor] = None,
37
+ labels: Optional[torch.LongTensor] = None,
38
+ use_cache: Optional[bool] = None,
39
+ output_attentions: Optional[bool] = None,
40
+ output_hidden_states: Optional[bool] = None,
41
+ return_dict: Optional[bool] = None,
42
+ logits_to_keep: Union[int, torch.Tensor] = 0,
43
+ **lm_kwargs,
44
+ ) -> Union[Tuple, PaliGemmaCausalLMOutputWithPast]:
45
+ r"""
46
+ Args:
47
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
48
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
49
+ config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
50
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
51
+
52
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
53
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
54
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
55
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
56
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
57
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
58
+
59
+ Returns:
60
+
61
+ Example:
62
+
63
+ ```python
64
+ >>> from PIL import Image
65
+ >>> import requests
66
+ >>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
67
+
68
+ >>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf")
69
+ >>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf")
70
+
71
+ >>> prompt = "answer en Where is the cow standing?"
72
+ >>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
73
+ >>> image = Image.open(requests.get(url, stream=True).raw)
74
+
75
+ >>> inputs = processor(images=image, text=prompt, return_tensors="pt")
76
+
77
+ >>> # Generate
78
+ >>> generate_ids = model.generate(**inputs, max_length=30)
79
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
80
+ "answer en Where is the cow standing?\nbeach"
81
+ ```"""
82
+
83
+ if (input_ids is None) ^ (inputs_embeds is not None):
84
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
85
+
86
+ if pixel_values is not None and inputs_embeds is not None:
87
+ raise ValueError(
88
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
89
+ )
90
+
91
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
92
+ output_hidden_states = (
93
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
94
+ )
95
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
96
+
97
+ is_training = token_type_ids is not None and labels is not None
98
+
99
+ if inputs_embeds is None:
100
+ inputs_embeds = self.get_input_embeddings()(input_ids)
101
+
102
+ if cache_position is None:
103
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
104
+ cache_position = torch.arange(
105
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
106
+ )
107
+
108
+ if position_ids is None:
109
+ position_ids = cache_position.unsqueeze(0) + 1 # Paligemma positions are 1-indexed
110
+
111
+ # Merge text and images
112
+ if pixel_values is not None:
113
+ image_features = self.get_image_features(pixel_values)
114
+
115
+ special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
116
+ special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
117
+ if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
118
+ image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index)
119
+ raise ValueError(
120
+ f"Number of images does not match number of special image tokens in the input text. "
121
+ f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
122
+ "tokens from image embeddings."
123
+ )
124
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
125
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
126
+
127
+ # mask out pad-token-ids in labels for BC
128
+ if labels is not None and self.pad_token_id in labels:
129
+ logger.warning_once(
130
+ "`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
131
+ "You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
132
+ )
133
+ labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
134
+
135
+ causal_mask = self._update_causal_mask(
136
+ attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
137
+ )
138
+
139
+ outputs = self.language_model.model(
140
+ attention_mask=causal_mask,
141
+ position_ids=position_ids,
142
+ past_key_values=past_key_values,
143
+ inputs_embeds=inputs_embeds,
144
+ use_cache=use_cache,
145
+ output_attentions=output_attentions,
146
+ output_hidden_states=output_hidden_states,
147
+ return_dict=return_dict,
148
+ cache_position=cache_position,
149
+ logits_to_keep=logits_to_keep,
150
+ **lm_kwargs,
151
+ )
152
+
153
+ hidden_states = outputs[0]
154
+
155
+ loss = None
156
+ logits = None
157
+
158
+ if self.training and (labels is not None):
159
+ shift_hidden_states = hidden_states[..., :-1, :]
160
+ shift_labels = labels[..., 1:]
161
+
162
+ hidden_device = shift_hidden_states.device
163
+
164
+ if attention_mask is not None:
165
+ # we use the input attention mask to shift the hidden_states and labels, because it is 2D.
166
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
167
+ shift_attention_mask = attention_mask[:, -shift_hidden_states.shape[1] :].to(hidden_device)
168
+ shift_hidden_states = shift_hidden_states[shift_attention_mask.to(hidden_device) != 0].contiguous()
169
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
170
+ else:
171
+ shift_hidden_states = shift_hidden_states.contiguous()
172
+ shift_labels = shift_labels.contiguous()
173
+
174
+ # Flatten hidden state
175
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
176
+ shift_labels = shift_labels.view(-1).to(hidden_device)
177
+
178
+ lce = LigerFusedLinearCrossEntropyLoss()
179
+ loss = lce(self.language_model.lm_head.weight, shift_hidden_states, shift_labels)
180
+ else:
181
+ logits = self.language_model.lm_head(hidden_states)
182
+ if labels is not None:
183
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
184
+ logits = logits.float()
185
+ shift_logits = logits[..., :-1, :]
186
+ shift_labels = labels[..., 1:]
187
+ if attention_mask is not None:
188
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
189
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
190
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
191
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
192
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
193
+ else:
194
+ shift_logits = shift_logits.contiguous()
195
+ shift_labels = shift_labels.contiguous()
196
+ # Flatten the tokens
197
+ loss_fct = CrossEntropyLoss()
198
+
199
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
200
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
201
+ loss = loss_fct(flat_logits, flat_labels)
202
+ if not return_dict:
203
+ output = (logits,) + outputs[1:]
204
+ return (loss,) + output if loss is not None else output
205
+
206
+ return PaliGemmaCausalLMOutputWithPast(
207
+ loss=loss,
208
+ logits=logits,
209
+ past_key_values=outputs.past_key_values,
210
+ hidden_states=outputs.hidden_states,
211
+ attentions=outputs.attentions,
212
+ image_hidden_states=image_features if pixel_values is not None else None,
213
+ )
@@ -600,6 +600,90 @@ def apply_liger_kernel_to_gemma2(
600
600
  _patch_rms_norm_module_for_gemma2(decoder_layer.post_feedforward_layernorm)
601
601
 
602
602
 
603
+ def apply_liger_kernel_to_paligemma(
604
+ rope: bool = True,
605
+ cross_entropy: bool = False,
606
+ fused_linear_cross_entropy: bool = True,
607
+ layer_norm: bool = True,
608
+ rms_norm: bool = True,
609
+ geglu: bool = True,
610
+ model: PreTrainedModel = None,
611
+ ) -> None:
612
+ """
613
+ Apply Liger kernels to replace original implementation in HuggingFace PaliGemma
614
+
615
+ Args:
616
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
617
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
618
+ fused_linear_cross_entropy (bool):
619
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
620
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
621
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
622
+ layer_norm (bool): Whether to apply Liger's LayerNorm. Default is True.
623
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
624
+ geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
625
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
626
+ loaded. Default is None.
627
+ """
628
+ assert not (cross_entropy and fused_linear_cross_entropy), (
629
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
630
+ )
631
+
632
+ # PaliGemma submodules are ['vision_tower', 'multi_modal_projector', 'language_model']
633
+
634
+ from transformers.models.gemma2.modeling_gemma2 import Gemma2ForCausalLM
635
+ from transformers.models.paligemma import modeling_paligemma
636
+ from transformers.models.paligemma.modeling_paligemma import PaliGemmaForConditionalGeneration
637
+ from transformers.models.siglip import modeling_siglip
638
+ from transformers.models.siglip.modeling_siglip import SiglipEncoderLayer
639
+ from transformers.models.siglip.modeling_siglip import SiglipVisionModel
640
+
641
+ from liger_kernel.transformers.model.paligemma import lce_forward
642
+
643
+ # The vision_tower is a SiglipVisionModel
644
+ if layer_norm:
645
+ modeling_siglip.nn.LayerNorm = LigerLayerNorm
646
+
647
+ # SiglipMLP is standard FFN so LigerGEGLUMLP is not compatible
648
+ # The multi_modal_projector is Linear, nothing to do
649
+
650
+ # The language_model is Gemma2ForCausalLM
651
+ apply_liger_kernel_to_gemma2(rope=rope, cross_entropy=False, fused_linear_cross_entropy=False, geglu=geglu)
652
+ # Handle loss function
653
+ if cross_entropy:
654
+ modeling_paligemma.nn.CrossEntropyLoss = LigerCrossEntropyLoss
655
+ if fused_linear_cross_entropy:
656
+ modeling_paligemma.PaliGemmaForConditionalGeneration.forward = lce_forward
657
+
658
+ if model is not None:
659
+ # The model instance already exists, so we need to additionally patch the
660
+ # instance variables that reference already-instantiated modules
661
+
662
+ if not isinstance(model, PaliGemmaForConditionalGeneration):
663
+ raise TypeError("model have to be of type PaliGemmaForConditionalGeneration")
664
+
665
+ vision_tower: SiglipVisionModel = model.vision_tower
666
+
667
+ _patch_layer_norm_module(vision_tower.vision_model.post_layernorm)
668
+
669
+ for layer in vision_tower.vision_model.encoder.layers:
670
+ layer: SiglipEncoderLayer
671
+ if layer_norm:
672
+ _patch_layer_norm_module(layer.layer_norm1)
673
+ _patch_layer_norm_module(layer.layer_norm2)
674
+
675
+ language_model: Gemma2ForCausalLM = model.language_model
676
+
677
+ apply_liger_kernel_to_gemma2(
678
+ rope=rope,
679
+ cross_entropy=False,
680
+ fused_linear_cross_entropy=False,
681
+ rms_norm=rms_norm,
682
+ geglu=geglu,
683
+ model=language_model,
684
+ )
685
+
686
+
603
687
  def apply_liger_kernel_to_qwen2(
604
688
  rope: bool = True,
605
689
  cross_entropy: bool = False,
@@ -959,6 +1043,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
959
1043
  "qwen2_vl": apply_liger_kernel_to_qwen2_vl,
960
1044
  "qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
961
1045
  "phi3": apply_liger_kernel_to_phi3,
1046
+ "paligemma": apply_liger_kernel_to_paligemma,
962
1047
  }
963
1048
 
964
1049
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.5.5.dev20250314203927
3
+ Version: 0.5.5.dev20250315175408
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -310,6 +310,7 @@ loss.backward()
310
310
  | Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
311
311
  | Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
312
312
  | Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
313
+ | Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
313
314
  | Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
314
315
  | Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
315
316
  | Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
@@ -32,7 +32,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
32
32
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
33
33
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
34
34
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
35
- liger_kernel/transformers/__init__.py,sha256=4bwMPQhGHxmZ-WTFAMD9m-s0PYyfcvIRxhq_h3b0Wz0,2363
35
+ liger_kernel/transformers/__init__.py,sha256=34zWr2C9sg0H5ok6l-pNB6eZQr5W1w8Xl_hMbQWzEUY,2460
36
36
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
37
37
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
38
38
  liger_kernel/transformers/functional.py,sha256=ShLD3eb--XKNtllznCrOYTbo4f-1KVwzi0KLMICdrn4,4942
@@ -43,7 +43,7 @@ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD
43
43
  liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
44
44
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
45
45
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
46
- liger_kernel/transformers/monkey_patch.py,sha256=9ud9tv1LI9WIa9UDu0abGIiusIIkayO1fjAUMWgwwT0,47096
46
+ liger_kernel/transformers/monkey_patch.py,sha256=1Vzt_8UUMgO4t1ui7fNkKMcDfnWoCZfe9iyqeYSbe1w,50851
47
47
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
48
48
  liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
49
49
  liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
@@ -59,6 +59,7 @@ liger_kernel/transformers/model/mistral.py,sha256=MVRksI5_j_8WJu8znOHKCdSI5jSu-S
59
59
  liger_kernel/transformers/model/mixtral.py,sha256=jpZJkpl625Q-JHWarj2MqT5mRaSsiCtg0c9vVyvOdCY,11430
60
60
  liger_kernel/transformers/model/mllama.py,sha256=qWexBdskuN3gPJvPUwt4J0nU675tGD6W7wxgRZ9Bifg,11145
61
61
  liger_kernel/transformers/model/olmo2.py,sha256=yyksS6E4fuWd8asEW8rEDBKqZpFmP4ITCM_bjIDZaoY,5124
62
+ liger_kernel/transformers/model/paligemma.py,sha256=29NiiTB2pihsq9OogX4Oium94WT52PBu9F4c5vrAV3s,10286
62
63
  liger_kernel/transformers/model/phi3.py,sha256=biRa8fph9qdnQmkD9I21t5XIjpIt1i6UKU4uk8Up8pU,10292
63
64
  liger_kernel/transformers/model/qwen2.py,sha256=14UuPjxB-tjqWn85Tn4fqBFvVhVsth5iPEt8kJSMiew,9581
64
65
  liger_kernel/transformers/model/qwen2_5_vl.py,sha256=l71WBfX0ptrisoURIRwXJH7MQ2vGKOvcRYMNsrydwlQ,9455
@@ -67,9 +68,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
67
68
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
68
69
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
69
70
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
70
- liger_kernel_nightly-0.5.5.dev20250314203927.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
71
- liger_kernel_nightly-0.5.5.dev20250314203927.dist-info/METADATA,sha256=Fomxuo8mGYVe9Um1hCaEKQ0PyfYic7JJfatd3BZIrz0,22390
72
- liger_kernel_nightly-0.5.5.dev20250314203927.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
73
- liger_kernel_nightly-0.5.5.dev20250314203927.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
74
- liger_kernel_nightly-0.5.5.dev20250314203927.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
75
- liger_kernel_nightly-0.5.5.dev20250314203927.dist-info/RECORD,,
71
+ liger_kernel_nightly-0.5.5.dev20250315175408.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
72
+ liger_kernel_nightly-0.5.5.dev20250315175408.dist-info/METADATA,sha256=QARM55FStQf_GHgPq-tmKrohwU7rCNQ6dPdObQ4q3nU,22588
73
+ liger_kernel_nightly-0.5.5.dev20250315175408.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
74
+ liger_kernel_nightly-0.5.5.dev20250315175408.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
75
+ liger_kernel_nightly-0.5.5.dev20250315175408.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
76
+ liger_kernel_nightly-0.5.5.dev20250315175408.dist-info/RECORD,,