liger-kernel-nightly 0.5.5.dev20250314002525__tar.gz → 0.5.5.dev20250315175408__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/PKG-INFO +2 -1
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/README.md +1 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/pyproject.toml +1 -1
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/fused_linear_distillation.py +2 -2
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/jsd_loss.py +12 -7
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/jsd.py +30 -11
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/__init__.py +1 -0
- liger_kernel_nightly-0.5.5.dev20250315175408/src/liger_kernel/transformers/model/paligemma.py +213 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/monkey_patch.py +85 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel_nightly.egg-info/PKG-INFO +2 -1
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel_nightly.egg-info/SOURCES.txt +2 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/chunked_loss/test_jsd_loss.py +15 -10
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/convergence/bf16/test_mini_models_multimodal.py +108 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/convergence/fp32/test_mini_models_multimodal.py +104 -0
- liger_kernel_nightly-0.5.5.dev20250315175408/test/resources/fake_configs/Google/Paligemma/paligemma-3b-pt-224/tokenizer_config.json +61 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_jsd.py +3 -3
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/utils.py +19 -2
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.github/ISSUE_TEMPLATE/bug_report.yaml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.github/ISSUE_TEMPLATE/feature_request.yaml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.github/pull_request_template.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.github/workflows/amd-ci.yml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.github/workflows/docs.yml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.github/workflows/intel-ci.yml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.github/workflows/nvi-ci.yml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.github/workflows/publish-nightly.yml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.github/workflows/publish-release.yml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/.gitignore +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/Makefile +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/README.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/benchmarks_visualizer.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/data/all_benchmark_data.csv +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_cpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_distill_jsd_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_dpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_embedding.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_geglu.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_group_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_jsd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_kl_div.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_kto_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_orpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_rope.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_simpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_swiglu.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/benchmark_tvd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/benchmark/scripts/utils.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/dev/fmt-requirements.txt +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/dev/modal/tests.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/dev/modal/tests_bwd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/Examples.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/Getting-Started.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/High-Level-APIs.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/Low-Level-APIs.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/acknowledgement.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/contributing.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/images/banner.GIF +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/images/compose.gif +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/images/e2e-memory.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/images/e2e-tps.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/images/logo-banner.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/images/patch.gif +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/images/post-training.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/index.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/docs/license.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/alignment/accelerate_config.yaml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/alignment/run_orpo.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/README.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/callback.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/config/fsdp_config.json +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/img/gemma_7b_mem.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/img/gemma_7b_tp.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/img/llama_mem_alloc.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/img/llama_tps.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/img/qwen_mem_alloc.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/img/qwen_tps.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/launch_on_modal.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/requirements.txt +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/run_benchmarks.sh +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/run_gemma.sh +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/run_llama.sh +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/run_qwen.sh +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/run_qwen2_vl.sh +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/training.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/huggingface/training_multimodal.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/lightning/README.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/lightning/requirements.txt +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/lightning/training.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/README.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/callback.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/docs/images/Memory_Stage1_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/docs/images/Memory_Stage1_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/docs/images/Memory_Stage2_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/docs/images/Memory_Stage2_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/docs/images/Throughput_Stage1_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/docs/images/Throughput_Stage1_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/docs/images/Throughput_Stage2_num_head_3.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/docs/images/Throughput_Stage2_num_head_5.png +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/fsdp/acc-fsdp.conf +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/medusa_util.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/requirements.txt +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/scripts/llama3_8b_medusa.sh +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/examples/medusa/train.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/licenses/LICENSE-Apache-2.0 +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/licenses/LICENSE-MIT-AutoAWQ +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/licenses/LICENSE-MIT-Efficient-Cross-Entropy +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/licenses/LICENSE-MIT-llmc +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/licenses/LICENSE-MIT-triton +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/mkdocs.yml +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/setup.cfg +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/setup.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/README.md +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/cpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/dpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/functional.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/fused_linear_preference.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/fused_linear_rlhf.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/grpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/kto_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/orpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/chunked_loss/simpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/env_report.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/geglu.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/group_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/kl_div.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/rope.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/swiglu.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/tvd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/ops/utils.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/auto_model.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/functional.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/geglu.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/group_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/jsd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/kl_div.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/gemma.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/gemma2.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/llama.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/mistral.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/mixtral.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/mllama.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/olmo2.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/phi3.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/qwen2.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/qwen2_5_vl.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/model/qwen2_vl.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/rope.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/swiglu.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/trainer/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/trainer/orpo_trainer.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/trainer_integration.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/transformers/tvd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/triton/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/triton/monkey_patch.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel/utils.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel_nightly.egg-info/dependency_links.txt +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel_nightly.egg-info/requires.txt +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/src/liger_kernel_nightly.egg-info/top_level.txt +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/chunked_loss/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/chunked_loss/test_cpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/chunked_loss/test_dpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/chunked_loss/test_grpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/chunked_loss/test_kto_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/chunked_loss/test_orpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/chunked_loss/test_simpo_loss.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/conftest.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/convergence/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/convergence/bf16/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/convergence/bf16/test_mini_models.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/convergence/bf16/test_mini_models_with_logits.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/convergence/fp32/__init__.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/convergence/fp32/test_mini_models.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/convergence/fp32/test_mini_models_with_logits.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/resources/fake_configs/Qwen/Qwen2-VL-7B-Instruct/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/resources/fake_configs/Qwen/Qwen2.5-VL-7B-Instruct/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/resources/fake_configs/meta-llama/Llama-3.2-11B-Vision-Instruct/tokenizer_config.json +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/resources/scripts/generate_tokenized_dataset.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/resources/tiny_shakespeare.txt +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/resources/tiny_shakespeare_tokenized/data-00000-of-00001.arrow +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/resources/tiny_shakespeare_tokenized/dataset_info.json +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/resources/tiny_shakespeare_tokenized/state.json +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_auto_model.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_embedding.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_flex_attention.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_geglu.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_group_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_kl_div.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_layer_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_mm_int8int2.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_monkey_patch.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_qwen2vl_mrope.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_rms_norm.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_rope.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_swiglu.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_trainer_integration.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_transformers.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/transformers/test_tvd.py +0 -0
- {liger_kernel_nightly-0.5.5.dev20250314002525 → liger_kernel_nightly-0.5.5.dev20250315175408}/test/triton/test_triton_monkey_patch.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel_nightly
|
|
3
|
-
Version: 0.5.5.
|
|
3
|
+
Version: 0.5.5.dev20250315175408
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -310,6 +310,7 @@ loss.backward()
|
|
|
310
310
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
311
311
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
312
312
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
|
+
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
314
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
314
315
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
315
316
|
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -262,6 +262,7 @@ loss.backward()
|
|
|
262
262
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
263
263
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
264
264
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
265
|
+
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
265
266
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
266
267
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
267
268
|
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "liger_kernel_nightly"
|
|
7
|
-
version = "0.5.5.
|
|
7
|
+
version = "0.5.5.dev20250315175408"
|
|
8
8
|
description = "Efficient Triton kernels for LLM Training"
|
|
9
9
|
urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
|
|
10
10
|
readme = { file = "README.md", content-type = "text/markdown" }
|
|
@@ -117,7 +117,7 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
117
117
|
|
|
118
118
|
hard_loss /= full_target.shape[0]
|
|
119
119
|
|
|
120
|
-
soft_loss = distillation_loss_fn(student_logits_chunk, teacher_logits_chunk)
|
|
120
|
+
soft_loss = distillation_loss_fn(student_logits_chunk, teacher_logits_chunk, **loss_kwargs)
|
|
121
121
|
soft_loss /= full_target.shape[0]
|
|
122
122
|
|
|
123
123
|
loss = weight_hard_loss * hard_loss + weight_soft_loss * soft_loss
|
|
@@ -180,9 +180,9 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
180
180
|
ignore_index=ignore_index,
|
|
181
181
|
weight_hard_loss=weight_hard_loss,
|
|
182
182
|
weight_soft_loss=weight_soft_loss,
|
|
183
|
-
beta=beta,
|
|
184
183
|
compute_ce_loss=compute_ce_loss,
|
|
185
184
|
temperature=temperature,
|
|
185
|
+
beta=beta,
|
|
186
186
|
**loss_kwargs,
|
|
187
187
|
)
|
|
188
188
|
|
|
@@ -19,15 +19,20 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
|
|
|
19
19
|
student_log_probs = F.log_softmax(student_logits, dim=-1)
|
|
20
20
|
teacher_log_probs = F.log_softmax(teacher_logits, dim=-1)
|
|
21
21
|
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
22
|
+
if beta == 0:
|
|
23
|
+
jsd_loss = F.kl_div(student_log_probs, teacher_log_probs, reduction="sum", log_target=True)
|
|
24
|
+
elif beta == 1:
|
|
25
|
+
jsd_loss = F.kl_div(teacher_log_probs, student_log_probs, reduction="sum", log_target=True)
|
|
26
|
+
else:
|
|
27
|
+
# Compute probabilities (only required for mean calculation)
|
|
28
|
+
mean_probs = (1 - beta) * student_log_probs.exp() + beta * teacher_log_probs.exp()
|
|
29
|
+
log_mean_probs = mean_probs.log()
|
|
25
30
|
|
|
26
|
-
|
|
27
|
-
|
|
31
|
+
student_kl = F.kl_div(log_mean_probs, student_log_probs, reduction="sum", log_target=True)
|
|
32
|
+
teacher_kl = F.kl_div(log_mean_probs, teacher_log_probs, reduction="sum", log_target=True)
|
|
28
33
|
|
|
29
|
-
|
|
30
|
-
|
|
34
|
+
# JSD is the weighted average of the KL divergences
|
|
35
|
+
jsd_loss = beta * teacher_kl + (1 - beta) * student_kl
|
|
31
36
|
return jsd_loss
|
|
32
37
|
|
|
33
38
|
@classmethod
|
|
@@ -51,24 +51,43 @@ def _jsd_kernel(
|
|
|
51
51
|
Y = tl.load(Y_ptr + offsets, mask=mask, other=float("-inf")).to(tl.float32)
|
|
52
52
|
|
|
53
53
|
if beta == 0.0: # forward KL
|
|
54
|
-
|
|
54
|
+
Y_max = tl.max(Y, axis=0)
|
|
55
|
+
Y_shifted = Y - Y_max
|
|
56
|
+
Y_prob = tl.exp(Y_shifted) * tl.exp(Y_max) # Compensate for the shift
|
|
55
57
|
loss = Y_prob * (Y - X)
|
|
56
58
|
dX = -Y_prob
|
|
57
|
-
elif beta == 1.0:
|
|
58
|
-
|
|
59
|
+
elif beta == 1.0: # reverse KL
|
|
60
|
+
X_max = tl.max(X, axis=0)
|
|
61
|
+
X_shifted = X - X_max
|
|
62
|
+
X_prob = tl.exp(X_shifted) * tl.exp(X_max) # Compensate for the shift
|
|
59
63
|
loss = X_prob * (X - Y)
|
|
60
64
|
dX = loss + X_prob
|
|
61
65
|
else:
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
log_M = tl.log(M)
|
|
66
|
+
max_val = tl.maximum(tl.max(X, axis=0), tl.max(Y, axis=0))
|
|
67
|
+
X_shifted = X - max_val
|
|
68
|
+
Y_shifted = Y - max_val
|
|
66
69
|
|
|
67
|
-
|
|
68
|
-
|
|
70
|
+
# Pre-compute exp(max_val) since it's used twice
|
|
71
|
+
exp_max = tl.exp(max_val)
|
|
72
|
+
|
|
73
|
+
# Compute exp terms with compensation
|
|
74
|
+
Q = tl.exp(X_shifted) * exp_max # = exp(X)
|
|
75
|
+
P = tl.exp(Y_shifted) * exp_max # = exp(Y)
|
|
76
|
+
|
|
77
|
+
# Pre-compute common terms
|
|
78
|
+
beta_P = beta * P
|
|
79
|
+
one_minus_beta_Q = (1 - beta) * Q
|
|
80
|
+
M = beta_P + one_minus_beta_Q
|
|
81
|
+
log_M = tl.log(M) # No need to compensate as M is already in original scale
|
|
82
|
+
|
|
83
|
+
loss = beta_P * Y + one_minus_beta_Q * X - M * log_M
|
|
84
|
+
dX = one_minus_beta_Q * (X - log_M)
|
|
85
|
+
|
|
86
|
+
# Pre-compute scaling factor
|
|
87
|
+
scale = 1.0 / n_non_ignore
|
|
88
|
+
loss = loss * scale
|
|
89
|
+
dX = dX * scale
|
|
69
90
|
|
|
70
|
-
loss = loss / n_non_ignore
|
|
71
|
-
dX = dX / n_non_ignore
|
|
72
91
|
tl.store(loss_ptr + offsets, loss, mask=mask)
|
|
73
92
|
tl.store(dX_ptr + offsets, dX, mask=mask)
|
|
74
93
|
|
|
@@ -15,6 +15,7 @@ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral
|
|
|
15
15
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
16
16
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
17
17
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
18
19
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
19
20
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
20
21
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
|
|
@@ -0,0 +1,213 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from torch.nn import CrossEntropyLoss
|
|
9
|
+
from transformers.cache_utils import Cache
|
|
10
|
+
from transformers.models.paligemma.modeling_paligemma import _CONFIG_FOR_DOC
|
|
11
|
+
from transformers.models.paligemma.modeling_paligemma import PALIGEMMA_INPUTS_DOCSTRING
|
|
12
|
+
from transformers.models.paligemma.modeling_paligemma import PaliGemmaCausalLMOutputWithPast
|
|
13
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
|
14
|
+
from transformers.utils import is_torchdynamo_compiling
|
|
15
|
+
from transformers.utils import logging
|
|
16
|
+
from transformers.utils import replace_return_docstrings
|
|
17
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
18
|
+
|
|
19
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
20
|
+
|
|
21
|
+
logger = logging.get_logger(__name__)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
25
|
+
@add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING)
|
|
26
|
+
@replace_return_docstrings(output_type=PaliGemmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
27
|
+
def lce_forward(
|
|
28
|
+
self,
|
|
29
|
+
input_ids: torch.LongTensor = None,
|
|
30
|
+
pixel_values: torch.FloatTensor = None,
|
|
31
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
32
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
33
|
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
|
34
|
+
token_type_ids: Optional[torch.LongTensor] = None,
|
|
35
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
36
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
37
|
+
labels: Optional[torch.LongTensor] = None,
|
|
38
|
+
use_cache: Optional[bool] = None,
|
|
39
|
+
output_attentions: Optional[bool] = None,
|
|
40
|
+
output_hidden_states: Optional[bool] = None,
|
|
41
|
+
return_dict: Optional[bool] = None,
|
|
42
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
43
|
+
**lm_kwargs,
|
|
44
|
+
) -> Union[Tuple, PaliGemmaCausalLMOutputWithPast]:
|
|
45
|
+
r"""
|
|
46
|
+
Args:
|
|
47
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
48
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
49
|
+
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
50
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
|
|
51
|
+
|
|
52
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
53
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
54
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
55
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
56
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
57
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
58
|
+
|
|
59
|
+
Returns:
|
|
60
|
+
|
|
61
|
+
Example:
|
|
62
|
+
|
|
63
|
+
```python
|
|
64
|
+
>>> from PIL import Image
|
|
65
|
+
>>> import requests
|
|
66
|
+
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
|
67
|
+
|
|
68
|
+
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf")
|
|
69
|
+
>>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf")
|
|
70
|
+
|
|
71
|
+
>>> prompt = "answer en Where is the cow standing?"
|
|
72
|
+
>>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
|
|
73
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
74
|
+
|
|
75
|
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
|
76
|
+
|
|
77
|
+
>>> # Generate
|
|
78
|
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
|
79
|
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
80
|
+
"answer en Where is the cow standing?\nbeach"
|
|
81
|
+
```"""
|
|
82
|
+
|
|
83
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
84
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
85
|
+
|
|
86
|
+
if pixel_values is not None and inputs_embeds is not None:
|
|
87
|
+
raise ValueError(
|
|
88
|
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
92
|
+
output_hidden_states = (
|
|
93
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
94
|
+
)
|
|
95
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
96
|
+
|
|
97
|
+
is_training = token_type_ids is not None and labels is not None
|
|
98
|
+
|
|
99
|
+
if inputs_embeds is None:
|
|
100
|
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
101
|
+
|
|
102
|
+
if cache_position is None:
|
|
103
|
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
104
|
+
cache_position = torch.arange(
|
|
105
|
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
if position_ids is None:
|
|
109
|
+
position_ids = cache_position.unsqueeze(0) + 1 # Paligemma positions are 1-indexed
|
|
110
|
+
|
|
111
|
+
# Merge text and images
|
|
112
|
+
if pixel_values is not None:
|
|
113
|
+
image_features = self.get_image_features(pixel_values)
|
|
114
|
+
|
|
115
|
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
|
116
|
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
|
117
|
+
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
|
118
|
+
image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index)
|
|
119
|
+
raise ValueError(
|
|
120
|
+
f"Number of images does not match number of special image tokens in the input text. "
|
|
121
|
+
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
|
|
122
|
+
"tokens from image embeddings."
|
|
123
|
+
)
|
|
124
|
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
125
|
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
|
126
|
+
|
|
127
|
+
# mask out pad-token-ids in labels for BC
|
|
128
|
+
if labels is not None and self.pad_token_id in labels:
|
|
129
|
+
logger.warning_once(
|
|
130
|
+
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
|
|
131
|
+
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
|
|
132
|
+
)
|
|
133
|
+
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
|
|
134
|
+
|
|
135
|
+
causal_mask = self._update_causal_mask(
|
|
136
|
+
attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
outputs = self.language_model.model(
|
|
140
|
+
attention_mask=causal_mask,
|
|
141
|
+
position_ids=position_ids,
|
|
142
|
+
past_key_values=past_key_values,
|
|
143
|
+
inputs_embeds=inputs_embeds,
|
|
144
|
+
use_cache=use_cache,
|
|
145
|
+
output_attentions=output_attentions,
|
|
146
|
+
output_hidden_states=output_hidden_states,
|
|
147
|
+
return_dict=return_dict,
|
|
148
|
+
cache_position=cache_position,
|
|
149
|
+
logits_to_keep=logits_to_keep,
|
|
150
|
+
**lm_kwargs,
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
hidden_states = outputs[0]
|
|
154
|
+
|
|
155
|
+
loss = None
|
|
156
|
+
logits = None
|
|
157
|
+
|
|
158
|
+
if self.training and (labels is not None):
|
|
159
|
+
shift_hidden_states = hidden_states[..., :-1, :]
|
|
160
|
+
shift_labels = labels[..., 1:]
|
|
161
|
+
|
|
162
|
+
hidden_device = shift_hidden_states.device
|
|
163
|
+
|
|
164
|
+
if attention_mask is not None:
|
|
165
|
+
# we use the input attention mask to shift the hidden_states and labels, because it is 2D.
|
|
166
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
|
167
|
+
shift_attention_mask = attention_mask[:, -shift_hidden_states.shape[1] :].to(hidden_device)
|
|
168
|
+
shift_hidden_states = shift_hidden_states[shift_attention_mask.to(hidden_device) != 0].contiguous()
|
|
169
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
|
170
|
+
else:
|
|
171
|
+
shift_hidden_states = shift_hidden_states.contiguous()
|
|
172
|
+
shift_labels = shift_labels.contiguous()
|
|
173
|
+
|
|
174
|
+
# Flatten hidden state
|
|
175
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
176
|
+
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
177
|
+
|
|
178
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
179
|
+
loss = lce(self.language_model.lm_head.weight, shift_hidden_states, shift_labels)
|
|
180
|
+
else:
|
|
181
|
+
logits = self.language_model.lm_head(hidden_states)
|
|
182
|
+
if labels is not None:
|
|
183
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
184
|
+
logits = logits.float()
|
|
185
|
+
shift_logits = logits[..., :-1, :]
|
|
186
|
+
shift_labels = labels[..., 1:]
|
|
187
|
+
if attention_mask is not None:
|
|
188
|
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
|
189
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
|
190
|
+
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
|
|
191
|
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
|
192
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
|
193
|
+
else:
|
|
194
|
+
shift_logits = shift_logits.contiguous()
|
|
195
|
+
shift_labels = shift_labels.contiguous()
|
|
196
|
+
# Flatten the tokens
|
|
197
|
+
loss_fct = CrossEntropyLoss()
|
|
198
|
+
|
|
199
|
+
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
|
200
|
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
|
201
|
+
loss = loss_fct(flat_logits, flat_labels)
|
|
202
|
+
if not return_dict:
|
|
203
|
+
output = (logits,) + outputs[1:]
|
|
204
|
+
return (loss,) + output if loss is not None else output
|
|
205
|
+
|
|
206
|
+
return PaliGemmaCausalLMOutputWithPast(
|
|
207
|
+
loss=loss,
|
|
208
|
+
logits=logits,
|
|
209
|
+
past_key_values=outputs.past_key_values,
|
|
210
|
+
hidden_states=outputs.hidden_states,
|
|
211
|
+
attentions=outputs.attentions,
|
|
212
|
+
image_hidden_states=image_features if pixel_values is not None else None,
|
|
213
|
+
)
|
|
@@ -600,6 +600,90 @@ def apply_liger_kernel_to_gemma2(
|
|
|
600
600
|
_patch_rms_norm_module_for_gemma2(decoder_layer.post_feedforward_layernorm)
|
|
601
601
|
|
|
602
602
|
|
|
603
|
+
def apply_liger_kernel_to_paligemma(
|
|
604
|
+
rope: bool = True,
|
|
605
|
+
cross_entropy: bool = False,
|
|
606
|
+
fused_linear_cross_entropy: bool = True,
|
|
607
|
+
layer_norm: bool = True,
|
|
608
|
+
rms_norm: bool = True,
|
|
609
|
+
geglu: bool = True,
|
|
610
|
+
model: PreTrainedModel = None,
|
|
611
|
+
) -> None:
|
|
612
|
+
"""
|
|
613
|
+
Apply Liger kernels to replace original implementation in HuggingFace PaliGemma
|
|
614
|
+
|
|
615
|
+
Args:
|
|
616
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
|
617
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
618
|
+
fused_linear_cross_entropy (bool):
|
|
619
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
620
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
|
621
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
|
622
|
+
layer_norm (bool): Whether to apply Liger's LayerNorm. Default is True.
|
|
623
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
624
|
+
geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
|
|
625
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
626
|
+
loaded. Default is None.
|
|
627
|
+
"""
|
|
628
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
|
629
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
630
|
+
)
|
|
631
|
+
|
|
632
|
+
# PaliGemma submodules are ['vision_tower', 'multi_modal_projector', 'language_model']
|
|
633
|
+
|
|
634
|
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2ForCausalLM
|
|
635
|
+
from transformers.models.paligemma import modeling_paligemma
|
|
636
|
+
from transformers.models.paligemma.modeling_paligemma import PaliGemmaForConditionalGeneration
|
|
637
|
+
from transformers.models.siglip import modeling_siglip
|
|
638
|
+
from transformers.models.siglip.modeling_siglip import SiglipEncoderLayer
|
|
639
|
+
from transformers.models.siglip.modeling_siglip import SiglipVisionModel
|
|
640
|
+
|
|
641
|
+
from liger_kernel.transformers.model.paligemma import lce_forward
|
|
642
|
+
|
|
643
|
+
# The vision_tower is a SiglipVisionModel
|
|
644
|
+
if layer_norm:
|
|
645
|
+
modeling_siglip.nn.LayerNorm = LigerLayerNorm
|
|
646
|
+
|
|
647
|
+
# SiglipMLP is standard FFN so LigerGEGLUMLP is not compatible
|
|
648
|
+
# The multi_modal_projector is Linear, nothing to do
|
|
649
|
+
|
|
650
|
+
# The language_model is Gemma2ForCausalLM
|
|
651
|
+
apply_liger_kernel_to_gemma2(rope=rope, cross_entropy=False, fused_linear_cross_entropy=False, geglu=geglu)
|
|
652
|
+
# Handle loss function
|
|
653
|
+
if cross_entropy:
|
|
654
|
+
modeling_paligemma.nn.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
655
|
+
if fused_linear_cross_entropy:
|
|
656
|
+
modeling_paligemma.PaliGemmaForConditionalGeneration.forward = lce_forward
|
|
657
|
+
|
|
658
|
+
if model is not None:
|
|
659
|
+
# The model instance already exists, so we need to additionally patch the
|
|
660
|
+
# instance variables that reference already-instantiated modules
|
|
661
|
+
|
|
662
|
+
if not isinstance(model, PaliGemmaForConditionalGeneration):
|
|
663
|
+
raise TypeError("model have to be of type PaliGemmaForConditionalGeneration")
|
|
664
|
+
|
|
665
|
+
vision_tower: SiglipVisionModel = model.vision_tower
|
|
666
|
+
|
|
667
|
+
_patch_layer_norm_module(vision_tower.vision_model.post_layernorm)
|
|
668
|
+
|
|
669
|
+
for layer in vision_tower.vision_model.encoder.layers:
|
|
670
|
+
layer: SiglipEncoderLayer
|
|
671
|
+
if layer_norm:
|
|
672
|
+
_patch_layer_norm_module(layer.layer_norm1)
|
|
673
|
+
_patch_layer_norm_module(layer.layer_norm2)
|
|
674
|
+
|
|
675
|
+
language_model: Gemma2ForCausalLM = model.language_model
|
|
676
|
+
|
|
677
|
+
apply_liger_kernel_to_gemma2(
|
|
678
|
+
rope=rope,
|
|
679
|
+
cross_entropy=False,
|
|
680
|
+
fused_linear_cross_entropy=False,
|
|
681
|
+
rms_norm=rms_norm,
|
|
682
|
+
geglu=geglu,
|
|
683
|
+
model=language_model,
|
|
684
|
+
)
|
|
685
|
+
|
|
686
|
+
|
|
603
687
|
def apply_liger_kernel_to_qwen2(
|
|
604
688
|
rope: bool = True,
|
|
605
689
|
cross_entropy: bool = False,
|
|
@@ -959,6 +1043,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
|
959
1043
|
"qwen2_vl": apply_liger_kernel_to_qwen2_vl,
|
|
960
1044
|
"qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
|
|
961
1045
|
"phi3": apply_liger_kernel_to_phi3,
|
|
1046
|
+
"paligemma": apply_liger_kernel_to_paligemma,
|
|
962
1047
|
}
|
|
963
1048
|
|
|
964
1049
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel_nightly
|
|
3
|
-
Version: 0.5.5.
|
|
3
|
+
Version: 0.5.5.dev20250315175408
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -310,6 +310,7 @@ loss.backward()
|
|
|
310
310
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
311
311
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
312
312
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
|
+
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
314
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
314
315
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
315
316
|
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -163,6 +163,7 @@ src/liger_kernel/transformers/model/mistral.py
|
|
|
163
163
|
src/liger_kernel/transformers/model/mixtral.py
|
|
164
164
|
src/liger_kernel/transformers/model/mllama.py
|
|
165
165
|
src/liger_kernel/transformers/model/olmo2.py
|
|
166
|
+
src/liger_kernel/transformers/model/paligemma.py
|
|
166
167
|
src/liger_kernel/transformers/model/phi3.py
|
|
167
168
|
src/liger_kernel/transformers/model/qwen2.py
|
|
168
169
|
src/liger_kernel/transformers/model/qwen2_5_vl.py
|
|
@@ -197,6 +198,7 @@ test/convergence/fp32/test_mini_models.py
|
|
|
197
198
|
test/convergence/fp32/test_mini_models_multimodal.py
|
|
198
199
|
test/convergence/fp32/test_mini_models_with_logits.py
|
|
199
200
|
test/resources/tiny_shakespeare.txt
|
|
201
|
+
test/resources/fake_configs/Google/Paligemma/paligemma-3b-pt-224/tokenizer_config.json
|
|
200
202
|
test/resources/fake_configs/Qwen/Qwen2-VL-7B-Instruct/tokenizer_config.json
|
|
201
203
|
test/resources/fake_configs/Qwen/Qwen2.5-VL-7B-Instruct/tokenizer_config.json
|
|
202
204
|
test/resources/fake_configs/meta-llama/Llama-3.2-11B-Vision-Instruct/tokenizer_config.json
|
|
@@ -27,7 +27,6 @@ class HFJSDLoss(HFDistillationLoss):
|
|
|
27
27
|
ignore_index: int = -100,
|
|
28
28
|
weight_hard_loss: float = 0.5,
|
|
29
29
|
weight_soft_loss: float = 0.5,
|
|
30
|
-
beta: float = 0.5,
|
|
31
30
|
):
|
|
32
31
|
super().__init__(
|
|
33
32
|
ignore_index=ignore_index,
|
|
@@ -35,7 +34,6 @@ class HFJSDLoss(HFDistillationLoss):
|
|
|
35
34
|
weight_soft_loss=weight_soft_loss,
|
|
36
35
|
temperature=temperature,
|
|
37
36
|
)
|
|
38
|
-
self.beta = (beta,)
|
|
39
37
|
|
|
40
38
|
def distillation_loss(self, student_logits, teacher_logits, beta=0.5):
|
|
41
39
|
"""
|
|
@@ -50,15 +48,20 @@ class HFJSDLoss(HFDistillationLoss):
|
|
|
50
48
|
student_log_probs = F.log_softmax(student_logits, dim=-1)
|
|
51
49
|
teacher_log_probs = F.log_softmax(teacher_logits, dim=-1)
|
|
52
50
|
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
51
|
+
if beta == 0:
|
|
52
|
+
jsd_loss = F.kl_div(student_log_probs, teacher_log_probs, reduction="none", log_target=True)
|
|
53
|
+
elif beta == 1:
|
|
54
|
+
jsd_loss = F.kl_div(teacher_log_probs, student_log_probs, reduction="none", log_target=True)
|
|
55
|
+
else:
|
|
56
|
+
# Compute probabilities (only required for mean calculation)
|
|
57
|
+
mean_probs = (1 - beta) * student_log_probs.exp() + beta * teacher_log_probs.exp()
|
|
58
|
+
log_mean_probs = mean_probs.log()
|
|
56
59
|
|
|
57
|
-
|
|
58
|
-
|
|
60
|
+
student_kl = F.kl_div(log_mean_probs, student_log_probs, reduction="batchmean", log_target=True)
|
|
61
|
+
teacher_kl = F.kl_div(log_mean_probs, teacher_log_probs, reduction="batchmean", log_target=True)
|
|
59
62
|
|
|
60
|
-
|
|
61
|
-
|
|
63
|
+
# JSD is the weighted average of the KL divergences
|
|
64
|
+
jsd_loss = beta * teacher_kl + (1 - beta) * student_kl
|
|
62
65
|
return jsd_loss
|
|
63
66
|
|
|
64
67
|
|
|
@@ -88,12 +91,12 @@ class TorchLMHeadJSD(torch.nn.Module):
|
|
|
88
91
|
# smaller student model weights
|
|
89
92
|
self.student_lin = torch.nn.Linear(in_features=H // 2, out_features=V, bias=bias, dtype=dtype, device=device)
|
|
90
93
|
self.teacher_lin = torch.nn.Linear(in_features=H, out_features=V, bias=bias, dtype=dtype, device=device)
|
|
94
|
+
self.beta = beta
|
|
91
95
|
self.jsd = HFJSDLoss(
|
|
92
96
|
ignore_index=ignore_index,
|
|
93
97
|
weight_hard_loss=weight_hard_loss,
|
|
94
98
|
weight_soft_loss=weight_soft_loss,
|
|
95
99
|
temperature=temperature,
|
|
96
|
-
beta=beta,
|
|
97
100
|
).get_batch_loss_metrics
|
|
98
101
|
|
|
99
102
|
def forward(self, student_input, teacher_input, target):
|
|
@@ -105,6 +108,7 @@ class TorchLMHeadJSD(torch.nn.Module):
|
|
|
105
108
|
target,
|
|
106
109
|
self.student_lin.bias,
|
|
107
110
|
self.teacher_lin.bias,
|
|
111
|
+
beta=self.beta,
|
|
108
112
|
)
|
|
109
113
|
return jsd_loss
|
|
110
114
|
|
|
@@ -132,6 +136,7 @@ class LigerLMHeadJSD(torch.nn.Module):
|
|
|
132
136
|
weight_soft_loss=weight_soft_loss,
|
|
133
137
|
ignore_index=ignore_index,
|
|
134
138
|
temperature=temperature,
|
|
139
|
+
beta=beta,
|
|
135
140
|
)
|
|
136
141
|
|
|
137
142
|
def forward(self, student_input, teacher_input, target):
|