liger-kernel-nightly 0.5.4.dev20250227064037__py3-none-any.whl → 0.5.4.dev20250305025024__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/cpo_loss.py +9 -8
- liger_kernel/chunked_loss/dpo_loss.py +4 -3
- liger_kernel/chunked_loss/fused_linear_distillation.py +3 -3
- liger_kernel/chunked_loss/fused_linear_preference.py +2 -2
- liger_kernel/chunked_loss/fused_linear_rlhf.py +10 -3
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +112 -17
- liger_kernel/chunked_loss/grpo_loss.py +4 -3
- liger_kernel/chunked_loss/jsd_loss.py +24 -6
- liger_kernel/chunked_loss/kto_loss.py +22 -12
- liger_kernel/chunked_loss/orpo_loss.py +4 -3
- liger_kernel/chunked_loss/simpo_loss.py +4 -3
- {liger_kernel_nightly-0.5.4.dev20250227064037.dist-info → liger_kernel_nightly-0.5.4.dev20250305025024.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.5.4.dev20250227064037.dist-info → liger_kernel_nightly-0.5.4.dev20250305025024.dist-info}/RECORD +17 -17
- {liger_kernel_nightly-0.5.4.dev20250227064037.dist-info → liger_kernel_nightly-0.5.4.dev20250305025024.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.4.dev20250227064037.dist-info → liger_kernel_nightly-0.5.4.dev20250305025024.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.4.dev20250227064037.dist-info → liger_kernel_nightly-0.5.4.dev20250305025024.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.4.dev20250227064037.dist-info → liger_kernel_nightly-0.5.4.dev20250305025024.dist-info}/top_level.txt +0 -0
|
@@ -39,8 +39,9 @@ class LigerFusedLinearCPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
39
39
|
|
|
40
40
|
return loss, chosen_rewards, rejected_rewards
|
|
41
41
|
|
|
42
|
-
@
|
|
42
|
+
@classmethod
|
|
43
43
|
def forward(
|
|
44
|
+
cls,
|
|
44
45
|
ctx,
|
|
45
46
|
_input,
|
|
46
47
|
weight,
|
|
@@ -53,13 +54,13 @@ class LigerFusedLinearCPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
53
54
|
compute_nll_loss=True,
|
|
54
55
|
compiled=True,
|
|
55
56
|
):
|
|
56
|
-
return
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
57
|
+
return super().forward(
|
|
58
|
+
cls=cls,
|
|
59
|
+
ctx=ctx,
|
|
60
|
+
_input=_input,
|
|
61
|
+
weight=weight,
|
|
62
|
+
target=target,
|
|
63
|
+
bias=bias,
|
|
63
64
|
ignore_index=ignore_index,
|
|
64
65
|
alpha=alpha,
|
|
65
66
|
beta=beta,
|
|
@@ -52,8 +52,9 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
52
52
|
loss = -F.logsigmoid(logits_diff).sum() / (full_target.shape[0] // 2)
|
|
53
53
|
return loss, chosen_rewards, rejected_rewards
|
|
54
54
|
|
|
55
|
-
@
|
|
55
|
+
@classmethod
|
|
56
56
|
def forward(
|
|
57
|
+
cls,
|
|
57
58
|
ctx,
|
|
58
59
|
_input,
|
|
59
60
|
weight,
|
|
@@ -68,13 +69,13 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
68
69
|
compiled=True,
|
|
69
70
|
use_ref_model=True,
|
|
70
71
|
):
|
|
71
|
-
return
|
|
72
|
+
return super().forward(
|
|
73
|
+
cls=cls,
|
|
72
74
|
ctx=ctx,
|
|
73
75
|
_input=_input,
|
|
74
76
|
weight=weight,
|
|
75
77
|
target=target,
|
|
76
78
|
bias=bias,
|
|
77
|
-
loss_fn=LigerFusedLinearDPOFunction.preference_loss_fn,
|
|
78
79
|
ignore_index=ignore_index,
|
|
79
80
|
beta=beta,
|
|
80
81
|
compute_nll_loss=compute_nll_loss,
|
|
@@ -125,6 +125,7 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
125
125
|
|
|
126
126
|
@staticmethod
|
|
127
127
|
def forward(
|
|
128
|
+
cls,
|
|
128
129
|
ctx,
|
|
129
130
|
student_input,
|
|
130
131
|
student_weight,
|
|
@@ -133,7 +134,6 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
133
134
|
target,
|
|
134
135
|
student_bias=None,
|
|
135
136
|
teacher_bias=None,
|
|
136
|
-
loss_fn=None,
|
|
137
137
|
chunk_size=1024,
|
|
138
138
|
ignore_index=-100,
|
|
139
139
|
weight_hard_loss=0.5,
|
|
@@ -175,7 +175,7 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
175
175
|
|
|
176
176
|
loss_func_to_call = partial(
|
|
177
177
|
LigerFusedLinearDistillationBase._compute_loss,
|
|
178
|
-
distillation_loss_fn=
|
|
178
|
+
distillation_loss_fn=cls.distillation_loss_fn,
|
|
179
179
|
full_target=target,
|
|
180
180
|
ignore_index=ignore_index,
|
|
181
181
|
weight_hard_loss=weight_hard_loss,
|
|
@@ -263,4 +263,4 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
263
263
|
grad_weight = grad_weight * grad_output
|
|
264
264
|
grad_bias = grad_bias * grad_output if grad_bias is not None else None
|
|
265
265
|
|
|
266
|
-
return grad_input, grad_weight, None, grad_bias
|
|
266
|
+
return grad_input, grad_weight, None, None, None, grad_bias
|
|
@@ -16,12 +16,12 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
|
16
16
|
|
|
17
17
|
@staticmethod
|
|
18
18
|
def forward(
|
|
19
|
+
cls,
|
|
19
20
|
ctx,
|
|
20
21
|
_input,
|
|
21
22
|
weight,
|
|
22
23
|
target,
|
|
23
24
|
bias=None,
|
|
24
|
-
loss_fn=None,
|
|
25
25
|
chunk_size=1,
|
|
26
26
|
ignore_index=-100,
|
|
27
27
|
alpha=1.0,
|
|
@@ -89,7 +89,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
|
89
89
|
|
|
90
90
|
compute_loss = partial(
|
|
91
91
|
LigerFusedLinearPreferenceBase._compute_loss,
|
|
92
|
-
preference_loss_fn=
|
|
92
|
+
preference_loss_fn=cls.preference_loss_fn,
|
|
93
93
|
ignore_index=ignore_index,
|
|
94
94
|
alpha=alpha,
|
|
95
95
|
beta=beta,
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
from abc import abstractmethod
|
|
1
2
|
from functools import partial
|
|
2
3
|
|
|
3
4
|
import torch
|
|
@@ -5,15 +6,22 @@ import torch.nn.functional as F
|
|
|
5
6
|
|
|
6
7
|
|
|
7
8
|
class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
9
|
+
@abstractmethod
|
|
10
|
+
def rlhf_loss_fn(*args, **kwargs):
|
|
11
|
+
"""
|
|
12
|
+
To be extended by subclasses.
|
|
13
|
+
"""
|
|
14
|
+
raise NotImplementedError("RLHF loss function must be implemented.")
|
|
15
|
+
|
|
8
16
|
@staticmethod
|
|
9
17
|
def forward(
|
|
18
|
+
cls,
|
|
10
19
|
ctx,
|
|
11
20
|
_input,
|
|
12
21
|
weight,
|
|
13
22
|
attention_mask,
|
|
14
23
|
rewards,
|
|
15
24
|
bias=None,
|
|
16
|
-
loss_fn=None,
|
|
17
25
|
num_generations=4,
|
|
18
26
|
beta=0.1,
|
|
19
27
|
compiled=True,
|
|
@@ -41,7 +49,7 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
41
49
|
use_ref_model=use_ref_model,
|
|
42
50
|
ref_weight=ref_weight,
|
|
43
51
|
ref_bias=ref_bias,
|
|
44
|
-
rlhf_loss_fn=
|
|
52
|
+
rlhf_loss_fn=cls.rlhf_loss_fn,
|
|
45
53
|
)
|
|
46
54
|
|
|
47
55
|
def fused_fwd_bwd(input_chunk, attention_mask_chunk, rewards_chunk, ref_input_chunk):
|
|
@@ -202,7 +210,6 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
202
210
|
None, # grad_attention_mask
|
|
203
211
|
None, # grad_rewards
|
|
204
212
|
grad_bias,
|
|
205
|
-
None, # grad_loss_fn
|
|
206
213
|
None, # grad_chunk_size
|
|
207
214
|
None, # grad_beta
|
|
208
215
|
None, # grad_compiled
|
|
@@ -16,13 +16,13 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
16
16
|
|
|
17
17
|
@staticmethod
|
|
18
18
|
def forward(
|
|
19
|
+
cls,
|
|
19
20
|
ctx,
|
|
20
21
|
_input,
|
|
21
22
|
weight,
|
|
22
23
|
target,
|
|
23
24
|
preference_labels,
|
|
24
25
|
bias=None,
|
|
25
|
-
loss_fn=None,
|
|
26
26
|
chunk_size=1,
|
|
27
27
|
ignore_index=-100,
|
|
28
28
|
compiled=True,
|
|
@@ -30,6 +30,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
30
30
|
ref_input=None,
|
|
31
31
|
ref_weight=None,
|
|
32
32
|
ref_bias=None,
|
|
33
|
+
average_log_prob=False,
|
|
33
34
|
**loss_kwargs,
|
|
34
35
|
):
|
|
35
36
|
"""
|
|
@@ -59,6 +60,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
59
60
|
Shape: (batch_size,).
|
|
60
61
|
ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
|
|
61
62
|
ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
|
|
63
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token.
|
|
62
64
|
loss_kwargs (dict): Other possible arguments that a loss function might need
|
|
63
65
|
"""
|
|
64
66
|
# TODO: Tune CHUNK_SIZE to fully utilize the GPU
|
|
@@ -72,14 +74,22 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
72
74
|
# Loss to be accumulated
|
|
73
75
|
loss_acc = torch.zeros((), device=_input.device)
|
|
74
76
|
|
|
77
|
+
# Metrics to be recorded
|
|
78
|
+
chosen_logps_sum = torch.zeros((), device=_input.device)
|
|
79
|
+
rejected_logps_sum = torch.zeros((), device=_input.device)
|
|
80
|
+
chosen_logits_sum = torch.zeros((), device=_input.device)
|
|
81
|
+
rejected_logits_sum = torch.zeros((), device=_input.device)
|
|
82
|
+
aggregated_aux_outputs = []
|
|
83
|
+
|
|
75
84
|
compute_loss = partial(
|
|
76
85
|
LigerFusedLinearUnpairedPreferenceBase._compute_loss,
|
|
77
|
-
preference_loss_fn=
|
|
86
|
+
preference_loss_fn=cls.preference_loss_fn,
|
|
78
87
|
full_target=target,
|
|
79
88
|
ignore_index=ignore_index,
|
|
80
89
|
use_ref_model=use_ref_model,
|
|
81
90
|
ref_weight=ref_weight,
|
|
82
91
|
ref_bias=ref_bias,
|
|
92
|
+
average_log_prob=average_log_prob,
|
|
83
93
|
**loss_kwargs,
|
|
84
94
|
)
|
|
85
95
|
|
|
@@ -88,7 +98,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
88
98
|
Fused forward and backward pass for a chunk of input and target.
|
|
89
99
|
"""
|
|
90
100
|
argnums = (0, 1, 4) if bias is not None else (0, 1)
|
|
91
|
-
return torch.func.grad_and_value(compute_loss, argnums=argnums, has_aux=
|
|
101
|
+
return torch.func.grad_and_value(compute_loss, argnums=argnums, has_aux=True)(
|
|
92
102
|
input_chunk,
|
|
93
103
|
weight,
|
|
94
104
|
target_chunk,
|
|
@@ -103,9 +113,19 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
103
113
|
preference_labels_chunk=None,
|
|
104
114
|
ref_input_chunk=None,
|
|
105
115
|
):
|
|
106
|
-
(
|
|
107
|
-
|
|
108
|
-
|
|
116
|
+
(
|
|
117
|
+
(chunk_grad_input, chunk_grad_weight, *chunk_grad_bias),
|
|
118
|
+
(
|
|
119
|
+
chunk_loss,
|
|
120
|
+
(
|
|
121
|
+
chunk_chosen_logps_sum,
|
|
122
|
+
chunk_rejected_logps_sum,
|
|
123
|
+
chunk_chosen_logits_sum,
|
|
124
|
+
chunk_rejected_logits_sum,
|
|
125
|
+
*aux_outputs,
|
|
126
|
+
),
|
|
127
|
+
),
|
|
128
|
+
) = fused_fwd_bwd(input_chunk, target_chunk, preference_labels_chunk, ref_input_chunk)
|
|
109
129
|
if bias is not None:
|
|
110
130
|
grad_bias.add_(chunk_grad_bias[0]) # accumulate bias gradient
|
|
111
131
|
|
|
@@ -116,6 +136,23 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
116
136
|
# Accumulate loss
|
|
117
137
|
loss_acc.add_(chunk_loss)
|
|
118
138
|
|
|
139
|
+
# Accumulate metrics
|
|
140
|
+
chosen_logps_sum.add_(chunk_chosen_logps_sum)
|
|
141
|
+
rejected_logps_sum.add_(chunk_rejected_logps_sum)
|
|
142
|
+
chosen_logits_sum.add_(chunk_chosen_logits_sum)
|
|
143
|
+
rejected_logits_sum.add_(chunk_rejected_logits_sum)
|
|
144
|
+
|
|
145
|
+
# aux_outputs
|
|
146
|
+
# Initialize storage for aux_outputs
|
|
147
|
+
if len(aggregated_aux_outputs) == 0:
|
|
148
|
+
for aux in aux_outputs:
|
|
149
|
+
aggregated_aux_outputs.append(torch.zeros((), device=aux.device))
|
|
150
|
+
|
|
151
|
+
# Process each aux_output
|
|
152
|
+
for i, aux in enumerate(aux_outputs):
|
|
153
|
+
if aux.ndim == 0:
|
|
154
|
+
aggregated_aux_outputs[i].add_(aux)
|
|
155
|
+
|
|
119
156
|
if compiled:
|
|
120
157
|
fused_fwd_bwd = torch.compile(fused_fwd_bwd)
|
|
121
158
|
|
|
@@ -151,12 +188,25 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
151
188
|
# accumulate loss, gradients, and metrics
|
|
152
189
|
accumulate_chunk(input_chunk, target_chunk, preference_labels_chunk, ref_input_chunk)
|
|
153
190
|
|
|
191
|
+
# Aggregate aux outputs lists into tensors
|
|
192
|
+
for i, aux in enumerate(aggregated_aux_outputs):
|
|
193
|
+
if isinstance(aux, list):
|
|
194
|
+
aggregated_aux_outputs[i] = torch.cat(aux, dim=0)
|
|
195
|
+
|
|
154
196
|
ctx.save_for_backward(
|
|
155
197
|
torch.cat(grad_inputs, dim=0),
|
|
156
198
|
grad_weight,
|
|
157
199
|
grad_bias,
|
|
158
200
|
)
|
|
159
|
-
|
|
201
|
+
|
|
202
|
+
return_vars = (
|
|
203
|
+
chosen_logps_sum,
|
|
204
|
+
rejected_logps_sum,
|
|
205
|
+
chosen_logits_sum,
|
|
206
|
+
rejected_logits_sum,
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
return loss_acc, (*return_vars, *aggregated_aux_outputs)
|
|
160
210
|
|
|
161
211
|
@staticmethod
|
|
162
212
|
def backward(ctx, *grad_output):
|
|
@@ -173,21 +223,37 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
173
223
|
input_chunk,
|
|
174
224
|
weight,
|
|
175
225
|
target_chunk,
|
|
226
|
+
preference_labels_chunk,
|
|
176
227
|
bias=None,
|
|
177
228
|
ignore_index=-100,
|
|
229
|
+
average_log_prob=False,
|
|
178
230
|
):
|
|
179
231
|
logits_chunk = input_chunk @ weight.t()
|
|
180
232
|
if bias is not None:
|
|
181
233
|
logits_chunk = logits_chunk + bias
|
|
182
234
|
log_probs_chunk = F.log_softmax(logits_chunk.float(), dim=-1)
|
|
183
|
-
|
|
184
235
|
loss_mask_chunk = target_chunk != ignore_index
|
|
185
236
|
label_chunk = torch.where(loss_mask_chunk, target_chunk, 0)
|
|
186
237
|
|
|
187
238
|
per_token_logps_chunk = log_probs_chunk.gather(-1, label_chunk.unsqueeze(-1)).squeeze(-1)
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
239
|
+
if average_log_prob:
|
|
240
|
+
log_probs = (per_token_logps_chunk * loss_mask_chunk).sum(-1) / loss_mask_chunk.sum(-1)
|
|
241
|
+
else:
|
|
242
|
+
log_probs = (per_token_logps_chunk * loss_mask_chunk).sum(-1)
|
|
243
|
+
|
|
244
|
+
chosen_logps_sum = (log_probs * preference_labels_chunk.unsqueeze(1)).sum()
|
|
245
|
+
rejected_logps_sum = (log_probs * (~preference_labels_chunk).unsqueeze(1)).sum()
|
|
246
|
+
|
|
247
|
+
chosen_logits_sum = (logits_chunk * preference_labels_chunk.unsqueeze(1)).sum()
|
|
248
|
+
rejected_logits_sum = (logits_chunk * (~preference_labels_chunk).unsqueeze(1)).sum()
|
|
249
|
+
|
|
250
|
+
return (
|
|
251
|
+
log_probs,
|
|
252
|
+
chosen_logps_sum,
|
|
253
|
+
rejected_logps_sum,
|
|
254
|
+
chosen_logits_sum,
|
|
255
|
+
rejected_logits_sum,
|
|
256
|
+
)
|
|
191
257
|
|
|
192
258
|
@staticmethod
|
|
193
259
|
def _compute_loss(
|
|
@@ -203,6 +269,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
203
269
|
ref_input_chunk=None,
|
|
204
270
|
ref_weight=None,
|
|
205
271
|
ref_bias=None,
|
|
272
|
+
average_log_prob=False,
|
|
206
273
|
**loss_kwargs,
|
|
207
274
|
):
|
|
208
275
|
"""
|
|
@@ -218,29 +285,57 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
218
285
|
use_ref_model (bool): Whether to use a reference model for the alignment loss.
|
|
219
286
|
ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
|
|
220
287
|
ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
|
|
288
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token.
|
|
221
289
|
loss_kwargs (dict): Additional arguments for the loss function.
|
|
222
290
|
"""
|
|
223
|
-
|
|
291
|
+
(
|
|
292
|
+
log_prob_chunk,
|
|
293
|
+
chosen_logps_sum,
|
|
294
|
+
rejected_logps_sum,
|
|
295
|
+
chosen_logits_sum,
|
|
296
|
+
rejected_logits_sum,
|
|
297
|
+
) = LigerFusedLinearUnpairedPreferenceBase.chunk_forward(
|
|
224
298
|
input_chunk,
|
|
225
299
|
weight,
|
|
226
300
|
target_chunk,
|
|
301
|
+
preference_labels_chunk,
|
|
227
302
|
bias=bias,
|
|
228
303
|
ignore_index=ignore_index,
|
|
304
|
+
average_log_prob=average_log_prob,
|
|
229
305
|
)
|
|
230
306
|
|
|
231
307
|
if use_ref_model:
|
|
232
308
|
with torch.no_grad():
|
|
233
|
-
|
|
309
|
+
(
|
|
310
|
+
ref_log_prob_chunk,
|
|
311
|
+
_,
|
|
312
|
+
_,
|
|
313
|
+
_,
|
|
314
|
+
_,
|
|
315
|
+
) = LigerFusedLinearUnpairedPreferenceBase.chunk_forward(
|
|
234
316
|
ref_input_chunk,
|
|
235
317
|
ref_weight,
|
|
236
318
|
target_chunk,
|
|
319
|
+
preference_labels_chunk,
|
|
237
320
|
ref_bias,
|
|
238
321
|
ignore_index=ignore_index,
|
|
322
|
+
average_log_prob=average_log_prob,
|
|
239
323
|
)
|
|
240
|
-
loss_kwargs["
|
|
324
|
+
loss_kwargs["ref_log_prob_chunk"] = ref_log_prob_chunk
|
|
241
325
|
|
|
242
|
-
|
|
243
|
-
|
|
326
|
+
preference_loss_outputs = preference_loss_fn(
|
|
327
|
+
log_prob_chunk, preference_labels_chunk, full_target, **loss_kwargs
|
|
328
|
+
)
|
|
329
|
+
if isinstance(preference_loss_outputs, tuple):
|
|
330
|
+
preference_loss_chunk, *aux_outputs = preference_loss_outputs
|
|
331
|
+
else:
|
|
332
|
+
preference_loss_chunk, aux_outputs = preference_loss_outputs, []
|
|
333
|
+
|
|
334
|
+
return_vars = (
|
|
335
|
+
chosen_logps_sum,
|
|
336
|
+
rejected_logps_sum,
|
|
337
|
+
chosen_logits_sum,
|
|
338
|
+
rejected_logits_sum,
|
|
244
339
|
)
|
|
245
340
|
|
|
246
|
-
return preference_loss_chunk
|
|
341
|
+
return preference_loss_chunk, (*return_vars, *aux_outputs)
|
|
@@ -63,8 +63,9 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearRLHFBase):
|
|
|
63
63
|
|
|
64
64
|
return loss, metrics
|
|
65
65
|
|
|
66
|
-
@
|
|
66
|
+
@classmethod
|
|
67
67
|
def forward(
|
|
68
|
+
cls,
|
|
68
69
|
ctx,
|
|
69
70
|
_input,
|
|
70
71
|
weight,
|
|
@@ -79,12 +80,12 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearRLHFBase):
|
|
|
79
80
|
use_ref_model=True,
|
|
80
81
|
num_generations=1,
|
|
81
82
|
):
|
|
82
|
-
return
|
|
83
|
+
return super().forward(
|
|
84
|
+
cls=cls,
|
|
83
85
|
ctx=ctx,
|
|
84
86
|
_input=_input,
|
|
85
87
|
weight=weight,
|
|
86
88
|
attention_mask=attention_mask,
|
|
87
|
-
loss_fn=LigerFusedLinearGRPOFunction.rlhf_loss_fn,
|
|
88
89
|
rewards=rewards,
|
|
89
90
|
bias=bias,
|
|
90
91
|
ref_input=ref_input,
|
|
@@ -30,14 +30,17 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
|
|
|
30
30
|
jsd_loss = beta * teacher_kl + (1 - beta) * student_kl
|
|
31
31
|
return jsd_loss
|
|
32
32
|
|
|
33
|
-
@
|
|
33
|
+
@classmethod
|
|
34
34
|
def forward(
|
|
35
|
+
cls,
|
|
35
36
|
ctx,
|
|
36
37
|
student_input: torch.Tensor,
|
|
37
38
|
student_weight: torch.Tensor,
|
|
38
39
|
teacher_input: torch.Tensor,
|
|
39
40
|
teacher_weight: torch.Tensor,
|
|
40
41
|
true_labels: torch.LongTensor,
|
|
42
|
+
student_bias: torch.Tensor,
|
|
43
|
+
teacher_bias: torch.Tensor,
|
|
41
44
|
weight_hard_loss: float = 0.5,
|
|
42
45
|
weight_soft_loss: float = 0.5,
|
|
43
46
|
beta: float = 0.5,
|
|
@@ -62,15 +65,17 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
|
|
|
62
65
|
Returns:
|
|
63
66
|
torch.Tensor: Computed loss
|
|
64
67
|
"""
|
|
65
|
-
return
|
|
68
|
+
return super().forward(
|
|
69
|
+
cls=cls,
|
|
66
70
|
ctx=ctx,
|
|
67
71
|
student_input=student_input,
|
|
68
72
|
student_weight=student_weight,
|
|
69
73
|
teacher_input=teacher_input,
|
|
70
74
|
teacher_weight=teacher_weight,
|
|
71
75
|
target=true_labels,
|
|
72
|
-
|
|
73
|
-
|
|
76
|
+
student_bias=student_bias,
|
|
77
|
+
teacher_bias=teacher_bias,
|
|
78
|
+
chunk_size=1024,
|
|
74
79
|
weight_hard_loss=weight_hard_loss,
|
|
75
80
|
weight_soft_loss=weight_soft_loss,
|
|
76
81
|
beta=beta,
|
|
@@ -81,9 +86,18 @@ class LigerFusedLinearJSDFunction(LigerFusedLinearDistillationBase):
|
|
|
81
86
|
|
|
82
87
|
@staticmethod
|
|
83
88
|
def backward(ctx, grad_output):
|
|
84
|
-
grads = LigerFusedLinearDistillationBase.backward(ctx, grad_output)[:
|
|
89
|
+
grads = LigerFusedLinearDistillationBase.backward(ctx, grad_output)[:6]
|
|
85
90
|
|
|
86
|
-
return (
|
|
91
|
+
return (
|
|
92
|
+
*grads,
|
|
93
|
+
None, # teacher_bias
|
|
94
|
+
None, # weight_hard_loss
|
|
95
|
+
None, # weight_soft_loss
|
|
96
|
+
None, # beta
|
|
97
|
+
None, # ignore_index
|
|
98
|
+
None, # temperature
|
|
99
|
+
None, # compiled
|
|
100
|
+
)
|
|
87
101
|
|
|
88
102
|
|
|
89
103
|
class LigerFusedLinearJSDLoss(torch.nn.Module):
|
|
@@ -125,6 +139,8 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
|
|
|
125
139
|
teacher_input: torch.Tensor,
|
|
126
140
|
teacher_weight: torch.Tensor,
|
|
127
141
|
true_labels: torch.LongTensor,
|
|
142
|
+
student_bias: torch.Tensor,
|
|
143
|
+
teacher_bias: torch.Tensor,
|
|
128
144
|
) -> torch.Tensor:
|
|
129
145
|
"""
|
|
130
146
|
Compute the JSD distillation loss.
|
|
@@ -145,6 +161,8 @@ class LigerFusedLinearJSDLoss(torch.nn.Module):
|
|
|
145
161
|
teacher_input,
|
|
146
162
|
teacher_weight,
|
|
147
163
|
true_labels,
|
|
164
|
+
student_bias,
|
|
165
|
+
teacher_bias,
|
|
148
166
|
self.weight_hard_loss,
|
|
149
167
|
self.weight_soft_loss,
|
|
150
168
|
self.beta,
|
|
@@ -7,10 +7,10 @@ from liger_kernel.chunked_loss.fused_linear_unpaired_preference import LigerFuse
|
|
|
7
7
|
class LigerFusedLinearKTOFunction(LigerFusedLinearUnpairedPreferenceBase):
|
|
8
8
|
@staticmethod
|
|
9
9
|
def preference_loss_fn(
|
|
10
|
-
|
|
10
|
+
log_prob_chunk,
|
|
11
11
|
preference_labels_chunk,
|
|
12
12
|
full_target,
|
|
13
|
-
|
|
13
|
+
ref_log_prob_chunk=None,
|
|
14
14
|
beta=0.1,
|
|
15
15
|
kl=None,
|
|
16
16
|
):
|
|
@@ -43,30 +43,34 @@ class LigerFusedLinearKTOFunction(LigerFusedLinearUnpairedPreferenceBase):
|
|
|
43
43
|
3. Maintain reasonable distance from the reference model
|
|
44
44
|
|
|
45
45
|
Args:
|
|
46
|
-
|
|
46
|
+
log_prob_chunk: Log probabilities for the chunk (batch_size,)
|
|
47
47
|
preference_labels_chunk: Preference labels for the chunk (batch_size,)
|
|
48
48
|
full_target: Non chunked full target tensor
|
|
49
|
-
|
|
49
|
+
ref_log_prob_chunk: Reference log probs for the chunk (batch_size,)
|
|
50
50
|
beta: Weight for the KTO loss
|
|
51
51
|
kl: KL divergence between the policy model and the reference model for the chosen responses. Shape: (batch_size,)
|
|
52
52
|
Returns:
|
|
53
53
|
- loss: The KTO loss value
|
|
54
54
|
"""
|
|
55
|
-
if
|
|
56
|
-
logratios_chunk =
|
|
55
|
+
if ref_log_prob_chunk is not None:
|
|
56
|
+
logratios_chunk = log_prob_chunk - ref_log_prob_chunk
|
|
57
57
|
else:
|
|
58
|
-
logratios_chunk =
|
|
59
|
-
|
|
58
|
+
logratios_chunk = log_prob_chunk
|
|
60
59
|
multiplier_chunk = torch.where(preference_labels_chunk, 1, -1)
|
|
61
60
|
if kl is not None:
|
|
62
61
|
losses = 1 - F.sigmoid(beta * (logratios_chunk - kl) * multiplier_chunk)
|
|
63
62
|
else:
|
|
64
63
|
losses = 1 - F.sigmoid(beta * logratios_chunk * multiplier_chunk)
|
|
65
64
|
|
|
66
|
-
|
|
65
|
+
rewards = beta * logratios_chunk
|
|
66
|
+
chosen_rewards_sum = (rewards * preference_labels_chunk.unsqueeze(1)).sum()
|
|
67
|
+
rejected_rewards_sum = (rewards * (~preference_labels_chunk).unsqueeze(1)).sum()
|
|
67
68
|
|
|
68
|
-
|
|
69
|
+
return losses.sum() / (full_target.shape[0]), chosen_rewards_sum, rejected_rewards_sum
|
|
70
|
+
|
|
71
|
+
@classmethod
|
|
69
72
|
def forward(
|
|
73
|
+
cls,
|
|
70
74
|
ctx,
|
|
71
75
|
_input,
|
|
72
76
|
weight,
|
|
@@ -81,15 +85,16 @@ class LigerFusedLinearKTOFunction(LigerFusedLinearUnpairedPreferenceBase):
|
|
|
81
85
|
beta=0.1,
|
|
82
86
|
compiled=True,
|
|
83
87
|
use_ref_model=True,
|
|
88
|
+
average_log_prob=False,
|
|
84
89
|
):
|
|
85
|
-
return
|
|
90
|
+
return super().forward(
|
|
91
|
+
cls=cls,
|
|
86
92
|
ctx=ctx,
|
|
87
93
|
_input=_input,
|
|
88
94
|
weight=weight,
|
|
89
95
|
target=target,
|
|
90
96
|
preference_labels=preference_labels,
|
|
91
97
|
bias=bias,
|
|
92
|
-
loss_fn=LigerFusedLinearKTOFunction.preference_loss_fn,
|
|
93
98
|
ignore_index=ignore_index,
|
|
94
99
|
beta=beta,
|
|
95
100
|
compiled=compiled,
|
|
@@ -97,6 +102,7 @@ class LigerFusedLinearKTOFunction(LigerFusedLinearUnpairedPreferenceBase):
|
|
|
97
102
|
ref_input=ref_input,
|
|
98
103
|
ref_weight=ref_weight,
|
|
99
104
|
ref_bias=ref_bias,
|
|
105
|
+
average_log_prob=average_log_prob,
|
|
100
106
|
kl=kl,
|
|
101
107
|
)
|
|
102
108
|
|
|
@@ -129,6 +135,7 @@ class LigerFusedLinearKTOLoss(torch.nn.Module):
|
|
|
129
135
|
beta: float = 0.1,
|
|
130
136
|
compiled: bool = True,
|
|
131
137
|
use_ref_model: bool = False,
|
|
138
|
+
average_log_prob: bool = False,
|
|
132
139
|
):
|
|
133
140
|
"""
|
|
134
141
|
Args:
|
|
@@ -136,12 +143,14 @@ class LigerFusedLinearKTOLoss(torch.nn.Module):
|
|
|
136
143
|
beta (float): Temperature parameter for the KTO loss
|
|
137
144
|
compiled (bool): Whether to use compiled operations
|
|
138
145
|
use_ref_model (bool): Whether to use a reference model for the DPO loss.
|
|
146
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token.
|
|
139
147
|
"""
|
|
140
148
|
super().__init__()
|
|
141
149
|
self.ignore_index = ignore_index
|
|
142
150
|
self.beta = beta
|
|
143
151
|
self.compiled = compiled
|
|
144
152
|
self.use_ref_model = use_ref_model
|
|
153
|
+
self.average_log_prob = average_log_prob
|
|
145
154
|
|
|
146
155
|
def forward(
|
|
147
156
|
self,
|
|
@@ -169,4 +178,5 @@ class LigerFusedLinearKTOLoss(torch.nn.Module):
|
|
|
169
178
|
self.beta,
|
|
170
179
|
self.compiled,
|
|
171
180
|
self.use_ref_model,
|
|
181
|
+
self.average_log_prob,
|
|
172
182
|
)
|
|
@@ -42,8 +42,9 @@ class LigerFusedLinearORPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
42
42
|
|
|
43
43
|
return loss, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen
|
|
44
44
|
|
|
45
|
-
@
|
|
45
|
+
@classmethod
|
|
46
46
|
def forward(
|
|
47
|
+
cls,
|
|
47
48
|
ctx,
|
|
48
49
|
_input,
|
|
49
50
|
weight,
|
|
@@ -55,13 +56,13 @@ class LigerFusedLinearORPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
55
56
|
nll_target=None,
|
|
56
57
|
compiled=True,
|
|
57
58
|
):
|
|
58
|
-
return
|
|
59
|
+
return super().forward(
|
|
60
|
+
cls=cls,
|
|
59
61
|
ctx=ctx,
|
|
60
62
|
_input=_input,
|
|
61
63
|
weight=weight,
|
|
62
64
|
target=target,
|
|
63
65
|
bias=bias,
|
|
64
|
-
loss_fn=LigerFusedLinearORPOFunction.preference_loss_fn,
|
|
65
66
|
ignore_index=ignore_index,
|
|
66
67
|
beta=beta,
|
|
67
68
|
compute_nll_loss=compute_nll_loss,
|
|
@@ -47,8 +47,9 @@ class LigerFusedLinearSimPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
47
47
|
|
|
48
48
|
return loss, chosen_rewards, rejected_rewards
|
|
49
49
|
|
|
50
|
-
@
|
|
50
|
+
@classmethod
|
|
51
51
|
def forward(
|
|
52
|
+
cls,
|
|
52
53
|
ctx,
|
|
53
54
|
_input,
|
|
54
55
|
weight,
|
|
@@ -62,13 +63,13 @@ class LigerFusedLinearSimPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
62
63
|
compiled=True,
|
|
63
64
|
gamma=0.5,
|
|
64
65
|
):
|
|
65
|
-
return
|
|
66
|
+
return super().forward(
|
|
67
|
+
cls,
|
|
66
68
|
ctx,
|
|
67
69
|
_input,
|
|
68
70
|
weight,
|
|
69
71
|
target,
|
|
70
72
|
bias,
|
|
71
|
-
loss_fn=LigerFusedLinearSimPOFunction.preference_loss_fn,
|
|
72
73
|
compute_nll_loss=compute_nll_loss,
|
|
73
74
|
ignore_index=ignore_index,
|
|
74
75
|
alpha=alpha,
|
|
@@ -3,18 +3,18 @@ liger_kernel/env_report.py,sha256=uhdEC8OydxoZlb7B6YYcAaBF3crGFdIck-4cxaW4NJY,17
|
|
|
3
3
|
liger_kernel/utils.py,sha256=178Hn8uD-VauDT6FjqMyXLbKLod8ObIpaTtapHwfEK0,1861
|
|
4
4
|
liger_kernel/chunked_loss/README.md,sha256=0FmkFC3hKBqyoDT5uTlIYmrvRkF-EOCR1y-EBU1LpWU,2248
|
|
5
5
|
liger_kernel/chunked_loss/__init__.py,sha256=ATu-xX5Fc49Cr6yBOGBRNTo593ZrU5ZCsIuvoIbJWw4,603
|
|
6
|
-
liger_kernel/chunked_loss/cpo_loss.py,sha256=
|
|
7
|
-
liger_kernel/chunked_loss/dpo_loss.py,sha256=
|
|
6
|
+
liger_kernel/chunked_loss/cpo_loss.py,sha256=LZr2mVe2EUQuKQ9uB30vxmuCfuK_yxJZraG62kH-qSY,3654
|
|
7
|
+
liger_kernel/chunked_loss/dpo_loss.py,sha256=MMTiHviJUg7htStKevMgqpyXkQfaKcqahaBz1dzXM1A,4451
|
|
8
8
|
liger_kernel/chunked_loss/functional.py,sha256=THWWpCnRVhTVfnPnyvQjdBvo1JDtxhwLmtZE_yiBBqM,817
|
|
9
|
-
liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=
|
|
10
|
-
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=
|
|
11
|
-
liger_kernel/chunked_loss/fused_linear_rlhf.py,sha256=
|
|
12
|
-
liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=
|
|
13
|
-
liger_kernel/chunked_loss/grpo_loss.py,sha256=
|
|
14
|
-
liger_kernel/chunked_loss/jsd_loss.py,sha256=
|
|
15
|
-
liger_kernel/chunked_loss/kto_loss.py,sha256=
|
|
16
|
-
liger_kernel/chunked_loss/orpo_loss.py,sha256=
|
|
17
|
-
liger_kernel/chunked_loss/simpo_loss.py,sha256=
|
|
9
|
+
liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=FJh7k3sry-fqnBApLSngf7h-lHQEiXtOY_tiRDVanPM,11022
|
|
10
|
+
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=ojB42jYPu0c4ki96Ft-hy7Sf6fh_WikG-aWNrlZzSio,18362
|
|
11
|
+
liger_kernel/chunked_loss/fused_linear_rlhf.py,sha256=Dxtj6fOfZ8jGoX5uvC9z3An6np39Zdz3c2B2fF39WAA,8240
|
|
12
|
+
liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=RiuK3UtRwH9T6jZ36sA8Urj-TVuOLOO2syLg_JOQapY,13437
|
|
13
|
+
liger_kernel/chunked_loss/grpo_loss.py,sha256=6RPYSIzTgjmCSIkULvpmbU_jsEM4awU9OgScBkWsXj0,4933
|
|
14
|
+
liger_kernel/chunked_loss/jsd_loss.py,sha256=NbT_D0ybYL68p7Rh9hdKeRR8HkHKEyX2ab5n_RxWz-0,6481
|
|
15
|
+
liger_kernel/chunked_loss/kto_loss.py,sha256=4NHloq8gAwkD4Q8-PNa4Yz_uNyu80PokOdFTOnH1138,5903
|
|
16
|
+
liger_kernel/chunked_loss/orpo_loss.py,sha256=WXX_eCSSIDoi9bHOK8-DYFgx3-vEZhvDvLyXK3mVW6U,3558
|
|
17
|
+
liger_kernel/chunked_loss/simpo_loss.py,sha256=V2YN7aB7o-5rMplgYTon04JKYhKNYxLMqZezUOG5OPc,3801
|
|
18
18
|
liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
19
19
|
liger_kernel/ops/cross_entropy.py,sha256=yKKhN63I7r9NxJye4wTLBvvKAyrXQt6jf4nBo3lJyVg,18860
|
|
20
20
|
liger_kernel/ops/fused_linear_cross_entropy.py,sha256=1Y3Uk_TCSjqKgoG2eot1ptnWXJXXQESqGvOmqAW1gsM,10912
|
|
@@ -67,9 +67,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
|
67
67
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
|
|
68
68
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
|
69
69
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
|
70
|
-
liger_kernel_nightly-0.5.4.
|
|
71
|
-
liger_kernel_nightly-0.5.4.
|
|
72
|
-
liger_kernel_nightly-0.5.4.
|
|
73
|
-
liger_kernel_nightly-0.5.4.
|
|
74
|
-
liger_kernel_nightly-0.5.4.
|
|
75
|
-
liger_kernel_nightly-0.5.4.
|
|
70
|
+
liger_kernel_nightly-0.5.4.dev20250305025024.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
|
71
|
+
liger_kernel_nightly-0.5.4.dev20250305025024.dist-info/METADATA,sha256=ShRwtbHFvqjn1cYgNONqIAKyfqmELTDoWl2QNmi1CIQ,22389
|
|
72
|
+
liger_kernel_nightly-0.5.4.dev20250305025024.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
|
73
|
+
liger_kernel_nightly-0.5.4.dev20250305025024.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
|
|
74
|
+
liger_kernel_nightly-0.5.4.dev20250305025024.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
|
75
|
+
liger_kernel_nightly-0.5.4.dev20250305025024.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|