liger-kernel-nightly 0.5.3.dev20250224175624__py3-none-any.whl → 0.5.4.dev20250224214213__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

@@ -14,6 +14,7 @@ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama
14
14
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
15
15
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
16
16
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
17
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
17
18
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
18
19
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
19
20
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
@@ -0,0 +1,124 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.modeling_outputs import CausalLMOutputWithPast
9
+ from transformers.models.olmo2.modeling_olmo2 import _CONFIG_FOR_DOC
10
+ from transformers.models.olmo2.modeling_olmo2 import OLMO2_INPUTS_DOCSTRING
11
+ from transformers.utils import add_start_docstrings_to_model_forward
12
+ from transformers.utils import replace_return_docstrings
13
+
14
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
15
+
16
+
17
+ @add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING)
18
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
19
+ def lce_forward(
20
+ self,
21
+ input_ids: torch.LongTensor = None,
22
+ attention_mask: Optional[torch.Tensor] = None,
23
+ position_ids: Optional[torch.LongTensor] = None,
24
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
25
+ inputs_embeds: Optional[torch.FloatTensor] = None,
26
+ labels: Optional[torch.LongTensor] = None,
27
+ use_cache: Optional[bool] = None,
28
+ output_attentions: Optional[bool] = None,
29
+ output_hidden_states: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
31
+ cache_position: Optional[torch.LongTensor] = None,
32
+ num_logits_to_keep: int = 0,
33
+ **loss_kwargs,
34
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
35
+ r"""
36
+ Args:
37
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
38
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
39
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
40
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
41
+
42
+ num_logits_to_keep (`int`, *optional*):
43
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
44
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
45
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
46
+
47
+ Returns:
48
+
49
+ Example:
50
+
51
+ ```python
52
+ >>> from transformers import AutoTokenizer, Olmo2ForCausalLM
53
+
54
+ >>> model = Olmo2ForCausalLM.from_pretrained("allenai/Olmo2-1B-hf")
55
+ >>> tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo2-1B-hf")
56
+
57
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
58
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
59
+
60
+ >>> # Generate
61
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
62
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
63
+ 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
64
+ ```
65
+ """
66
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
67
+ output_hidden_states = (
68
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
69
+ )
70
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
71
+
72
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
73
+ outputs = self.model(
74
+ input_ids=input_ids,
75
+ attention_mask=attention_mask,
76
+ position_ids=position_ids,
77
+ past_key_values=past_key_values,
78
+ inputs_embeds=inputs_embeds,
79
+ use_cache=use_cache,
80
+ output_attentions=output_attentions,
81
+ output_hidden_states=output_hidden_states,
82
+ return_dict=return_dict,
83
+ cache_position=cache_position,
84
+ )
85
+
86
+ hidden_states = outputs[0]
87
+
88
+ logits = None
89
+ loss = None
90
+ # if in training mode, don't materialize logits
91
+ if self.training and (labels is not None):
92
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
93
+
94
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
95
+ shift_labels = labels[..., 1:].contiguous()
96
+
97
+ # flatten tokens
98
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
99
+ shift_labels = shift_labels.view(-1)
100
+
101
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
102
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
103
+
104
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
105
+ if reduction == "sum":
106
+ loss /= loss_kwargs["num_items_in_batch"]
107
+
108
+ else: # if in inference mode materialize logits
109
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
110
+ if labels is not None:
111
+ loss = self.loss_function(
112
+ logits=logits,
113
+ labels=labels,
114
+ vocab_size=self.config.vocab_size,
115
+ **loss_kwargs,
116
+ )
117
+
118
+ return CausalLMOutputWithPast(
119
+ loss=loss,
120
+ logits=logits,
121
+ past_key_values=outputs.past_key_values,
122
+ hidden_states=outputs.hidden_states,
123
+ attentions=outputs.attentions,
124
+ )
@@ -814,6 +814,69 @@ def apply_liger_kernel_to_phi3(
814
814
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
815
815
 
816
816
 
817
+ def apply_liger_kernel_to_olmo2(
818
+ rope: bool = True,
819
+ cross_entropy: bool = False,
820
+ fused_linear_cross_entropy: bool = True,
821
+ rms_norm: bool = True,
822
+ swiglu: bool = True,
823
+ model: PreTrainedModel = None,
824
+ ) -> None:
825
+ """
826
+ Apply Liger kernels to replace original implementation in HuggingFace OLMO2 models.
827
+
828
+ Args:
829
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
830
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
831
+ fused_linear_cross_entropy (bool):
832
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
833
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
834
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
835
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
836
+ swiglu (bool): Whether to apply Liger's SwiGLU Olmo2MLP. Default is True.
837
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
838
+ loaded. Default is None.
839
+ """
840
+ assert not (cross_entropy and fused_linear_cross_entropy), (
841
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
842
+ )
843
+
844
+ from transformers.models.olmo2 import modeling_olmo2
845
+ from transformers.models.olmo2.modeling_olmo2 import Olmo2Model
846
+
847
+ from liger_kernel.transformers.model.olmo2 import lce_forward as olmo2_lce_forward
848
+
849
+ if rope:
850
+ modeling_olmo2.apply_rotary_pos_emb = liger_rotary_pos_emb
851
+ if rms_norm:
852
+ modeling_olmo2.Olmo2RMSNorm = partial(LigerRMSNorm, in_place=False)
853
+ if swiglu:
854
+ modeling_olmo2.Olmo2MLP = LigerSwiGLUMLP
855
+ if cross_entropy:
856
+ from transformers.loss.loss_utils import nn
857
+
858
+ nn.functional.cross_entropy = liger_cross_entropy
859
+ if fused_linear_cross_entropy:
860
+ modeling_olmo2.Olmo2ForCausalLM.forward = olmo2_lce_forward
861
+
862
+ if model is not None:
863
+ # The model instance already exists, so we need to additionally patch the
864
+ # instance variables that reference already-instantiated modules
865
+
866
+ # get the base model from the model instance
867
+ base_model: Olmo2Model = getattr(model, model.base_model_prefix, model)
868
+
869
+ if rms_norm:
870
+ _patch_rms_norm_module(base_model.norm)
871
+
872
+ for decoder_layer in base_model.layers:
873
+ if swiglu:
874
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward)
875
+ if rms_norm:
876
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm, in_place=False)
877
+ _patch_rms_norm_module(decoder_layer.post_feedforward_layernorm, in_place=False)
878
+
879
+
817
880
  # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
818
881
  MODEL_TYPE_TO_APPLY_LIGER_FN = {
819
882
  "gemma": apply_liger_kernel_to_gemma,
@@ -824,6 +887,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
824
887
  "mllama_text_model": apply_liger_kernel_to_mllama,
825
888
  "mistral": apply_liger_kernel_to_mistral,
826
889
  "mixtral": apply_liger_kernel_to_mixtral,
890
+ "olmo2": apply_liger_kernel_to_olmo2,
827
891
  "qwen2": apply_liger_kernel_to_qwen2,
828
892
  "qwen2_vl": apply_liger_kernel_to_qwen2_vl,
829
893
  "phi3": apply_liger_kernel_to_phi3,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.5.3.dev20250224175624
3
+ Version: 0.5.4.dev20250224214213
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -314,6 +314,7 @@ loss.backward()
314
314
  | Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
315
315
  | Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
316
316
  | Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
317
+ | OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
317
318
 
318
319
 
319
320
  ## Low-level APIs
@@ -32,7 +32,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
32
32
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
33
33
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
34
34
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
35
- liger_kernel/transformers/__init__.py,sha256=MGgdJkohu0tQS6owEBHuRVYhRUPXRFP9OiVc1fcjkjc,2172
35
+ liger_kernel/transformers/__init__.py,sha256=6v_VcV1GQ9ISgNCd-ZxtmEg_s5GTBQ9F-s1KrFkYzPQ,2265
36
36
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
37
37
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
38
38
  liger_kernel/transformers/functional.py,sha256=ShLD3eb--XKNtllznCrOYTbo4f-1KVwzi0KLMICdrn4,4942
@@ -43,7 +43,7 @@ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD
43
43
  liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
44
44
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
45
45
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
46
- liger_kernel/transformers/monkey_patch.py,sha256=kSJE1aMLN0e4jxiePUISRPcyvhWyzhOaqIwLW6rG0Zo,41191
46
+ liger_kernel/transformers/monkey_patch.py,sha256=g3i3q5McBg23A3Mnviw-Eb32le1hvN7jByzONa9ngcs,44000
47
47
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
48
48
  liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
49
49
  liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
@@ -58,6 +58,7 @@ liger_kernel/transformers/model/llama.py,sha256=3LJFXKFDKvEakaWPc_NicSFst4Y_hdSM
58
58
  liger_kernel/transformers/model/mistral.py,sha256=MVRksI5_j_8WJu8znOHKCdSI5jSu-S7cdFYzt9m_vIQ,5180
59
59
  liger_kernel/transformers/model/mixtral.py,sha256=jpZJkpl625Q-JHWarj2MqT5mRaSsiCtg0c9vVyvOdCY,11430
60
60
  liger_kernel/transformers/model/mllama.py,sha256=qWexBdskuN3gPJvPUwt4J0nU675tGD6W7wxgRZ9Bifg,11145
61
+ liger_kernel/transformers/model/olmo2.py,sha256=yyksS6E4fuWd8asEW8rEDBKqZpFmP4ITCM_bjIDZaoY,5124
61
62
  liger_kernel/transformers/model/phi3.py,sha256=biRa8fph9qdnQmkD9I21t5XIjpIt1i6UKU4uk8Up8pU,10292
62
63
  liger_kernel/transformers/model/qwen2.py,sha256=14UuPjxB-tjqWn85Tn4fqBFvVhVsth5iPEt8kJSMiew,9581
63
64
  liger_kernel/transformers/model/qwen2_vl.py,sha256=yMLqsfSYcvhClUpTUjGoADiOxfLB2B8240VdrPP0c8s,9851
@@ -65,9 +66,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
65
66
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
66
67
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
67
68
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
68
- liger_kernel_nightly-0.5.3.dev20250224175624.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
69
- liger_kernel_nightly-0.5.3.dev20250224175624.dist-info/METADATA,sha256=xQ6yDpRjcC7Egp-O_XmndQ_XzHjTXWyg_ykJgnP3dGI,22093
70
- liger_kernel_nightly-0.5.3.dev20250224175624.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
71
- liger_kernel_nightly-0.5.3.dev20250224175624.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
72
- liger_kernel_nightly-0.5.3.dev20250224175624.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
73
- liger_kernel_nightly-0.5.3.dev20250224175624.dist-info/RECORD,,
69
+ liger_kernel_nightly-0.5.4.dev20250224214213.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
70
+ liger_kernel_nightly-0.5.4.dev20250224214213.dist-info/METADATA,sha256=M46rkcY35Ym3BhZf2WaoagxkIVPVlbFNRSAGFoPod7U,22234
71
+ liger_kernel_nightly-0.5.4.dev20250224214213.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
72
+ liger_kernel_nightly-0.5.4.dev20250224214213.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
73
+ liger_kernel_nightly-0.5.4.dev20250224214213.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
74
+ liger_kernel_nightly-0.5.4.dev20250224214213.dist-info/RECORD,,