liger-kernel-nightly 0.4.2.dev20241121225747__tar.gz → 0.4.2.dev20241122175637__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (65) hide show
  1. {liger_kernel_nightly-0.4.2.dev20241121225747/src/liger_kernel_nightly.egg-info → liger_kernel_nightly-0.4.2.dev20241122175637}/PKG-INFO +1 -1
  2. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/pyproject.toml +1 -1
  3. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/chunked_loss/dpo_loss.py +36 -4
  4. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/chunked_loss/fused_linear_preference.py +79 -27
  5. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/cross_entropy.py +12 -6
  6. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -11
  7. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637/src/liger_kernel_nightly.egg-info}/PKG-INFO +1 -1
  8. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/LICENSE +0 -0
  9. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/NOTICE +0 -0
  10. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/README.md +0 -0
  11. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/setup.cfg +0 -0
  12. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/chunked_loss/__init__.py +0 -0
  13. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/chunked_loss/cpo_loss.py +0 -0
  14. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/chunked_loss/functional.py +0 -0
  15. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/chunked_loss/orpo_loss.py +0 -0
  16. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/chunked_loss/simpo_loss.py +0 -0
  17. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/env_report.py +0 -0
  18. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/__init__.py +0 -0
  19. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/experimental/embedding.py +0 -0
  20. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
  21. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/fused_linear_jsd.py +0 -0
  22. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/geglu.py +0 -0
  23. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/group_norm.py +0 -0
  24. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/jsd.py +0 -0
  25. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/kl_div.py +0 -0
  26. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/layer_norm.py +0 -0
  27. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/qwen2vl_mrope.py +0 -0
  28. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/rms_norm.py +0 -0
  29. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/rope.py +0 -0
  30. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/swiglu.py +0 -0
  31. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/ops/utils.py +0 -0
  32. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/__init__.py +0 -0
  33. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/auto_model.py +0 -0
  34. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/cross_entropy.py +0 -0
  35. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
  36. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/functional.py +0 -0
  37. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
  38. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
  39. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/geglu.py +0 -0
  40. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/group_norm.py +0 -0
  41. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/jsd.py +0 -0
  42. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/kl_div.py +0 -0
  43. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/layer_norm.py +0 -0
  44. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/__init__.py +0 -0
  45. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/gemma.py +0 -0
  46. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/gemma2.py +0 -0
  47. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/llama.py +0 -0
  48. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/mistral.py +0 -0
  49. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/mixtral.py +0 -0
  50. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/mllama.py +0 -0
  51. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/phi3.py +0 -0
  52. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/qwen2.py +0 -0
  53. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/model/qwen2_vl.py +0 -0
  54. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/monkey_patch.py +0 -0
  55. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/qwen2vl_mrope.py +0 -0
  56. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/rms_norm.py +0 -0
  57. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/rope.py +0 -0
  58. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/swiglu.py +0 -0
  59. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/transformers/trainer_integration.py +0 -0
  60. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/triton/__init__.py +0 -0
  61. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel/triton/monkey_patch.py +0 -0
  62. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel_nightly.egg-info/SOURCES.txt +0 -0
  63. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel_nightly.egg-info/dependency_links.txt +0 -0
  64. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel_nightly.egg-info/requires.txt +0 -0
  65. {liger_kernel_nightly-0.4.2.dev20241121225747 → liger_kernel_nightly-0.4.2.dev20241122175637}/src/liger_kernel_nightly.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.4.2.dev20241121225747
3
+ Version: 0.4.2.dev20241122175637
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "liger_kernel_nightly"
7
- version = "0.4.2.dev20241121225747"
7
+ version = "0.4.2.dev20241122175637"
8
8
  description = "Efficient Triton kernels for LLM Training"
9
9
  urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
10
10
  readme = { file = "README.md", content-type = "text/markdown" }
@@ -9,15 +9,31 @@ from liger_kernel.chunked_loss.fused_linear_preference import (
9
9
  class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
10
10
 
11
11
  @staticmethod
12
- def preference_loss_fn(chosen_logps, rejected_logps, beta=0.1):
12
+ def preference_loss_fn(
13
+ chosen_logps,
14
+ rejected_logps,
15
+ ref_chosen_logps=None,
16
+ ref_rejected_logps=None,
17
+ beta=0.1,
18
+ ):
13
19
  """
14
20
  Compute DPO loss (Direct Preference Optimization).
15
21
  Args:
16
22
  chosen_logps (torch.Tensor): Avg log probabilities of chosen tokens. Shape: (batch_size,).
17
23
  rejected_logps (torch.Tensor): Avg log probabilities of rejected tokens. Shape: (batch_size,).
24
+ ref_chosen_logps (torch.Tensor, optional): Reference log probabilities of chosen tokens. Shape: (batch_size,).
25
+ ref_rejected_logps (torch.Tensor, optional): Reference log probabilities of rejected tokens. Shape: (batch_size,).
18
26
  beta (float): Weight for the direct preference loss.
19
27
  """
20
- logits_diff = beta * (chosen_logps - rejected_logps)
28
+ if ref_chosen_logps is None:
29
+ ref_chosen_logps = torch.tensor(0.0, device=chosen_logps.device)
30
+ if ref_rejected_logps is None:
31
+ ref_rejected_logps = torch.tensor(0.0, device=rejected_logps.device)
32
+
33
+ chosen_logratios = chosen_logps - ref_chosen_logps
34
+ rejected_logratios = rejected_logps - ref_rejected_logps
35
+
36
+ logits_diff = beta * (chosen_logratios - rejected_logratios)
21
37
  losses = -F.logsigmoid(logits_diff)
22
38
  return losses.sum()
23
39
 
@@ -28,10 +44,13 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
28
44
  weight,
29
45
  target,
30
46
  bias=None,
47
+ ref_weight=None,
48
+ ref_bias=None,
31
49
  ignore_index=-100,
32
50
  beta=0.1,
33
51
  compute_nll_loss=True,
34
52
  compiled=True,
53
+ use_ref_model=True,
35
54
  ):
36
55
  """
37
56
  Fused linear layer with DPO (Direct Preference Optimization) loss.
@@ -48,6 +67,9 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
48
67
  beta=beta,
49
68
  compute_nll_loss=compute_nll_loss,
50
69
  compiled=compiled,
70
+ use_ref_model=use_ref_model,
71
+ ref_weight=ref_weight,
72
+ ref_bias=ref_bias,
51
73
  )
52
74
 
53
75
  @staticmethod
@@ -55,7 +77,7 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
55
77
  # Get gradients for _input, weight, bias, and target from the base class
56
78
  grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
57
79
  # Return these gradients, followed by None for the remaining inputs
58
- return *grads, None, None, None, None
80
+ return *grads, None, None, None, None, None, None, None
59
81
 
60
82
 
61
83
  class LigerFusedLinearDPOLoss(torch.nn.Module):
@@ -69,26 +91,36 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
69
91
  beta: float = 0.1,
70
92
  compute_nll_loss: bool = True,
71
93
  compiled: bool = True,
94
+ use_ref_model: bool = False,
72
95
  ):
73
96
  """
74
97
  Args:
75
98
  ignore_index (int): Index to ignore in the loss.
76
99
  beta (float): Weight for the odds ratio loss.
100
+ compute_nll_loss (bool): Whether to compute the NLL loss.
101
+ compiled (bool): Whether to use the torch compiled kernel.
102
+ use_ref_model (bool): Whether to use a reference model for the DPO loss.
77
103
  """
78
104
  super().__init__()
79
105
  self.ignore_index = ignore_index
80
106
  self.beta = beta
81
107
  self.compute_nll_loss = compute_nll_loss
82
108
  self.compiled = compiled
109
+ self.use_ref_model = use_ref_model
83
110
 
84
- def forward(self, lin_weight, _input, target, bias=None):
111
+ def forward(
112
+ self, lin_weight, _input, target, bias=None, ref_weight=None, ref_bias=None
113
+ ):
85
114
  return LigerFusedLinearDPOFunction.apply(
86
115
  _input,
87
116
  lin_weight,
88
117
  target,
89
118
  bias,
119
+ ref_weight,
120
+ ref_bias,
90
121
  self.ignore_index,
91
122
  self.beta,
92
123
  self.compute_nll_loss,
93
124
  self.compiled,
125
+ self.use_ref_model,
94
126
  )
@@ -18,6 +18,42 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
18
18
  """
19
19
  raise NotImplementedError("Preference loss function must be implemented.")
20
20
 
21
+ @staticmethod
22
+ def chunk_forward(
23
+ input_chunk,
24
+ weight,
25
+ target_chunk,
26
+ bias=None,
27
+ ignore_index=-100,
28
+ compute_nll_loss=True,
29
+ ):
30
+ len_chosen_chunk = target_chunk.shape[0] // 2
31
+ logits_chunk = input_chunk @ weight.t()
32
+ if bias is not None:
33
+ logits_chunk = logits_chunk + bias
34
+ log_probs_chunk = F.log_softmax(logits_chunk.float(), dim=-1)
35
+
36
+ chosen_nll_loss = 0.0
37
+ if compute_nll_loss:
38
+ chosen_nll_loss = F.nll_loss(
39
+ log_probs_chunk[:len_chosen_chunk].view(-1, log_probs_chunk.shape[-1]),
40
+ target_chunk[:len_chosen_chunk].view(-1),
41
+ reduction="sum",
42
+ ignore_index=ignore_index,
43
+ )
44
+
45
+ loss_mask = target_chunk != ignore_index
46
+ label_chunk = torch.where(loss_mask, target_chunk, 0)
47
+
48
+ per_token_logps = log_probs_chunk.gather(-1, label_chunk.unsqueeze(-1)).squeeze(
49
+ -1
50
+ )
51
+ average_log_prob = (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
52
+
53
+ chosen_logps = average_log_prob[:len_chosen_chunk]
54
+ rejected_logps = average_log_prob[len_chosen_chunk:]
55
+ return chosen_logps, rejected_logps, chosen_nll_loss
56
+
21
57
  @staticmethod
22
58
  def forward(
23
59
  ctx,
@@ -32,6 +68,9 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
32
68
  beta=0.1,
33
69
  compute_nll_loss=True,
34
70
  compiled=True,
71
+ use_ref_model=False,
72
+ ref_weight=None,
73
+ ref_bias=None,
35
74
  **loss_kwargs,
36
75
  ):
37
76
  """
@@ -49,7 +88,11 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
49
88
  ignore_index (int): Index to ignore for loss computation.
50
89
  alpha (float): Weight for the NLL loss.
51
90
  beta (float): Weight for the odds ratio loss.
91
+ compute_nll_loss (bool): Whether to compute NLL loss.
52
92
  compiled (bool): Whether to use torch compile for chunk accumulation.
93
+ use_ref_model (bool): Whether to use a reference model for the alignment loss.
94
+ ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
95
+ ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
53
96
  loss_kwargs (dict): Other possible arguments that a loss function might need
54
97
  """
55
98
  # TODO: Tune CHUNK_SIZE to fully utilize the GPU
@@ -61,7 +104,6 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
61
104
  grad_bias = torch.zeros_like(bias) if bias is not None else None
62
105
  loss_acc = torch.zeros((), device=_input.device)
63
106
 
64
- chunks = max(1, _input.shape[0] // (2 * CHUNK_SIZE))
65
107
  loss_func_to_call = partial(
66
108
  LigerFusedLinearPreferenceBase._compute_loss,
67
109
  preference_loss_fn=loss_fn,
@@ -70,6 +112,9 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
70
112
  beta=beta,
71
113
  compute_nll_loss=compute_nll_loss,
72
114
  full_target=target,
115
+ use_ref_model=use_ref_model,
116
+ ref_weight=ref_weight,
117
+ ref_bias=ref_bias,
73
118
  **loss_kwargs,
74
119
  )
75
120
 
@@ -101,6 +146,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
101
146
  accumulate_chunk = torch.compile(accumulate_chunk)
102
147
 
103
148
  len_chosen = target.shape[0] // 2
149
+ chunks = max(1, _input.shape[0] // (2 * CHUNK_SIZE))
104
150
  _chosen_input_chunks = torch.chunk(_input[:len_chosen], chunks=chunks, dim=0)
105
151
  _chosen_target_chunks = torch.chunk(target[:len_chosen], chunks=chunks, dim=0)
106
152
  _rejected_input_chunks = torch.chunk(_input[len_chosen:], chunks=chunks, dim=0)
@@ -159,6 +205,9 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
159
205
  alpha=1.0,
160
206
  beta=0.1,
161
207
  compute_nll_loss=True,
208
+ use_ref_model=False,
209
+ ref_weight=None,
210
+ ref_bias=None,
162
211
  **loss_kwargs,
163
212
  ):
164
213
  """
@@ -173,38 +222,41 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
173
222
  ignore_index (int): Index to ignore for loss computation.
174
223
  alpha (float): Weight for the NLL loss.
175
224
  beta (float): Weight for the odds ratio loss.
225
+ compute_nll_loss (bool): Whether to compute NLL loss.
226
+ use_ref_model (bool): Whether to use a reference model for the alignment loss.
227
+ ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
228
+ ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
176
229
  loss_kwargs (dict): Additional arguments for the loss function.
177
230
  """
178
- len_chosen_chunk = target_chunk.shape[0] // 2
179
-
180
- logits_chunk = input_chunk @ weight.t() # chunk_size x V
181
- if bias is not None:
182
- logits_chunk = logits_chunk + bias
183
- log_probs_chunk = F.log_softmax(logits_chunk.float(), dim=-1)
184
-
185
- chosen_nll_loss = 0.0
186
- if compute_nll_loss:
187
- chosen_nll_loss = F.nll_loss(
188
- log_probs_chunk[:len_chosen_chunk].view(-1, log_probs_chunk.shape[-1]),
189
- target_chunk[:len_chosen_chunk].view(-1),
190
- reduction="sum",
231
+ chosen_logps, rejected_logps, chosen_nll_loss = (
232
+ LigerFusedLinearPreferenceBase.chunk_forward(
233
+ input_chunk,
234
+ weight,
235
+ target_chunk,
236
+ bias=bias,
191
237
  ignore_index=ignore_index,
238
+ compute_nll_loss=compute_nll_loss,
192
239
  )
193
- chosen_nll_loss = (
194
- chosen_nll_loss
195
- / (full_target[: full_target.shape[0] // 2] != ignore_index).sum()
196
- )
197
-
198
- loss_mask = target_chunk != ignore_index
199
- label_chunk = torch.where(loss_mask, target_chunk, 0)
200
-
201
- per_token_logps = log_probs_chunk.gather(-1, label_chunk.unsqueeze(-1)).squeeze(
202
- -1
203
240
  )
204
- average_log_prob = (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
241
+ chosen_nll_loss = (
242
+ chosen_nll_loss
243
+ / (full_target[: full_target.shape[0] // 2] != ignore_index).sum()
244
+ )
205
245
 
206
- chosen_logps = average_log_prob[:len_chosen_chunk]
207
- rejected_logps = average_log_prob[len_chosen_chunk:]
246
+ if use_ref_model:
247
+ with torch.no_grad():
248
+ ref_chosen_logps, ref_rejected_logps, _ = (
249
+ LigerFusedLinearPreferenceBase.chunk_forward(
250
+ input_chunk,
251
+ ref_weight,
252
+ target_chunk,
253
+ ref_bias,
254
+ ignore_index=ignore_index,
255
+ compute_nll_loss=False,
256
+ )
257
+ )
258
+ loss_kwargs["ref_chosen_logps"] = ref_chosen_logps
259
+ loss_kwargs["ref_rejected_logps"] = ref_rejected_logps
208
260
 
209
261
  alignment_loss = preference_loss_fn(
210
262
  chosen_logps, rejected_logps, beta=beta, **loss_kwargs
@@ -92,8 +92,8 @@ def liger_cross_entropy_kernel(
92
92
  # 3. [Online softmax] first pass: find max + sum
93
93
  m = float("-inf") # m is the max value. use the notation from the paper
94
94
  d = 0.0 # d is the sum. use the notation from the paper
95
- ori_X_y = tl.load(
96
- X_ptr + y
95
+ ori_X_y = tl.load(X_ptr + y).cast(
96
+ tl.float32
97
97
  ) # we need to store the original value of X_y for the loss calculation
98
98
  if HAS_SOFTCAPPING:
99
99
  ori_X_y = softcap * tanh(ori_X_y / softcap)
@@ -106,8 +106,11 @@ def liger_cross_entropy_kernel(
106
106
  for i in range(0, n_cols, BLOCK_SIZE):
107
107
  X_offsets = i + tl.arange(0, BLOCK_SIZE)
108
108
  X_block = tl.load(
109
- X_ptr + X_offsets, mask=X_offsets < n_cols, other=float("-inf")
110
- )
109
+ X_ptr + X_offsets,
110
+ mask=X_offsets < n_cols,
111
+ other=float("-inf"),
112
+ # Ensure float32 precision for softmax calculation
113
+ ).cast(tl.float32)
111
114
  if HAS_SOFTCAPPING:
112
115
  X_block = softcap * tanh(X_block / softcap)
113
116
  block_max = tl.max(X_block)
@@ -141,8 +144,11 @@ def liger_cross_entropy_kernel(
141
144
  for i in range(0, n_cols, BLOCK_SIZE):
142
145
  X_offsets = i + tl.arange(0, BLOCK_SIZE)
143
146
  X_block = tl.load(
144
- X_ptr + X_offsets, mask=X_offsets < n_cols, other=float("-inf")
145
- )
147
+ X_ptr + X_offsets,
148
+ mask=X_offsets < n_cols,
149
+ other=float("-inf"),
150
+ # Ensure float32 precision for softmax calculation
151
+ ).cast(tl.float32)
146
152
  if HAS_SOFTCAPPING:
147
153
  intermediate = tanh(X_block / softcap)
148
154
  X_block = softcap * intermediate
@@ -26,7 +26,6 @@ def fused_linear_cross_entropy_forward(
26
26
  reduction="mean",
27
27
  softcap=None,
28
28
  ):
29
- dtype = _input.dtype
30
29
  device = _input.device
31
30
 
32
31
  # inputs have shape: BT x H
@@ -74,9 +73,6 @@ def fused_linear_cross_entropy_forward(
74
73
  loss_1d_slice = loss_1d[start_idx:end_idx] # chunk_size,
75
74
  n_non_ignore = (target_chunk != ignore_index).sum().item()
76
75
 
77
- # when doing CE, use the upcasted precision
78
- logits_chunk = logits_chunk.float()
79
-
80
76
  # ensure _input and target are contiguous
81
77
  logits_chunk = logits_chunk.contiguous()
82
78
  target_chunk = target_chunk.contiguous()
@@ -103,13 +99,6 @@ def fused_linear_cross_entropy_forward(
103
99
  num_warps=32 if not is_hip() else 16,
104
100
  )
105
101
 
106
- # gradient of logits_chunk is computed in-place by the above triton kernel.
107
- # Following HuggingFace model source code, we do the forward and backward
108
- # w.r.t. logits in fp32 for numerical stability especially as the num classes (vocab size) is huge.
109
- # (reference: https://github.com/huggingface/transformers/blob/v4.42.4/src/transformers/models/llama/modeling_llama.py#L1194)
110
- # Propagating to lm_head's backward, we'll switch back to the original dtype.
111
- logits_chunk = logits_chunk.to(dtype)
112
-
113
102
  # gradient of logits_chunk is computed in-place by the above triton kernel and is of shape: chunk_size x V
114
103
  # thus grad_input[start_idx: end_idx] should be of shape: chunk_size x H
115
104
  # additionally, since we are chunking the inputs, observe that the loss and gradients are calculated only
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.4.2.dev20241121225747
3
+ Version: 0.4.2.dev20241122175637
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation