liger-kernel-nightly 0.4.0.dev20241107202516__tar.gz → 0.4.0.dev20241108173850__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- {liger_kernel_nightly-0.4.0.dev20241107202516/src/liger_kernel_nightly.egg-info → liger_kernel_nightly-0.4.0.dev20241108173850}/PKG-INFO +2 -2
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/README.md +1 -1
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/pyproject.toml +1 -1
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850/src/liger_kernel_nightly.egg-info}/PKG-INFO +2 -2
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/LICENSE +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/NOTICE +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/setup.cfg +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/env_report.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/__init__.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/geglu.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/group_norm.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/jsd.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/kl_div.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/layer_norm.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/rms_norm.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/rope.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/swiglu.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/ops/utils.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/__init__.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/auto_model.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/functional.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/geglu.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/group_norm.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/jsd.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/kl_div.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/layer_norm.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/model/__init__.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/model/gemma.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/model/llama.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/model/mistral.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/model/mixtral.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/model/mllama.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/model/phi3.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/model/qwen2.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/model/qwen2_vl.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/monkey_patch.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/rms_norm.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/rope.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/swiglu.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/transformers/trainer_integration.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/triton/__init__.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel/triton/monkey_patch.py +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel_nightly.egg-info/SOURCES.txt +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel_nightly.egg-info/dependency_links.txt +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel_nightly.egg-info/requires.txt +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/src/liger_kernel_nightly.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel_nightly
|
|
3
|
-
Version: 0.4.0.
|
|
3
|
+
Version: 0.4.0.dev20241108173850
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -332,7 +332,7 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
|
332
332
|
- **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
|
|
333
333
|
- **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
|
|
334
334
|
- **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
|
|
335
|
-
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the
|
|
335
|
+
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
|
|
336
336
|
|
|
337
337
|
|
|
338
338
|
### Experimental Kernels
|
|
@@ -285,7 +285,7 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
|
285
285
|
- **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
|
|
286
286
|
- **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
|
|
287
287
|
- **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
|
|
288
|
-
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the
|
|
288
|
+
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
|
|
289
289
|
|
|
290
290
|
|
|
291
291
|
### Experimental Kernels
|
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "liger_kernel_nightly"
|
|
7
|
-
version = "0.4.0.
|
|
7
|
+
version = "0.4.0.dev20241108173850"
|
|
8
8
|
description = "Efficient Triton kernels for LLM Training"
|
|
9
9
|
urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
|
|
10
10
|
readme = { file = "README.md", content-type = "text/markdown" }
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel_nightly
|
|
3
|
-
Version: 0.4.0.
|
|
3
|
+
Version: 0.4.0.dev20241108173850
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -332,7 +332,7 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
|
332
332
|
- **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
|
|
333
333
|
- **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
|
|
334
334
|
- **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
|
|
335
|
-
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the
|
|
335
|
+
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
|
|
336
336
|
|
|
337
337
|
|
|
338
338
|
### Experimental Kernels
|
|
File without changes
|
{liger_kernel_nightly-0.4.0.dev20241107202516 → liger_kernel_nightly-0.4.0.dev20241108173850}/NOTICE
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|