liger-kernel-nightly 0.3.1.dev20241105010508__tar.gz → 0.4.0.dev20241105221111__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (54) hide show
  1. {liger_kernel_nightly-0.3.1.dev20241105010508/src/liger_kernel_nightly.egg-info → liger_kernel_nightly-0.4.0.dev20241105221111}/PKG-INFO +1 -1
  2. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/pyproject.toml +1 -1
  3. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/model/gemma.py +124 -1
  4. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/model/mistral.py +3 -0
  5. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/model/mixtral.py +151 -1
  6. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/model/mllama.py +133 -1
  7. liger_kernel_nightly-0.4.0.dev20241105221111/src/liger_kernel/transformers/model/phi3.py +274 -0
  8. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/model/qwen2.py +121 -1
  9. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/model/qwen2_vl.py +1 -0
  10. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/monkey_patch.py +50 -13
  11. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111/src/liger_kernel_nightly.egg-info}/PKG-INFO +1 -1
  12. liger_kernel_nightly-0.3.1.dev20241105010508/src/liger_kernel/transformers/model/phi3.py +0 -137
  13. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/LICENSE +0 -0
  14. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/NOTICE +0 -0
  15. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/README.md +0 -0
  16. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/setup.cfg +0 -0
  17. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/env_report.py +0 -0
  18. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/__init__.py +0 -0
  19. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/cross_entropy.py +0 -0
  20. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/experimental/embedding.py +0 -0
  21. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
  22. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
  23. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/fused_linear_jsd.py +0 -0
  24. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/geglu.py +0 -0
  25. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/jsd.py +0 -0
  26. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/kl_div.py +0 -0
  27. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/layer_norm.py +0 -0
  28. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/rms_norm.py +0 -0
  29. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/rope.py +0 -0
  30. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/swiglu.py +0 -0
  31. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/ops/utils.py +0 -0
  32. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/__init__.py +0 -0
  33. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/auto_model.py +0 -0
  34. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/cross_entropy.py +0 -0
  35. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
  36. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/functional.py +0 -0
  37. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
  38. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
  39. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/geglu.py +0 -0
  40. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/jsd.py +0 -0
  41. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/kl_div.py +0 -0
  42. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/layer_norm.py +0 -0
  43. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/model/__init__.py +0 -0
  44. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/model/llama.py +0 -0
  45. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/rms_norm.py +0 -0
  46. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/rope.py +0 -0
  47. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/swiglu.py +0 -0
  48. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/transformers/trainer_integration.py +0 -0
  49. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/triton/__init__.py +0 -0
  50. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel/triton/monkey_patch.py +0 -0
  51. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel_nightly.egg-info/SOURCES.txt +0 -0
  52. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel_nightly.egg-info/dependency_links.txt +0 -0
  53. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel_nightly.egg-info/requires.txt +0 -0
  54. {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.4.0.dev20241105221111}/src/liger_kernel_nightly.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.3.1.dev20241105010508
3
+ Version: 0.4.0.dev20241105221111
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "liger_kernel_nightly"
7
- version = "0.3.1.dev20241105010508"
7
+ version = "0.4.0.dev20241105221111"
8
8
  description = "Efficient Triton kernels for LLM Training"
9
9
  urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
10
10
  readme = { file = "README.md", content-type = "text/markdown" }
@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
22
22
  @replace_return_docstrings(
23
23
  output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
24
24
  )
25
- def lce_forward(
25
+ def lce_forward_deprecated(
26
26
  self,
27
27
  input_ids: torch.LongTensor = None,
28
28
  attention_mask: Optional[torch.Tensor] = None,
@@ -136,3 +136,126 @@ def lce_forward(
136
136
  hidden_states=outputs.hidden_states,
137
137
  attentions=outputs.attentions,
138
138
  )
139
+
140
+
141
+ @add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
142
+ @replace_return_docstrings(
143
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
144
+ )
145
+ def lce_forward(
146
+ self,
147
+ input_ids: torch.LongTensor = None,
148
+ attention_mask: Optional[torch.Tensor] = None,
149
+ position_ids: Optional[torch.LongTensor] = None,
150
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
151
+ inputs_embeds: Optional[torch.FloatTensor] = None,
152
+ labels: Optional[torch.LongTensor] = None,
153
+ use_cache: Optional[bool] = None,
154
+ output_attentions: Optional[bool] = None,
155
+ output_hidden_states: Optional[bool] = None,
156
+ return_dict: Optional[bool] = None,
157
+ cache_position: Optional[torch.LongTensor] = None,
158
+ num_logits_to_keep: int = 0,
159
+ **loss_kwargs,
160
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
161
+ r"""
162
+ Args:
163
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
164
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
165
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
166
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
167
+
168
+ num_logits_to_keep (`int`, *optional*):
169
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
170
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
171
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
172
+
173
+ Returns:
174
+
175
+ Example:
176
+
177
+ ```python
178
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
179
+
180
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
181
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
182
+
183
+ >>> prompt = "What is your favorite condiment?"
184
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
185
+
186
+ >>> # Generate
187
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
188
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
189
+ "What is your favorite condiment?"
190
+ ```"""
191
+ output_attentions = (
192
+ output_attentions
193
+ if output_attentions is not None
194
+ else self.config.output_attentions
195
+ )
196
+ output_hidden_states = (
197
+ output_hidden_states
198
+ if output_hidden_states is not None
199
+ else self.config.output_hidden_states
200
+ )
201
+ return_dict = (
202
+ return_dict if return_dict is not None else self.config.use_return_dict
203
+ )
204
+
205
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
206
+ outputs = self.model(
207
+ input_ids=input_ids,
208
+ attention_mask=attention_mask,
209
+ position_ids=position_ids,
210
+ past_key_values=past_key_values,
211
+ inputs_embeds=inputs_embeds,
212
+ use_cache=use_cache,
213
+ output_attentions=output_attentions,
214
+ output_hidden_states=output_hidden_states,
215
+ return_dict=return_dict,
216
+ cache_position=cache_position,
217
+ )
218
+
219
+ hidden_states = outputs[0]
220
+
221
+ logits = None
222
+ loss = None
223
+ # if in training mode, don't materialize logits
224
+ if self.training and (labels is not None):
225
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
226
+
227
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
228
+ shift_labels = labels[..., 1:].contiguous()
229
+
230
+ # flatten tokens
231
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
232
+ shift_labels = shift_labels.view(-1)
233
+
234
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
235
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
236
+
237
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
238
+ if reduction == "sum":
239
+ loss /= loss_kwargs["num_items_in_batch"]
240
+
241
+ else: # if in inference mode materialize logits
242
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
243
+ if labels is not None:
244
+ loss = self.loss_function(
245
+ logits=logits,
246
+ labels=labels,
247
+ vocab_size=self.config.vocab_size,
248
+ **loss_kwargs,
249
+ )
250
+
251
+ if not return_dict:
252
+ output = (logits,) + outputs[1:]
253
+ return (loss,) + output if loss is not None else output
254
+
255
+ return CausalLMOutputWithPast(
256
+ loss=loss,
257
+ logits=logits,
258
+ past_key_values=outputs.past_key_values,
259
+ hidden_states=outputs.hidden_states,
260
+ attentions=outputs.attentions,
261
+ )
@@ -136,3 +136,6 @@ def lce_forward(
136
136
  hidden_states=outputs.hidden_states,
137
137
  attentions=outputs.attentions,
138
138
  )
139
+
140
+
141
+ # Note: Grad Acc is not fixed in mistral at transformer 4.46.1
@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
22
22
  @replace_return_docstrings(
23
23
  output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
24
24
  )
25
- def lce_forward(
25
+ def lce_forward_deprecated(
26
26
  self,
27
27
  input_ids: torch.LongTensor = None,
28
28
  attention_mask: Optional[torch.Tensor] = None,
@@ -157,3 +157,153 @@ def lce_forward(
157
157
  attentions=outputs.attentions,
158
158
  router_logits=outputs.router_logits,
159
159
  )
160
+
161
+
162
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
163
+ @replace_return_docstrings(
164
+ output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
165
+ )
166
+ # Ignore copy
167
+ def lce_forward(
168
+ self,
169
+ input_ids: torch.LongTensor = None,
170
+ attention_mask: Optional[torch.Tensor] = None,
171
+ position_ids: Optional[torch.LongTensor] = None,
172
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
173
+ inputs_embeds: Optional[torch.FloatTensor] = None,
174
+ labels: Optional[torch.LongTensor] = None,
175
+ use_cache: Optional[bool] = None,
176
+ output_attentions: Optional[bool] = None,
177
+ output_hidden_states: Optional[bool] = None,
178
+ output_router_logits: Optional[bool] = None,
179
+ return_dict: Optional[bool] = None,
180
+ cache_position: Optional[torch.LongTensor] = None,
181
+ num_logits_to_keep: int = 0,
182
+ **loss_kwargs,
183
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
184
+ r"""
185
+ Args:
186
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
187
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
188
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
189
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
190
+
191
+ num_logits_to_keep (`int`, *optional*):
192
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
193
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
194
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
195
+
196
+ Returns:
197
+
198
+ Example:
199
+
200
+ ```python
201
+ >>> from transformers import AutoTokenizer, MixtralForCausalLM
202
+
203
+ >>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
204
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
205
+
206
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
207
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
208
+
209
+ >>> # Generate
210
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
211
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
212
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
213
+ ```"""
214
+
215
+ output_attentions = (
216
+ output_attentions
217
+ if output_attentions is not None
218
+ else self.config.output_attentions
219
+ )
220
+ output_router_logits = (
221
+ output_router_logits
222
+ if output_router_logits is not None
223
+ else self.config.output_router_logits
224
+ )
225
+
226
+ output_hidden_states = (
227
+ output_hidden_states
228
+ if output_hidden_states is not None
229
+ else self.config.output_hidden_states
230
+ )
231
+ return_dict = (
232
+ return_dict if return_dict is not None else self.config.use_return_dict
233
+ )
234
+
235
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
236
+ outputs = self.model(
237
+ input_ids=input_ids,
238
+ attention_mask=attention_mask,
239
+ position_ids=position_ids,
240
+ past_key_values=past_key_values,
241
+ inputs_embeds=inputs_embeds,
242
+ use_cache=use_cache,
243
+ output_attentions=output_attentions,
244
+ output_hidden_states=output_hidden_states,
245
+ output_router_logits=output_router_logits,
246
+ return_dict=return_dict,
247
+ cache_position=cache_position,
248
+ )
249
+
250
+ hidden_states = outputs[0]
251
+
252
+ logits = None
253
+ loss = None
254
+ # if in training mode, don't materialize logits
255
+ if self.training and (labels is not None):
256
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
257
+
258
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
259
+ shift_labels = labels[..., 1:].contiguous()
260
+
261
+ # flatten tokens
262
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
263
+ shift_labels = shift_labels.view(-1)
264
+
265
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
266
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
267
+
268
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
269
+ if reduction == "sum":
270
+ loss /= loss_kwargs["num_items_in_batch"]
271
+
272
+ else: # if in inference mode materialize logits
273
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
274
+ if labels is not None:
275
+ loss = self.loss_function(
276
+ logits=logits,
277
+ labels=labels,
278
+ vocab_size=self.config.vocab_size,
279
+ **loss_kwargs,
280
+ )
281
+
282
+ aux_loss = None
283
+ if output_router_logits:
284
+ aux_loss = load_balancing_loss_func(
285
+ outputs.router_logits if return_dict else outputs[-1],
286
+ self.num_experts,
287
+ self.num_experts_per_tok,
288
+ attention_mask,
289
+ )
290
+ if labels is not None:
291
+ loss += self.router_aux_loss_coef * aux_loss.to(
292
+ loss.device
293
+ ) # make sure to reside in the same device
294
+
295
+ if not return_dict:
296
+ output = (logits,) + outputs[1:]
297
+ if output_router_logits:
298
+ output = (aux_loss,) + output
299
+ return (loss,) + output if loss is not None else output
300
+
301
+ return MoeCausalLMOutputWithPast(
302
+ loss=loss,
303
+ aux_loss=aux_loss,
304
+ logits=logits,
305
+ past_key_values=outputs.past_key_values,
306
+ hidden_states=outputs.hidden_states,
307
+ attentions=outputs.attentions,
308
+ router_logits=outputs.router_logits,
309
+ )
@@ -19,7 +19,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
19
19
  @replace_return_docstrings(
20
20
  output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
21
21
  )
22
- def lce_forward(
22
+ def lce_forward_deprecated(
23
23
  self,
24
24
  input_ids: torch.LongTensor = None,
25
25
  attention_mask: Optional[torch.Tensor] = None,
@@ -140,3 +140,135 @@ def lce_forward(
140
140
  hidden_states=outputs.hidden_states,
141
141
  attentions=outputs.attentions,
142
142
  )
143
+
144
+
145
+ @add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
146
+ @replace_return_docstrings(
147
+ output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
148
+ )
149
+ def lce_forward(
150
+ self,
151
+ input_ids: torch.LongTensor = None,
152
+ attention_mask: Optional[torch.Tensor] = None,
153
+ position_ids: Optional[torch.LongTensor] = None,
154
+ cross_attention_states: Optional[torch.LongTensor] = None,
155
+ cross_attention_mask: Optional[torch.LongTensor] = None,
156
+ full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
157
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
158
+ inputs_embeds: Optional[torch.FloatTensor] = None,
159
+ labels: Optional[torch.LongTensor] = None,
160
+ use_cache: Optional[bool] = None,
161
+ output_attentions: Optional[bool] = None,
162
+ output_hidden_states: Optional[bool] = None,
163
+ return_dict: Optional[bool] = None,
164
+ cache_position: Optional[torch.LongTensor] = None,
165
+ num_logits_to_keep: int = 0,
166
+ **loss_kwargs,
167
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
168
+ r"""
169
+ Args:
170
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
171
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
172
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
173
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
174
+
175
+ num_logits_to_keep (`int`, *optional*):
176
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
177
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
178
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
179
+
180
+ Returns:
181
+
182
+ Example:
183
+
184
+ ```python
185
+ >>> from transformers import AutoTokenizer, MllamaForCausalLM
186
+
187
+ >>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision")
188
+ >>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision")
189
+
190
+ >>> prompt = "If I had to write a haiku, it would be:"
191
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
192
+
193
+ >>> # Generate
194
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6)
195
+ >>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
196
+ >>> print(result)
197
+ If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful.
198
+ I love the idea of snowflakes gently falling, each one
199
+ ```
200
+ """
201
+ output_attentions = (
202
+ output_attentions
203
+ if output_attentions is not None
204
+ else self.config.output_attentions
205
+ )
206
+ output_hidden_states = (
207
+ output_hidden_states
208
+ if output_hidden_states is not None
209
+ else self.config.output_hidden_states
210
+ )
211
+ return_dict = (
212
+ return_dict if return_dict is not None else self.config.use_return_dict
213
+ )
214
+
215
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
216
+ outputs = self.model(
217
+ input_ids=input_ids,
218
+ cross_attention_states=cross_attention_states,
219
+ attention_mask=attention_mask,
220
+ position_ids=position_ids,
221
+ cross_attention_mask=cross_attention_mask,
222
+ full_text_row_masked_out_mask=full_text_row_masked_out_mask,
223
+ past_key_values=past_key_values,
224
+ inputs_embeds=inputs_embeds,
225
+ use_cache=use_cache,
226
+ output_attentions=output_attentions,
227
+ output_hidden_states=output_hidden_states,
228
+ return_dict=return_dict,
229
+ cache_position=cache_position,
230
+ )
231
+
232
+ hidden_states = outputs[0]
233
+
234
+ logits = None
235
+ loss = None
236
+ # if in training mode, don't materialize logits
237
+ if self.training and (labels is not None):
238
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
239
+
240
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
241
+ shift_labels = labels[..., 1:].contiguous()
242
+
243
+ # flatten tokens
244
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
245
+ shift_labels = shift_labels.view(-1)
246
+
247
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
248
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
249
+
250
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
251
+ if reduction == "sum":
252
+ loss /= loss_kwargs["num_items_in_batch"]
253
+
254
+ else: # if in inference mode materialize logits
255
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
256
+ if labels is not None:
257
+ loss = self.loss_function(
258
+ logits=logits,
259
+ labels=labels,
260
+ vocab_size=self.config.vocab_size,
261
+ **loss_kwargs,
262
+ )
263
+
264
+ if not return_dict:
265
+ output = (logits,) + outputs[1:]
266
+ return (loss,) + output if loss is not None else output
267
+
268
+ return CausalLMOutputWithPast(
269
+ loss=loss,
270
+ logits=logits,
271
+ past_key_values=outputs.past_key_values,
272
+ hidden_states=outputs.hidden_states,
273
+ attentions=outputs.attentions,
274
+ )