liger-kernel-nightly 0.3.1.dev20241105010508__tar.gz → 0.3.1.dev20241105220546__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- {liger_kernel_nightly-0.3.1.dev20241105010508/src/liger_kernel_nightly.egg-info → liger_kernel_nightly-0.3.1.dev20241105220546}/PKG-INFO +1 -1
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/pyproject.toml +1 -1
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/model/gemma.py +124 -1
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/model/mistral.py +3 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/model/mixtral.py +151 -1
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/model/mllama.py +133 -1
- liger_kernel_nightly-0.3.1.dev20241105220546/src/liger_kernel/transformers/model/phi3.py +274 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/model/qwen2.py +121 -1
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/model/qwen2_vl.py +1 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/monkey_patch.py +50 -13
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546/src/liger_kernel_nightly.egg-info}/PKG-INFO +1 -1
- liger_kernel_nightly-0.3.1.dev20241105010508/src/liger_kernel/transformers/model/phi3.py +0 -137
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/LICENSE +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/NOTICE +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/README.md +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/setup.cfg +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/env_report.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/__init__.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/geglu.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/jsd.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/kl_div.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/layer_norm.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/rms_norm.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/rope.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/swiglu.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/ops/utils.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/__init__.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/auto_model.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/cross_entropy.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/functional.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/geglu.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/jsd.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/kl_div.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/layer_norm.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/model/__init__.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/model/llama.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/rms_norm.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/rope.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/swiglu.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/transformers/trainer_integration.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/triton/__init__.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel/triton/monkey_patch.py +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel_nightly.egg-info/SOURCES.txt +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel_nightly.egg-info/dependency_links.txt +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel_nightly.egg-info/requires.txt +0 -0
- {liger_kernel_nightly-0.3.1.dev20241105010508 → liger_kernel_nightly-0.3.1.dev20241105220546}/src/liger_kernel_nightly.egg-info/top_level.txt +0 -0
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "liger_kernel_nightly"
|
|
7
|
-
version = "0.3.1.
|
|
7
|
+
version = "0.3.1.dev20241105220546"
|
|
8
8
|
description = "Efficient Triton kernels for LLM Training"
|
|
9
9
|
urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
|
|
10
10
|
readme = { file = "README.md", content-type = "text/markdown" }
|
|
@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
|
22
22
|
@replace_return_docstrings(
|
|
23
23
|
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
24
24
|
)
|
|
25
|
-
def
|
|
25
|
+
def lce_forward_deprecated(
|
|
26
26
|
self,
|
|
27
27
|
input_ids: torch.LongTensor = None,
|
|
28
28
|
attention_mask: Optional[torch.Tensor] = None,
|
|
@@ -136,3 +136,126 @@ def lce_forward(
|
|
|
136
136
|
hidden_states=outputs.hidden_states,
|
|
137
137
|
attentions=outputs.attentions,
|
|
138
138
|
)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
|
142
|
+
@replace_return_docstrings(
|
|
143
|
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
144
|
+
)
|
|
145
|
+
def lce_forward(
|
|
146
|
+
self,
|
|
147
|
+
input_ids: torch.LongTensor = None,
|
|
148
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
149
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
150
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
151
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
152
|
+
labels: Optional[torch.LongTensor] = None,
|
|
153
|
+
use_cache: Optional[bool] = None,
|
|
154
|
+
output_attentions: Optional[bool] = None,
|
|
155
|
+
output_hidden_states: Optional[bool] = None,
|
|
156
|
+
return_dict: Optional[bool] = None,
|
|
157
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
158
|
+
num_logits_to_keep: int = 0,
|
|
159
|
+
**loss_kwargs,
|
|
160
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
161
|
+
r"""
|
|
162
|
+
Args:
|
|
163
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
164
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
165
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
166
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
167
|
+
|
|
168
|
+
num_logits_to_keep (`int`, *optional*):
|
|
169
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
170
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
171
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
172
|
+
|
|
173
|
+
Returns:
|
|
174
|
+
|
|
175
|
+
Example:
|
|
176
|
+
|
|
177
|
+
```python
|
|
178
|
+
>>> from transformers import AutoTokenizer, GemmaForCausalLM
|
|
179
|
+
|
|
180
|
+
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
|
|
181
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
|
182
|
+
|
|
183
|
+
>>> prompt = "What is your favorite condiment?"
|
|
184
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
185
|
+
|
|
186
|
+
>>> # Generate
|
|
187
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
188
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
189
|
+
"What is your favorite condiment?"
|
|
190
|
+
```"""
|
|
191
|
+
output_attentions = (
|
|
192
|
+
output_attentions
|
|
193
|
+
if output_attentions is not None
|
|
194
|
+
else self.config.output_attentions
|
|
195
|
+
)
|
|
196
|
+
output_hidden_states = (
|
|
197
|
+
output_hidden_states
|
|
198
|
+
if output_hidden_states is not None
|
|
199
|
+
else self.config.output_hidden_states
|
|
200
|
+
)
|
|
201
|
+
return_dict = (
|
|
202
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
206
|
+
outputs = self.model(
|
|
207
|
+
input_ids=input_ids,
|
|
208
|
+
attention_mask=attention_mask,
|
|
209
|
+
position_ids=position_ids,
|
|
210
|
+
past_key_values=past_key_values,
|
|
211
|
+
inputs_embeds=inputs_embeds,
|
|
212
|
+
use_cache=use_cache,
|
|
213
|
+
output_attentions=output_attentions,
|
|
214
|
+
output_hidden_states=output_hidden_states,
|
|
215
|
+
return_dict=return_dict,
|
|
216
|
+
cache_position=cache_position,
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
hidden_states = outputs[0]
|
|
220
|
+
|
|
221
|
+
logits = None
|
|
222
|
+
loss = None
|
|
223
|
+
# if in training mode, don't materialize logits
|
|
224
|
+
if self.training and (labels is not None):
|
|
225
|
+
# We do the same thing as ForCausalLMLoss but using Liger FLCE
|
|
226
|
+
|
|
227
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
228
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
229
|
+
|
|
230
|
+
# flatten tokens
|
|
231
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
232
|
+
shift_labels = shift_labels.view(-1)
|
|
233
|
+
|
|
234
|
+
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
235
|
+
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
236
|
+
|
|
237
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
238
|
+
if reduction == "sum":
|
|
239
|
+
loss /= loss_kwargs["num_items_in_batch"]
|
|
240
|
+
|
|
241
|
+
else: # if in inference mode materialize logits
|
|
242
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
243
|
+
if labels is not None:
|
|
244
|
+
loss = self.loss_function(
|
|
245
|
+
logits=logits,
|
|
246
|
+
labels=labels,
|
|
247
|
+
vocab_size=self.config.vocab_size,
|
|
248
|
+
**loss_kwargs,
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
if not return_dict:
|
|
252
|
+
output = (logits,) + outputs[1:]
|
|
253
|
+
return (loss,) + output if loss is not None else output
|
|
254
|
+
|
|
255
|
+
return CausalLMOutputWithPast(
|
|
256
|
+
loss=loss,
|
|
257
|
+
logits=logits,
|
|
258
|
+
past_key_values=outputs.past_key_values,
|
|
259
|
+
hidden_states=outputs.hidden_states,
|
|
260
|
+
attentions=outputs.attentions,
|
|
261
|
+
)
|
|
@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
|
22
22
|
@replace_return_docstrings(
|
|
23
23
|
output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
24
24
|
)
|
|
25
|
-
def
|
|
25
|
+
def lce_forward_deprecated(
|
|
26
26
|
self,
|
|
27
27
|
input_ids: torch.LongTensor = None,
|
|
28
28
|
attention_mask: Optional[torch.Tensor] = None,
|
|
@@ -157,3 +157,153 @@ def lce_forward(
|
|
|
157
157
|
attentions=outputs.attentions,
|
|
158
158
|
router_logits=outputs.router_logits,
|
|
159
159
|
)
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
|
163
|
+
@replace_return_docstrings(
|
|
164
|
+
output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
165
|
+
)
|
|
166
|
+
# Ignore copy
|
|
167
|
+
def lce_forward(
|
|
168
|
+
self,
|
|
169
|
+
input_ids: torch.LongTensor = None,
|
|
170
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
171
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
172
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
173
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
174
|
+
labels: Optional[torch.LongTensor] = None,
|
|
175
|
+
use_cache: Optional[bool] = None,
|
|
176
|
+
output_attentions: Optional[bool] = None,
|
|
177
|
+
output_hidden_states: Optional[bool] = None,
|
|
178
|
+
output_router_logits: Optional[bool] = None,
|
|
179
|
+
return_dict: Optional[bool] = None,
|
|
180
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
181
|
+
num_logits_to_keep: int = 0,
|
|
182
|
+
**loss_kwargs,
|
|
183
|
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
|
184
|
+
r"""
|
|
185
|
+
Args:
|
|
186
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
187
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
188
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
189
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
190
|
+
|
|
191
|
+
num_logits_to_keep (`int`, *optional*):
|
|
192
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
193
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
194
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
195
|
+
|
|
196
|
+
Returns:
|
|
197
|
+
|
|
198
|
+
Example:
|
|
199
|
+
|
|
200
|
+
```python
|
|
201
|
+
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
202
|
+
|
|
203
|
+
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
|
204
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
|
205
|
+
|
|
206
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
207
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
208
|
+
|
|
209
|
+
>>> # Generate
|
|
210
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
211
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
212
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
213
|
+
```"""
|
|
214
|
+
|
|
215
|
+
output_attentions = (
|
|
216
|
+
output_attentions
|
|
217
|
+
if output_attentions is not None
|
|
218
|
+
else self.config.output_attentions
|
|
219
|
+
)
|
|
220
|
+
output_router_logits = (
|
|
221
|
+
output_router_logits
|
|
222
|
+
if output_router_logits is not None
|
|
223
|
+
else self.config.output_router_logits
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
output_hidden_states = (
|
|
227
|
+
output_hidden_states
|
|
228
|
+
if output_hidden_states is not None
|
|
229
|
+
else self.config.output_hidden_states
|
|
230
|
+
)
|
|
231
|
+
return_dict = (
|
|
232
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
236
|
+
outputs = self.model(
|
|
237
|
+
input_ids=input_ids,
|
|
238
|
+
attention_mask=attention_mask,
|
|
239
|
+
position_ids=position_ids,
|
|
240
|
+
past_key_values=past_key_values,
|
|
241
|
+
inputs_embeds=inputs_embeds,
|
|
242
|
+
use_cache=use_cache,
|
|
243
|
+
output_attentions=output_attentions,
|
|
244
|
+
output_hidden_states=output_hidden_states,
|
|
245
|
+
output_router_logits=output_router_logits,
|
|
246
|
+
return_dict=return_dict,
|
|
247
|
+
cache_position=cache_position,
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
hidden_states = outputs[0]
|
|
251
|
+
|
|
252
|
+
logits = None
|
|
253
|
+
loss = None
|
|
254
|
+
# if in training mode, don't materialize logits
|
|
255
|
+
if self.training and (labels is not None):
|
|
256
|
+
# We do the same thing as ForCausalLMLoss but using Liger FLCE
|
|
257
|
+
|
|
258
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
259
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
260
|
+
|
|
261
|
+
# flatten tokens
|
|
262
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
263
|
+
shift_labels = shift_labels.view(-1)
|
|
264
|
+
|
|
265
|
+
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
266
|
+
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
267
|
+
|
|
268
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
269
|
+
if reduction == "sum":
|
|
270
|
+
loss /= loss_kwargs["num_items_in_batch"]
|
|
271
|
+
|
|
272
|
+
else: # if in inference mode materialize logits
|
|
273
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
274
|
+
if labels is not None:
|
|
275
|
+
loss = self.loss_function(
|
|
276
|
+
logits=logits,
|
|
277
|
+
labels=labels,
|
|
278
|
+
vocab_size=self.config.vocab_size,
|
|
279
|
+
**loss_kwargs,
|
|
280
|
+
)
|
|
281
|
+
|
|
282
|
+
aux_loss = None
|
|
283
|
+
if output_router_logits:
|
|
284
|
+
aux_loss = load_balancing_loss_func(
|
|
285
|
+
outputs.router_logits if return_dict else outputs[-1],
|
|
286
|
+
self.num_experts,
|
|
287
|
+
self.num_experts_per_tok,
|
|
288
|
+
attention_mask,
|
|
289
|
+
)
|
|
290
|
+
if labels is not None:
|
|
291
|
+
loss += self.router_aux_loss_coef * aux_loss.to(
|
|
292
|
+
loss.device
|
|
293
|
+
) # make sure to reside in the same device
|
|
294
|
+
|
|
295
|
+
if not return_dict:
|
|
296
|
+
output = (logits,) + outputs[1:]
|
|
297
|
+
if output_router_logits:
|
|
298
|
+
output = (aux_loss,) + output
|
|
299
|
+
return (loss,) + output if loss is not None else output
|
|
300
|
+
|
|
301
|
+
return MoeCausalLMOutputWithPast(
|
|
302
|
+
loss=loss,
|
|
303
|
+
aux_loss=aux_loss,
|
|
304
|
+
logits=logits,
|
|
305
|
+
past_key_values=outputs.past_key_values,
|
|
306
|
+
hidden_states=outputs.hidden_states,
|
|
307
|
+
attentions=outputs.attentions,
|
|
308
|
+
router_logits=outputs.router_logits,
|
|
309
|
+
)
|
|
@@ -19,7 +19,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
|
19
19
|
@replace_return_docstrings(
|
|
20
20
|
output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
|
|
21
21
|
)
|
|
22
|
-
def
|
|
22
|
+
def lce_forward_deprecated(
|
|
23
23
|
self,
|
|
24
24
|
input_ids: torch.LongTensor = None,
|
|
25
25
|
attention_mask: Optional[torch.Tensor] = None,
|
|
@@ -140,3 +140,135 @@ def lce_forward(
|
|
|
140
140
|
hidden_states=outputs.hidden_states,
|
|
141
141
|
attentions=outputs.attentions,
|
|
142
142
|
)
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
@add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
|
|
146
|
+
@replace_return_docstrings(
|
|
147
|
+
output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
|
|
148
|
+
)
|
|
149
|
+
def lce_forward(
|
|
150
|
+
self,
|
|
151
|
+
input_ids: torch.LongTensor = None,
|
|
152
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
153
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
154
|
+
cross_attention_states: Optional[torch.LongTensor] = None,
|
|
155
|
+
cross_attention_mask: Optional[torch.LongTensor] = None,
|
|
156
|
+
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
157
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
158
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
159
|
+
labels: Optional[torch.LongTensor] = None,
|
|
160
|
+
use_cache: Optional[bool] = None,
|
|
161
|
+
output_attentions: Optional[bool] = None,
|
|
162
|
+
output_hidden_states: Optional[bool] = None,
|
|
163
|
+
return_dict: Optional[bool] = None,
|
|
164
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
165
|
+
num_logits_to_keep: int = 0,
|
|
166
|
+
**loss_kwargs,
|
|
167
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
168
|
+
r"""
|
|
169
|
+
Args:
|
|
170
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
171
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
172
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
173
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
174
|
+
|
|
175
|
+
num_logits_to_keep (`int`, *optional*):
|
|
176
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
177
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
178
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
179
|
+
|
|
180
|
+
Returns:
|
|
181
|
+
|
|
182
|
+
Example:
|
|
183
|
+
|
|
184
|
+
```python
|
|
185
|
+
>>> from transformers import AutoTokenizer, MllamaForCausalLM
|
|
186
|
+
|
|
187
|
+
>>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision")
|
|
188
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision")
|
|
189
|
+
|
|
190
|
+
>>> prompt = "If I had to write a haiku, it would be:"
|
|
191
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
192
|
+
|
|
193
|
+
>>> # Generate
|
|
194
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6)
|
|
195
|
+
>>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
196
|
+
>>> print(result)
|
|
197
|
+
If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful.
|
|
198
|
+
I love the idea of snowflakes gently falling, each one
|
|
199
|
+
```
|
|
200
|
+
"""
|
|
201
|
+
output_attentions = (
|
|
202
|
+
output_attentions
|
|
203
|
+
if output_attentions is not None
|
|
204
|
+
else self.config.output_attentions
|
|
205
|
+
)
|
|
206
|
+
output_hidden_states = (
|
|
207
|
+
output_hidden_states
|
|
208
|
+
if output_hidden_states is not None
|
|
209
|
+
else self.config.output_hidden_states
|
|
210
|
+
)
|
|
211
|
+
return_dict = (
|
|
212
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
216
|
+
outputs = self.model(
|
|
217
|
+
input_ids=input_ids,
|
|
218
|
+
cross_attention_states=cross_attention_states,
|
|
219
|
+
attention_mask=attention_mask,
|
|
220
|
+
position_ids=position_ids,
|
|
221
|
+
cross_attention_mask=cross_attention_mask,
|
|
222
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
223
|
+
past_key_values=past_key_values,
|
|
224
|
+
inputs_embeds=inputs_embeds,
|
|
225
|
+
use_cache=use_cache,
|
|
226
|
+
output_attentions=output_attentions,
|
|
227
|
+
output_hidden_states=output_hidden_states,
|
|
228
|
+
return_dict=return_dict,
|
|
229
|
+
cache_position=cache_position,
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
hidden_states = outputs[0]
|
|
233
|
+
|
|
234
|
+
logits = None
|
|
235
|
+
loss = None
|
|
236
|
+
# if in training mode, don't materialize logits
|
|
237
|
+
if self.training and (labels is not None):
|
|
238
|
+
# We do the same thing as ForCausalLMLoss but using Liger FLCE
|
|
239
|
+
|
|
240
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
241
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
242
|
+
|
|
243
|
+
# flatten tokens
|
|
244
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
245
|
+
shift_labels = shift_labels.view(-1)
|
|
246
|
+
|
|
247
|
+
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
248
|
+
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
249
|
+
|
|
250
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
251
|
+
if reduction == "sum":
|
|
252
|
+
loss /= loss_kwargs["num_items_in_batch"]
|
|
253
|
+
|
|
254
|
+
else: # if in inference mode materialize logits
|
|
255
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
256
|
+
if labels is not None:
|
|
257
|
+
loss = self.loss_function(
|
|
258
|
+
logits=logits,
|
|
259
|
+
labels=labels,
|
|
260
|
+
vocab_size=self.config.vocab_size,
|
|
261
|
+
**loss_kwargs,
|
|
262
|
+
)
|
|
263
|
+
|
|
264
|
+
if not return_dict:
|
|
265
|
+
output = (logits,) + outputs[1:]
|
|
266
|
+
return (loss,) + output if loss is not None else output
|
|
267
|
+
|
|
268
|
+
return CausalLMOutputWithPast(
|
|
269
|
+
loss=loss,
|
|
270
|
+
logits=logits,
|
|
271
|
+
past_key_values=outputs.past_key_values,
|
|
272
|
+
hidden_states=outputs.hidden_states,
|
|
273
|
+
attentions=outputs.attentions,
|
|
274
|
+
)
|