lifecycle-allocation 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lifecycle_allocation-0.1.0/LICENSE +21 -0
- lifecycle_allocation-0.1.0/PKG-INFO +203 -0
- lifecycle_allocation-0.1.0/README.md +162 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/__init__.py +34 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/cli/__init__.py +0 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/cli/main.py +141 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/core/__init__.py +0 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/core/allocation.py +131 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/core/discounting.py +21 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/core/explain.py +83 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/core/human_capital.py +69 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/core/income_models.py +76 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/core/models.py +160 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/core/mortality.py +19 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/core/strategies.py +88 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/io/__init__.py +0 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/io/loaders.py +97 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/viz/__init__.py +0 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/viz/charts.py +131 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation/viz/themes.py +36 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation.egg-info/PKG-INFO +203 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation.egg-info/SOURCES.txt +33 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation.egg-info/dependency_links.txt +1 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation.egg-info/entry_points.txt +2 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation.egg-info/requires.txt +18 -0
- lifecycle_allocation-0.1.0/lifecycle_allocation.egg-info/top_level.txt +1 -0
- lifecycle_allocation-0.1.0/pyproject.toml +80 -0
- lifecycle_allocation-0.1.0/setup.cfg +4 -0
- lifecycle_allocation-0.1.0/tests/test_allocation.py +173 -0
- lifecycle_allocation-0.1.0/tests/test_cli.py +125 -0
- lifecycle_allocation-0.1.0/tests/test_human_capital.py +221 -0
- lifecycle_allocation-0.1.0/tests/test_io.py +69 -0
- lifecycle_allocation-0.1.0/tests/test_models.py +135 -0
- lifecycle_allocation-0.1.0/tests/test_strategies.py +99 -0
- lifecycle_allocation-0.1.0/tests/test_viz_smoke.py +90 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Engineer Investor
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,203 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: lifecycle-allocation
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: Lifecycle portfolio allocation framework inspired by Choi et al.
|
|
5
|
+
Author-email: Engineer Investor <egr.investor@gmail.com>
|
|
6
|
+
License-Expression: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/engineerinvestor/lifecycle-allocation
|
|
8
|
+
Project-URL: Repository, https://github.com/engineerinvestor/lifecycle-allocation
|
|
9
|
+
Project-URL: Documentation, https://engineerinvestor.github.io/lifecycle-allocation
|
|
10
|
+
Project-URL: Issues, https://github.com/engineerinvestor/lifecycle-allocation/issues
|
|
11
|
+
Project-URL: Changelog, https://github.com/engineerinvestor/lifecycle-allocation/blob/main/CHANGELOG.md
|
|
12
|
+
Keywords: finance,portfolio,allocation,lifecycle,human-capital,investment
|
|
13
|
+
Classifier: Development Status :: 3 - Alpha
|
|
14
|
+
Classifier: Intended Audience :: Education
|
|
15
|
+
Classifier: Intended Audience :: Financial and Insurance Industry
|
|
16
|
+
Classifier: Programming Language :: Python :: 3
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
20
|
+
Classifier: Topic :: Office/Business :: Financial
|
|
21
|
+
Requires-Python: >=3.10
|
|
22
|
+
Description-Content-Type: text/markdown
|
|
23
|
+
License-File: LICENSE
|
|
24
|
+
Requires-Dist: numpy>=1.24
|
|
25
|
+
Requires-Dist: pandas>=2.0
|
|
26
|
+
Requires-Dist: matplotlib>=3.7
|
|
27
|
+
Requires-Dist: pyyaml>=6.0
|
|
28
|
+
Requires-Dist: click>=8.0
|
|
29
|
+
Provides-Extra: dev
|
|
30
|
+
Requires-Dist: pytest>=7.0; extra == "dev"
|
|
31
|
+
Requires-Dist: pytest-cov>=4.0; extra == "dev"
|
|
32
|
+
Requires-Dist: ruff>=0.1; extra == "dev"
|
|
33
|
+
Requires-Dist: black>=23.0; extra == "dev"
|
|
34
|
+
Requires-Dist: mypy>=1.0; extra == "dev"
|
|
35
|
+
Requires-Dist: types-PyYAML>=6.0; extra == "dev"
|
|
36
|
+
Requires-Dist: pandas-stubs>=2.0; extra == "dev"
|
|
37
|
+
Provides-Extra: docs
|
|
38
|
+
Requires-Dist: mkdocs>=1.5; extra == "docs"
|
|
39
|
+
Requires-Dist: mkdocs-material>=9.0; extra == "docs"
|
|
40
|
+
Dynamic: license-file
|
|
41
|
+
|
|
42
|
+
# lifecycle-allocation
|
|
43
|
+
|
|
44
|
+
A Python library implementing a practical lifecycle portfolio choice framework inspired by [Choi et al.](https://www.nber.org/papers/w34166) It combines human capital analysis with visual analytics to produce data-driven stock/bond allocation recommendations.
|
|
45
|
+
|
|
46
|
+
[](https://github.com/engineerinvestor/lifecycle-allocation/actions/workflows/ci.yml)
|
|
47
|
+
[](https://pypi.org/project/lifecycle-allocation/)
|
|
48
|
+
[](https://pypi.org/project/lifecycle-allocation/)
|
|
49
|
+
[](https://opensource.org/licenses/MIT)
|
|
50
|
+
[](https://engineerinvestor.github.io/lifecycle-allocation)
|
|
51
|
+
|
|
52
|
+
## Why This Matters
|
|
53
|
+
|
|
54
|
+
Most portfolio allocation "rules" are single-variable heuristics: 60/40, 100-minus-age, target-date funds. They ignore the biggest asset most people own -- their future earning power. A 30-year-old software engineer with $100k in savings and 35 years of income ahead is in a fundamentally different position than a 30-year-old retiree with the same $100k.
|
|
55
|
+
|
|
56
|
+
This library takes a **balance-sheet** view of your finances. Your investable portfolio is only part of your total wealth. Future earnings (human capital) act like a bond-like asset, and accounting for them changes how much stock risk you should take. The result is a theoretically grounded, personalized allocation that evolves naturally over your lifecycle -- no arbitrary rules required.
|
|
57
|
+
|
|
58
|
+
## Features
|
|
59
|
+
|
|
60
|
+
- **Core allocation engine** -- Merton-style optimal risky share adjusted for human capital
|
|
61
|
+
- **4 income models** -- flat, constant-growth, age-profile, and CSV-based
|
|
62
|
+
- **Strategy comparison** -- benchmark against 60/40, 100-minus-age, and target-date funds
|
|
63
|
+
- **Visualization suite** -- balance sheet waterfall, glide paths, sensitivity tornado, heatmaps
|
|
64
|
+
- **CLI interface** -- generate full reports from YAML/JSON profiles
|
|
65
|
+
- **YAML/JSON profiles** -- declarative investor configuration
|
|
66
|
+
- **Leverage support** -- two-tier borrowing rate model with configurable constraints
|
|
67
|
+
- **Mortality adjustment** -- survival probability discounting for human capital
|
|
68
|
+
|
|
69
|
+
## Install
|
|
70
|
+
|
|
71
|
+
```bash
|
|
72
|
+
pip install lifecycle-allocation
|
|
73
|
+
```
|
|
74
|
+
|
|
75
|
+
For development:
|
|
76
|
+
|
|
77
|
+
```bash
|
|
78
|
+
git clone https://github.com/engineerinvestor/lifecycle-allocation.git
|
|
79
|
+
cd lifecycle-allocation
|
|
80
|
+
pip install -e ".[dev]"
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
Requires Python 3.10+.
|
|
84
|
+
|
|
85
|
+
## Quick Start (Python)
|
|
86
|
+
|
|
87
|
+
```python
|
|
88
|
+
from lifecycle_allocation import (
|
|
89
|
+
InvestorProfile,
|
|
90
|
+
MarketAssumptions,
|
|
91
|
+
recommended_stock_share,
|
|
92
|
+
compare_strategies,
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
profile = InvestorProfile(
|
|
96
|
+
age=30,
|
|
97
|
+
retirement_age=67,
|
|
98
|
+
investable_wealth=100_000,
|
|
99
|
+
after_tax_income=70_000,
|
|
100
|
+
risk_tolerance=5,
|
|
101
|
+
)
|
|
102
|
+
market = MarketAssumptions(mu=0.05, r=0.02, sigma=0.18)
|
|
103
|
+
|
|
104
|
+
result = recommended_stock_share(profile, market)
|
|
105
|
+
print(f"Recommended stock allocation: {result.alpha_recommended:.1%}")
|
|
106
|
+
print(f"Human capital: ${result.human_capital:,.0f}")
|
|
107
|
+
print(result.explain)
|
|
108
|
+
|
|
109
|
+
# Compare against heuristic strategies
|
|
110
|
+
df = compare_strategies(profile, market)
|
|
111
|
+
print(df.to_string(index=False))
|
|
112
|
+
```
|
|
113
|
+
|
|
114
|
+
## Quick Start (CLI)
|
|
115
|
+
|
|
116
|
+
```bash
|
|
117
|
+
lifecycle-allocation alloc \
|
|
118
|
+
--profile examples/profiles/young_saver.yaml \
|
|
119
|
+
--out ./output \
|
|
120
|
+
--report
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
This produces `allocation.json`, `summary.md`, and charts in `output/charts/`.
|
|
124
|
+
|
|
125
|
+
## How It Works
|
|
126
|
+
|
|
127
|
+
1. Compute a **baseline risky share** (Merton-style): `alpha* = (mu - r) / (gamma * sigma^2)`
|
|
128
|
+
2. Estimate **human capital** H as the present value of future earnings + retirement benefits, discounted by survival probability and a term structure
|
|
129
|
+
3. Adjust: `alpha = alpha* x (1 + H/W)`, clamped to [0, 1] (or [0, L_max] with leverage)
|
|
130
|
+
|
|
131
|
+
Young workers with high H/W ratios get higher equity allocations. As you age and accumulate financial wealth, H shrinks relative to W and the allocation naturally declines -- producing a lifecycle glide path from first principles rather than arbitrary rules.
|
|
132
|
+
|
|
133
|
+
## Example Output
|
|
134
|
+
|
|
135
|
+
| Archetype | Age | Income | Wealth | H/W Ratio | Recommended Equity |
|
|
136
|
+
|---|---|---|---|---|---|
|
|
137
|
+
| Young saver | 30 | $70k | $100k | ~15x | ~90%+ |
|
|
138
|
+
| Mid-career | 45 | $120k | $500k | ~4x | ~65% |
|
|
139
|
+
| Near-retirement | 60 | $90k | $1.2M | ~0.5x | ~40% |
|
|
140
|
+
|
|
141
|
+
*Values depend on market assumptions and risk tolerance. These are illustrative.*
|
|
142
|
+
|
|
143
|
+
## Tutorial
|
|
144
|
+
|
|
145
|
+
Explore the interactive tutorial notebook for a guided walkthrough:
|
|
146
|
+
|
|
147
|
+
[](https://colab.research.google.com/github/engineerinvestor/lifecycle-allocation/blob/main/examples/notebooks/tutorial.ipynb)
|
|
148
|
+
|
|
149
|
+
Or run locally:
|
|
150
|
+
|
|
151
|
+
```bash
|
|
152
|
+
jupyter notebook examples/notebooks/tutorial.ipynb
|
|
153
|
+
```
|
|
154
|
+
|
|
155
|
+
## Documentation
|
|
156
|
+
|
|
157
|
+
Full documentation is available at [engineerinvestor.github.io/lifecycle-allocation](https://engineerinvestor.github.io/lifecycle-allocation).
|
|
158
|
+
|
|
159
|
+
## Roadmap
|
|
160
|
+
|
|
161
|
+
| Version | Milestone |
|
|
162
|
+
|---|---|
|
|
163
|
+
| **v0.1** | Core allocation engine, CLI, YAML profiles, strategy comparison, charts |
|
|
164
|
+
| **v0.5** | Monte Carlo simulation, CRRA utility evaluation, Social Security modeling |
|
|
165
|
+
| **v1.0** | Full documentation, tax-aware optimization, couples modeling |
|
|
166
|
+
|
|
167
|
+
## Contributing
|
|
168
|
+
|
|
169
|
+
Contributions are welcome! See [CONTRIBUTING.md](CONTRIBUTING.md) for development setup, code style, and PR guidelines.
|
|
170
|
+
|
|
171
|
+
## Citation
|
|
172
|
+
|
|
173
|
+
If you use this library in academic work, please cite both the underlying research and the software:
|
|
174
|
+
|
|
175
|
+
```bibtex
|
|
176
|
+
@techreport{choi2025practical,
|
|
177
|
+
title={Practical Finance: An Approximate Solution to Lifecycle Portfolio Choice},
|
|
178
|
+
author={Choi, James J. and Liu, Canyao and Liu, Pengcheng},
|
|
179
|
+
year={2025},
|
|
180
|
+
institution={National Bureau of Economic Research},
|
|
181
|
+
type={Working Paper},
|
|
182
|
+
number={34166},
|
|
183
|
+
doi={10.3386/w34166},
|
|
184
|
+
url={https://www.nber.org/papers/w34166}
|
|
185
|
+
}
|
|
186
|
+
|
|
187
|
+
@software{engineerinvestor2025lifecycle,
|
|
188
|
+
title={lifecycle-allocation: A Lifecycle Portfolio Choice Framework},
|
|
189
|
+
author={{Engineer Investor}},
|
|
190
|
+
year={2025},
|
|
191
|
+
url={https://github.com/engineerinvestor/lifecycle-allocation},
|
|
192
|
+
version={0.1.0},
|
|
193
|
+
license={MIT}
|
|
194
|
+
}
|
|
195
|
+
```
|
|
196
|
+
|
|
197
|
+
## Disclaimer
|
|
198
|
+
|
|
199
|
+
**This library is for education and research purposes only. It is not investment advice.** The authors are not financial advisors. Consult a qualified professional before making investment decisions. Past performance and model outputs do not guarantee future results.
|
|
200
|
+
|
|
201
|
+
## License
|
|
202
|
+
|
|
203
|
+
[MIT](LICENSE)
|
|
@@ -0,0 +1,162 @@
|
|
|
1
|
+
# lifecycle-allocation
|
|
2
|
+
|
|
3
|
+
A Python library implementing a practical lifecycle portfolio choice framework inspired by [Choi et al.](https://www.nber.org/papers/w34166) It combines human capital analysis with visual analytics to produce data-driven stock/bond allocation recommendations.
|
|
4
|
+
|
|
5
|
+
[](https://github.com/engineerinvestor/lifecycle-allocation/actions/workflows/ci.yml)
|
|
6
|
+
[](https://pypi.org/project/lifecycle-allocation/)
|
|
7
|
+
[](https://pypi.org/project/lifecycle-allocation/)
|
|
8
|
+
[](https://opensource.org/licenses/MIT)
|
|
9
|
+
[](https://engineerinvestor.github.io/lifecycle-allocation)
|
|
10
|
+
|
|
11
|
+
## Why This Matters
|
|
12
|
+
|
|
13
|
+
Most portfolio allocation "rules" are single-variable heuristics: 60/40, 100-minus-age, target-date funds. They ignore the biggest asset most people own -- their future earning power. A 30-year-old software engineer with $100k in savings and 35 years of income ahead is in a fundamentally different position than a 30-year-old retiree with the same $100k.
|
|
14
|
+
|
|
15
|
+
This library takes a **balance-sheet** view of your finances. Your investable portfolio is only part of your total wealth. Future earnings (human capital) act like a bond-like asset, and accounting for them changes how much stock risk you should take. The result is a theoretically grounded, personalized allocation that evolves naturally over your lifecycle -- no arbitrary rules required.
|
|
16
|
+
|
|
17
|
+
## Features
|
|
18
|
+
|
|
19
|
+
- **Core allocation engine** -- Merton-style optimal risky share adjusted for human capital
|
|
20
|
+
- **4 income models** -- flat, constant-growth, age-profile, and CSV-based
|
|
21
|
+
- **Strategy comparison** -- benchmark against 60/40, 100-minus-age, and target-date funds
|
|
22
|
+
- **Visualization suite** -- balance sheet waterfall, glide paths, sensitivity tornado, heatmaps
|
|
23
|
+
- **CLI interface** -- generate full reports from YAML/JSON profiles
|
|
24
|
+
- **YAML/JSON profiles** -- declarative investor configuration
|
|
25
|
+
- **Leverage support** -- two-tier borrowing rate model with configurable constraints
|
|
26
|
+
- **Mortality adjustment** -- survival probability discounting for human capital
|
|
27
|
+
|
|
28
|
+
## Install
|
|
29
|
+
|
|
30
|
+
```bash
|
|
31
|
+
pip install lifecycle-allocation
|
|
32
|
+
```
|
|
33
|
+
|
|
34
|
+
For development:
|
|
35
|
+
|
|
36
|
+
```bash
|
|
37
|
+
git clone https://github.com/engineerinvestor/lifecycle-allocation.git
|
|
38
|
+
cd lifecycle-allocation
|
|
39
|
+
pip install -e ".[dev]"
|
|
40
|
+
```
|
|
41
|
+
|
|
42
|
+
Requires Python 3.10+.
|
|
43
|
+
|
|
44
|
+
## Quick Start (Python)
|
|
45
|
+
|
|
46
|
+
```python
|
|
47
|
+
from lifecycle_allocation import (
|
|
48
|
+
InvestorProfile,
|
|
49
|
+
MarketAssumptions,
|
|
50
|
+
recommended_stock_share,
|
|
51
|
+
compare_strategies,
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
profile = InvestorProfile(
|
|
55
|
+
age=30,
|
|
56
|
+
retirement_age=67,
|
|
57
|
+
investable_wealth=100_000,
|
|
58
|
+
after_tax_income=70_000,
|
|
59
|
+
risk_tolerance=5,
|
|
60
|
+
)
|
|
61
|
+
market = MarketAssumptions(mu=0.05, r=0.02, sigma=0.18)
|
|
62
|
+
|
|
63
|
+
result = recommended_stock_share(profile, market)
|
|
64
|
+
print(f"Recommended stock allocation: {result.alpha_recommended:.1%}")
|
|
65
|
+
print(f"Human capital: ${result.human_capital:,.0f}")
|
|
66
|
+
print(result.explain)
|
|
67
|
+
|
|
68
|
+
# Compare against heuristic strategies
|
|
69
|
+
df = compare_strategies(profile, market)
|
|
70
|
+
print(df.to_string(index=False))
|
|
71
|
+
```
|
|
72
|
+
|
|
73
|
+
## Quick Start (CLI)
|
|
74
|
+
|
|
75
|
+
```bash
|
|
76
|
+
lifecycle-allocation alloc \
|
|
77
|
+
--profile examples/profiles/young_saver.yaml \
|
|
78
|
+
--out ./output \
|
|
79
|
+
--report
|
|
80
|
+
```
|
|
81
|
+
|
|
82
|
+
This produces `allocation.json`, `summary.md`, and charts in `output/charts/`.
|
|
83
|
+
|
|
84
|
+
## How It Works
|
|
85
|
+
|
|
86
|
+
1. Compute a **baseline risky share** (Merton-style): `alpha* = (mu - r) / (gamma * sigma^2)`
|
|
87
|
+
2. Estimate **human capital** H as the present value of future earnings + retirement benefits, discounted by survival probability and a term structure
|
|
88
|
+
3. Adjust: `alpha = alpha* x (1 + H/W)`, clamped to [0, 1] (or [0, L_max] with leverage)
|
|
89
|
+
|
|
90
|
+
Young workers with high H/W ratios get higher equity allocations. As you age and accumulate financial wealth, H shrinks relative to W and the allocation naturally declines -- producing a lifecycle glide path from first principles rather than arbitrary rules.
|
|
91
|
+
|
|
92
|
+
## Example Output
|
|
93
|
+
|
|
94
|
+
| Archetype | Age | Income | Wealth | H/W Ratio | Recommended Equity |
|
|
95
|
+
|---|---|---|---|---|---|
|
|
96
|
+
| Young saver | 30 | $70k | $100k | ~15x | ~90%+ |
|
|
97
|
+
| Mid-career | 45 | $120k | $500k | ~4x | ~65% |
|
|
98
|
+
| Near-retirement | 60 | $90k | $1.2M | ~0.5x | ~40% |
|
|
99
|
+
|
|
100
|
+
*Values depend on market assumptions and risk tolerance. These are illustrative.*
|
|
101
|
+
|
|
102
|
+
## Tutorial
|
|
103
|
+
|
|
104
|
+
Explore the interactive tutorial notebook for a guided walkthrough:
|
|
105
|
+
|
|
106
|
+
[](https://colab.research.google.com/github/engineerinvestor/lifecycle-allocation/blob/main/examples/notebooks/tutorial.ipynb)
|
|
107
|
+
|
|
108
|
+
Or run locally:
|
|
109
|
+
|
|
110
|
+
```bash
|
|
111
|
+
jupyter notebook examples/notebooks/tutorial.ipynb
|
|
112
|
+
```
|
|
113
|
+
|
|
114
|
+
## Documentation
|
|
115
|
+
|
|
116
|
+
Full documentation is available at [engineerinvestor.github.io/lifecycle-allocation](https://engineerinvestor.github.io/lifecycle-allocation).
|
|
117
|
+
|
|
118
|
+
## Roadmap
|
|
119
|
+
|
|
120
|
+
| Version | Milestone |
|
|
121
|
+
|---|---|
|
|
122
|
+
| **v0.1** | Core allocation engine, CLI, YAML profiles, strategy comparison, charts |
|
|
123
|
+
| **v0.5** | Monte Carlo simulation, CRRA utility evaluation, Social Security modeling |
|
|
124
|
+
| **v1.0** | Full documentation, tax-aware optimization, couples modeling |
|
|
125
|
+
|
|
126
|
+
## Contributing
|
|
127
|
+
|
|
128
|
+
Contributions are welcome! See [CONTRIBUTING.md](CONTRIBUTING.md) for development setup, code style, and PR guidelines.
|
|
129
|
+
|
|
130
|
+
## Citation
|
|
131
|
+
|
|
132
|
+
If you use this library in academic work, please cite both the underlying research and the software:
|
|
133
|
+
|
|
134
|
+
```bibtex
|
|
135
|
+
@techreport{choi2025practical,
|
|
136
|
+
title={Practical Finance: An Approximate Solution to Lifecycle Portfolio Choice},
|
|
137
|
+
author={Choi, James J. and Liu, Canyao and Liu, Pengcheng},
|
|
138
|
+
year={2025},
|
|
139
|
+
institution={National Bureau of Economic Research},
|
|
140
|
+
type={Working Paper},
|
|
141
|
+
number={34166},
|
|
142
|
+
doi={10.3386/w34166},
|
|
143
|
+
url={https://www.nber.org/papers/w34166}
|
|
144
|
+
}
|
|
145
|
+
|
|
146
|
+
@software{engineerinvestor2025lifecycle,
|
|
147
|
+
title={lifecycle-allocation: A Lifecycle Portfolio Choice Framework},
|
|
148
|
+
author={{Engineer Investor}},
|
|
149
|
+
year={2025},
|
|
150
|
+
url={https://github.com/engineerinvestor/lifecycle-allocation},
|
|
151
|
+
version={0.1.0},
|
|
152
|
+
license={MIT}
|
|
153
|
+
}
|
|
154
|
+
```
|
|
155
|
+
|
|
156
|
+
## Disclaimer
|
|
157
|
+
|
|
158
|
+
**This library is for education and research purposes only. It is not investment advice.** The authors are not financial advisors. Consult a qualified professional before making investment decisions. Past performance and model outputs do not guarantee future results.
|
|
159
|
+
|
|
160
|
+
## License
|
|
161
|
+
|
|
162
|
+
[MIT](LICENSE)
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
"""Lifecycle portfolio allocation framework inspired by Choi et al."""
|
|
2
|
+
|
|
3
|
+
__version__ = "0.1.0"
|
|
4
|
+
|
|
5
|
+
from lifecycle_allocation.core.allocation import alpha_star, recommended_stock_share
|
|
6
|
+
from lifecycle_allocation.core.human_capital import human_capital_pv
|
|
7
|
+
from lifecycle_allocation.core.models import (
|
|
8
|
+
AllocationResult,
|
|
9
|
+
BenefitModelSpec,
|
|
10
|
+
ConstraintsSpec,
|
|
11
|
+
DiscountCurveSpec,
|
|
12
|
+
IncomeModelSpec,
|
|
13
|
+
InvestorProfile,
|
|
14
|
+
MarketAssumptions,
|
|
15
|
+
MortalitySpec,
|
|
16
|
+
risk_tolerance_to_gamma,
|
|
17
|
+
)
|
|
18
|
+
from lifecycle_allocation.core.strategies import compare_strategies
|
|
19
|
+
|
|
20
|
+
__all__ = [
|
|
21
|
+
"AllocationResult",
|
|
22
|
+
"BenefitModelSpec",
|
|
23
|
+
"ConstraintsSpec",
|
|
24
|
+
"DiscountCurveSpec",
|
|
25
|
+
"IncomeModelSpec",
|
|
26
|
+
"InvestorProfile",
|
|
27
|
+
"MarketAssumptions",
|
|
28
|
+
"MortalitySpec",
|
|
29
|
+
"alpha_star",
|
|
30
|
+
"compare_strategies",
|
|
31
|
+
"human_capital_pv",
|
|
32
|
+
"recommended_stock_share",
|
|
33
|
+
"risk_tolerance_to_gamma",
|
|
34
|
+
]
|
|
File without changes
|
|
@@ -0,0 +1,141 @@
|
|
|
1
|
+
"""CLI entry point for lifecycle-allocation."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import json
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
|
|
8
|
+
import click
|
|
9
|
+
|
|
10
|
+
from lifecycle_allocation.core.allocation import recommended_stock_share
|
|
11
|
+
from lifecycle_allocation.core.models import ConstraintsSpec, MarketAssumptions
|
|
12
|
+
from lifecycle_allocation.core.strategies import compare_strategies
|
|
13
|
+
from lifecycle_allocation.io.loaders import load_profile
|
|
14
|
+
from lifecycle_allocation.viz.charts import plot_balance_sheet, plot_strategy_bars
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@click.group()
|
|
18
|
+
def cli() -> None:
|
|
19
|
+
"""lifecycle-allocation: Lifecycle portfolio allocation framework."""
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@cli.command()
|
|
23
|
+
@click.option("--profile", "profile_path", required=True, type=click.Path(exists=True))
|
|
24
|
+
@click.option("--out", "out_dir", required=True, type=click.Path())
|
|
25
|
+
@click.option("--report", is_flag=True, default=False, help="Generate charts")
|
|
26
|
+
@click.option("--mu", type=float, default=None, help="Expected stock return")
|
|
27
|
+
@click.option("--r", "risk_free", type=float, default=None, help="Risk-free rate")
|
|
28
|
+
@click.option("--sigma", type=float, default=None, help="Stock volatility")
|
|
29
|
+
@click.option("--tmax", type=int, default=100, help="Maximum age for computation")
|
|
30
|
+
@click.option("--allow-leverage", is_flag=True, default=False)
|
|
31
|
+
@click.option("--max-leverage", type=float, default=1.0)
|
|
32
|
+
@click.option("--borrowing-spread", type=float, default=None)
|
|
33
|
+
@click.option("--format", "img_format", type=click.Choice(["png", "svg"]), default="png")
|
|
34
|
+
@click.option("--real/--nominal", default=True)
|
|
35
|
+
def alloc(
|
|
36
|
+
profile_path: str,
|
|
37
|
+
out_dir: str,
|
|
38
|
+
report: bool,
|
|
39
|
+
mu: float | None,
|
|
40
|
+
risk_free: float | None,
|
|
41
|
+
sigma: float | None,
|
|
42
|
+
tmax: int,
|
|
43
|
+
allow_leverage: bool,
|
|
44
|
+
max_leverage: float,
|
|
45
|
+
borrowing_spread: float | None,
|
|
46
|
+
img_format: str,
|
|
47
|
+
real: bool,
|
|
48
|
+
) -> None:
|
|
49
|
+
"""Compute lifecycle allocation from a profile."""
|
|
50
|
+
profile, market, curve, constraints = load_profile(profile_path)
|
|
51
|
+
|
|
52
|
+
# CLI overrides
|
|
53
|
+
if mu is not None:
|
|
54
|
+
market = MarketAssumptions(
|
|
55
|
+
mu=mu,
|
|
56
|
+
r=market.r,
|
|
57
|
+
sigma=market.sigma,
|
|
58
|
+
real=market.real,
|
|
59
|
+
borrowing_spread=market.borrowing_spread,
|
|
60
|
+
)
|
|
61
|
+
if risk_free is not None:
|
|
62
|
+
market = MarketAssumptions(
|
|
63
|
+
mu=market.mu,
|
|
64
|
+
r=risk_free,
|
|
65
|
+
sigma=market.sigma,
|
|
66
|
+
real=market.real,
|
|
67
|
+
borrowing_spread=market.borrowing_spread,
|
|
68
|
+
)
|
|
69
|
+
if sigma is not None:
|
|
70
|
+
market = MarketAssumptions(
|
|
71
|
+
mu=market.mu,
|
|
72
|
+
r=market.r,
|
|
73
|
+
sigma=sigma,
|
|
74
|
+
real=market.real,
|
|
75
|
+
borrowing_spread=market.borrowing_spread,
|
|
76
|
+
)
|
|
77
|
+
if borrowing_spread is not None:
|
|
78
|
+
market = MarketAssumptions(
|
|
79
|
+
mu=market.mu,
|
|
80
|
+
r=market.r,
|
|
81
|
+
sigma=market.sigma,
|
|
82
|
+
real=market.real,
|
|
83
|
+
borrowing_spread=borrowing_spread,
|
|
84
|
+
)
|
|
85
|
+
market = MarketAssumptions(
|
|
86
|
+
mu=market.mu,
|
|
87
|
+
r=market.r,
|
|
88
|
+
sigma=market.sigma,
|
|
89
|
+
real=real,
|
|
90
|
+
borrowing_spread=market.borrowing_spread,
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
if allow_leverage or constraints.allow_leverage:
|
|
94
|
+
constraints = ConstraintsSpec(
|
|
95
|
+
allow_leverage=True,
|
|
96
|
+
max_leverage=max_leverage if max_leverage > 1.0 else constraints.max_leverage,
|
|
97
|
+
allow_short=constraints.allow_short,
|
|
98
|
+
min_allocation=constraints.min_allocation,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
# Compute
|
|
102
|
+
result = recommended_stock_share(profile, market, curve, constraints, t_max=tmax)
|
|
103
|
+
comparison_df = compare_strategies(profile, market, curve, constraints)
|
|
104
|
+
|
|
105
|
+
# Create output directory
|
|
106
|
+
out = Path(out_dir)
|
|
107
|
+
out.mkdir(parents=True, exist_ok=True)
|
|
108
|
+
|
|
109
|
+
# Write allocation.json
|
|
110
|
+
alloc_data = {
|
|
111
|
+
"alpha_star": result.alpha_star,
|
|
112
|
+
"alpha_unconstrained": result.alpha_unconstrained,
|
|
113
|
+
"alpha_recommended": result.alpha_recommended,
|
|
114
|
+
"human_capital": result.human_capital,
|
|
115
|
+
"leverage_applied": result.leverage_applied,
|
|
116
|
+
"borrowing_cost_drag": result.borrowing_cost_drag,
|
|
117
|
+
"components": {
|
|
118
|
+
k: v for k, v in result.components.items() if isinstance(v, (int, float, bool, str))
|
|
119
|
+
},
|
|
120
|
+
}
|
|
121
|
+
with open(out / "allocation.json", "w") as f:
|
|
122
|
+
json.dump(alloc_data, f, indent=2)
|
|
123
|
+
|
|
124
|
+
# Write summary.md
|
|
125
|
+
with open(out / "summary.md", "w") as f:
|
|
126
|
+
f.write("# Lifecycle Allocation Summary\n\n")
|
|
127
|
+
f.write(result.explain)
|
|
128
|
+
f.write("\n\n## Strategy Comparison\n\n")
|
|
129
|
+
f.write("| Strategy | Allocation |\n|---|---|\n")
|
|
130
|
+
for _, row in comparison_df.iterrows():
|
|
131
|
+
f.write(f"| {row['strategy']} | {row['allocation']:.1%} |\n")
|
|
132
|
+
|
|
133
|
+
click.echo(f"Recommended stock allocation: {result.alpha_recommended:.1%}")
|
|
134
|
+
click.echo(f"Results written to {out}")
|
|
135
|
+
|
|
136
|
+
if report:
|
|
137
|
+
charts_dir = out / "charts"
|
|
138
|
+
charts_dir.mkdir(exist_ok=True)
|
|
139
|
+
plot_balance_sheet(result, profile, save_path=charts_dir / f"balance_sheet.{img_format}")
|
|
140
|
+
plot_strategy_bars(comparison_df, save_path=charts_dir / f"strategy_bars.{img_format}")
|
|
141
|
+
click.echo(f"Charts written to {charts_dir}")
|
|
File without changes
|