ler 0.2.5__tar.gz → 0.2.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ler might be problematic. Click here for more details.
- {ler-0.2.5 → ler-0.2.6}/PKG-INFO +2 -2
- {ler-0.2.5 → ler-0.2.6}/README.md +1 -1
- {ler-0.2.5 → ler-0.2.6}/ler/source_population.py +5 -14
- {ler-0.2.5 → ler-0.2.6}/ler.egg-info/PKG-INFO +2 -2
- {ler-0.2.5 → ler-0.2.6}/setup.py +1 -1
- {ler-0.2.5 → ler-0.2.6}/LICENSE +0 -0
- {ler-0.2.5 → ler-0.2.6}/ler/__init__.py +0 -0
- {ler-0.2.5 → ler-0.2.6}/ler/helperroutines.py +0 -0
- {ler-0.2.5 → ler-0.2.6}/ler/lens_galaxy_population.py +0 -0
- {ler-0.2.5 → ler-0.2.6}/ler/ler.py +0 -0
- {ler-0.2.5 → ler-0.2.6}/ler/multiprocessing_routine.py +0 -0
- {ler-0.2.5 → ler-0.2.6}/ler.egg-info/SOURCES.txt +0 -0
- {ler-0.2.5 → ler-0.2.6}/ler.egg-info/dependency_links.txt +0 -0
- {ler-0.2.5 → ler-0.2.6}/ler.egg-info/requires.txt +0 -0
- {ler-0.2.5 → ler-0.2.6}/ler.egg-info/top_level.txt +0 -0
- {ler-0.2.5 → ler-0.2.6}/setup.cfg +0 -0
{ler-0.2.5 → ler-0.2.6}/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ler
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.6
|
|
4
4
|
Summary: Gravitational waves Lensing Rates
|
|
5
5
|
Home-page: https://github.com/hemantaph/ler
|
|
6
6
|
Author: Hemantakumar
|
|
@@ -11,7 +11,7 @@ Description-Content-Type: text/markdown
|
|
|
11
11
|
License-File: LICENSE
|
|
12
12
|
|
|
13
13
|
# LeR
|
|
14
|
-
[](https://zenodo.org/badge/latestdoi/626733473)
|
|
14
|
+
[](https://zenodo.org/badge/latestdoi/626733473) [](https://badge.fury.io/py/ler) [](https://ler.readthedocs.io/en/latest/)
|
|
15
15
|
|
|
16
16
|
`LeR` is a statistical-based python package whose core function is to calculate detectable rates of both lensing and unlensed GW events. This calculation is very much dependent on the other functionality of the package, which can be subdivided into three parts; 1. Sampling of compact-binary source properties, 2. Sampling of lens galaxy characteristics and 3. Solving the lens equation to get image properties of the source. The package as a whole relies on `numpy` array operation and linear algebra, `scipy` interpolation and `multiprocessing` functionality of python to increase speed and functionality without compromising on the ease of use. The API of `LeR` is structured such that each functionality mentioned stands in its own right for scientific research but also can be used together as needed. Key features of `LeR` and its dependencies can be summarized as follows,
|
|
17
17
|
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
# LeR
|
|
2
|
-
[](https://zenodo.org/badge/latestdoi/626733473)
|
|
2
|
+
[](https://zenodo.org/badge/latestdoi/626733473) [](https://badge.fury.io/py/ler) [](https://ler.readthedocs.io/en/latest/)
|
|
3
3
|
|
|
4
4
|
`LeR` is a statistical-based python package whose core function is to calculate detectable rates of both lensing and unlensed GW events. This calculation is very much dependent on the other functionality of the package, which can be subdivided into three parts; 1. Sampling of compact-binary source properties, 2. Sampling of lens galaxy characteristics and 3. Solving the lens equation to get image properties of the source. The package as a whole relies on `numpy` array operation and linear algebra, `scipy` interpolation and `multiprocessing` functionality of python to increase speed and functionality without compromising on the ease of use. The API of `LeR` is structured such that each functionality mentioned stands in its own right for scientific research but also can be used together as needed. Key features of `LeR` and its dependencies can be summarized as follows,
|
|
5
5
|
|
|
@@ -907,20 +907,11 @@ class CompactBinaryPopulation(SourceGalaxyPopulationModel):
|
|
|
907
907
|
for key, value in self.src_model_params.items():
|
|
908
908
|
if key in keys_:
|
|
909
909
|
param[key] = value
|
|
910
|
-
|
|
911
|
-
|
|
912
|
-
mass_2_source
|
|
913
|
-
while
|
|
914
|
-
|
|
915
|
-
m2 = np.random.normal(muL, sigmaL, size=size)
|
|
916
|
-
m1 = np.random.normal(muR, sigmaR, size=size)
|
|
917
|
-
# check if m1>m2
|
|
918
|
-
idx = m1>m2
|
|
919
|
-
mass_1_source+=list(m1[idx])
|
|
920
|
-
mass_2_source+=list(m2[idx])
|
|
921
|
-
|
|
922
|
-
mass_1_source = np.array(mass_1_source)[:size]
|
|
923
|
-
mass_2_source = np.array(mass_2_source)[:size]
|
|
910
|
+
|
|
911
|
+
model = p.mass_prior("BNS", None)
|
|
912
|
+
mass_1_source, mass_2_source = model.sample(Nsample=size)
|
|
913
|
+
while np.any(mass_2_source > mass_1_source):
|
|
914
|
+
mass_1_source, mass_2_source = model.sample(Nsample=size)
|
|
924
915
|
|
|
925
916
|
return (mass_1_source, mass_2_source)
|
|
926
917
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ler
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.6
|
|
4
4
|
Summary: Gravitational waves Lensing Rates
|
|
5
5
|
Home-page: https://github.com/hemantaph/ler
|
|
6
6
|
Author: Hemantakumar
|
|
@@ -11,7 +11,7 @@ Description-Content-Type: text/markdown
|
|
|
11
11
|
License-File: LICENSE
|
|
12
12
|
|
|
13
13
|
# LeR
|
|
14
|
-
[](https://zenodo.org/badge/latestdoi/626733473)
|
|
14
|
+
[](https://zenodo.org/badge/latestdoi/626733473) [](https://badge.fury.io/py/ler) [](https://ler.readthedocs.io/en/latest/)
|
|
15
15
|
|
|
16
16
|
`LeR` is a statistical-based python package whose core function is to calculate detectable rates of both lensing and unlensed GW events. This calculation is very much dependent on the other functionality of the package, which can be subdivided into three parts; 1. Sampling of compact-binary source properties, 2. Sampling of lens galaxy characteristics and 3. Solving the lens equation to get image properties of the source. The package as a whole relies on `numpy` array operation and linear algebra, `scipy` interpolation and `multiprocessing` functionality of python to increase speed and functionality without compromising on the ease of use. The API of `LeR` is structured such that each functionality mentioned stands in its own right for scientific research but also can be used together as needed. Key features of `LeR` and its dependencies can be summarized as follows,
|
|
17
17
|
|
{ler-0.2.5 → ler-0.2.6}/setup.py
RENAMED
{ler-0.2.5 → ler-0.2.6}/LICENSE
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|