ler 0.2.5__tar.gz → 0.2.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ler might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ler
3
- Version: 0.2.5
3
+ Version: 0.2.6
4
4
  Summary: Gravitational waves Lensing Rates
5
5
  Home-page: https://github.com/hemantaph/ler
6
6
  Author: Hemantakumar
@@ -11,7 +11,7 @@ Description-Content-Type: text/markdown
11
11
  License-File: LICENSE
12
12
 
13
13
  # LeR
14
- [![DOI](https://zenodo.org/badge/626733473.svg)](https://zenodo.org/badge/latestdoi/626733473)
14
+ [![DOI](https://zenodo.org/badge/626733473.svg)](https://zenodo.org/badge/latestdoi/626733473) [![PyPI version](https://badge.fury.io/py/ler.svg)](https://badge.fury.io/py/ler) [![DOCS](https://readthedocs.org/projects/ler/badge/?version=latest)](https://ler.readthedocs.io/en/latest/)
15
15
 
16
16
  `LeR` is a statistical-based python package whose core function is to calculate detectable rates of both lensing and unlensed GW events. This calculation is very much dependent on the other functionality of the package, which can be subdivided into three parts; 1. Sampling of compact-binary source properties, 2. Sampling of lens galaxy characteristics and 3. Solving the lens equation to get image properties of the source. The package as a whole relies on `numpy` array operation and linear algebra, `scipy` interpolation and `multiprocessing` functionality of python to increase speed and functionality without compromising on the ease of use. The API of `LeR` is structured such that each functionality mentioned stands in its own right for scientific research but also can be used together as needed. Key features of `LeR` and its dependencies can be summarized as follows,
17
17
 
@@ -1,5 +1,5 @@
1
1
  # LeR
2
- [![DOI](https://zenodo.org/badge/626733473.svg)](https://zenodo.org/badge/latestdoi/626733473)
2
+ [![DOI](https://zenodo.org/badge/626733473.svg)](https://zenodo.org/badge/latestdoi/626733473) [![PyPI version](https://badge.fury.io/py/ler.svg)](https://badge.fury.io/py/ler) [![DOCS](https://readthedocs.org/projects/ler/badge/?version=latest)](https://ler.readthedocs.io/en/latest/)
3
3
 
4
4
  `LeR` is a statistical-based python package whose core function is to calculate detectable rates of both lensing and unlensed GW events. This calculation is very much dependent on the other functionality of the package, which can be subdivided into three parts; 1. Sampling of compact-binary source properties, 2. Sampling of lens galaxy characteristics and 3. Solving the lens equation to get image properties of the source. The package as a whole relies on `numpy` array operation and linear algebra, `scipy` interpolation and `multiprocessing` functionality of python to increase speed and functionality without compromising on the ease of use. The API of `LeR` is structured such that each functionality mentioned stands in its own right for scientific research but also can be used together as needed. Key features of `LeR` and its dependencies can be summarized as follows,
5
5
 
@@ -907,20 +907,11 @@ class CompactBinaryPopulation(SourceGalaxyPopulationModel):
907
907
  for key, value in self.src_model_params.items():
908
908
  if key in keys_:
909
909
  param[key] = value
910
-
911
- mass_1_source = []
912
- mass_2_source = []
913
- while len(mass_1_source) < size:
914
- # draw from normal distribution
915
- m2 = np.random.normal(muL, sigmaL, size=size)
916
- m1 = np.random.normal(muR, sigmaR, size=size)
917
- # check if m1>m2
918
- idx = m1>m2
919
- mass_1_source+=list(m1[idx])
920
- mass_2_source+=list(m2[idx])
921
-
922
- mass_1_source = np.array(mass_1_source)[:size]
923
- mass_2_source = np.array(mass_2_source)[:size]
910
+
911
+ model = p.mass_prior("BNS", None)
912
+ mass_1_source, mass_2_source = model.sample(Nsample=size)
913
+ while np.any(mass_2_source > mass_1_source):
914
+ mass_1_source, mass_2_source = model.sample(Nsample=size)
924
915
 
925
916
  return (mass_1_source, mass_2_source)
926
917
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ler
3
- Version: 0.2.5
3
+ Version: 0.2.6
4
4
  Summary: Gravitational waves Lensing Rates
5
5
  Home-page: https://github.com/hemantaph/ler
6
6
  Author: Hemantakumar
@@ -11,7 +11,7 @@ Description-Content-Type: text/markdown
11
11
  License-File: LICENSE
12
12
 
13
13
  # LeR
14
- [![DOI](https://zenodo.org/badge/626733473.svg)](https://zenodo.org/badge/latestdoi/626733473)
14
+ [![DOI](https://zenodo.org/badge/626733473.svg)](https://zenodo.org/badge/latestdoi/626733473) [![PyPI version](https://badge.fury.io/py/ler.svg)](https://badge.fury.io/py/ler) [![DOCS](https://readthedocs.org/projects/ler/badge/?version=latest)](https://ler.readthedocs.io/en/latest/)
15
15
 
16
16
  `LeR` is a statistical-based python package whose core function is to calculate detectable rates of both lensing and unlensed GW events. This calculation is very much dependent on the other functionality of the package, which can be subdivided into three parts; 1. Sampling of compact-binary source properties, 2. Sampling of lens galaxy characteristics and 3. Solving the lens equation to get image properties of the source. The package as a whole relies on `numpy` array operation and linear algebra, `scipy` interpolation and `multiprocessing` functionality of python to increase speed and functionality without compromising on the ease of use. The API of `LeR` is structured such that each functionality mentioned stands in its own right for scientific research but also can be used together as needed. Key features of `LeR` and its dependencies can be summarized as follows,
17
17
 
@@ -13,7 +13,7 @@ if python_version < (3, 10):
13
13
 
14
14
  setup(
15
15
  name="ler",
16
- version="0.2.5",
16
+ version="0.2.6",
17
17
  description="Gravitational waves Lensing Rates",
18
18
  long_description=long_description,
19
19
  long_description_content_type='text/markdown',
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes