lazyqml 3.0.6__tar.gz → 3.1.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (80) hide show
  1. {lazyqml-3.0.6 → lazyqml-3.1.1}/.github/workflows/docs.yml +5 -10
  2. lazyqml-3.1.1/PKG-INFO +130 -0
  3. lazyqml-3.1.1/README.md +91 -0
  4. lazyqml-3.1.1/docs/common.md +3 -0
  5. lazyqml-3.1.1/docs/logo.jpg +0 -0
  6. lazyqml-3.1.1/lazyqml/Interfaces/__init__.py +0 -0
  7. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/__init__.py +1 -1
  8. lazyqml-3.1.1/lazyqml.egg-info/PKG-INFO +130 -0
  9. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml.egg-info/SOURCES.txt +1 -1
  10. {lazyqml-3.0.6 → lazyqml-3.1.1}/mkdocs.yml +7 -18
  11. {lazyqml-3.0.6 → lazyqml-3.1.1}/pyproject.toml +2 -2
  12. lazyqml-3.0.6/PKG-INFO +0 -255
  13. lazyqml-3.0.6/README copy.md +0 -71
  14. lazyqml-3.0.6/README.md +0 -216
  15. lazyqml-3.0.6/docs/common.md +0 -3
  16. lazyqml-3.0.6/docs/lazyqml.md +0 -4
  17. lazyqml-3.0.6/lazyqml.egg-info/PKG-INFO +0 -255
  18. {lazyqml-3.0.6 → lazyqml-3.1.1}/.editorconfig +0 -0
  19. {lazyqml-3.0.6 → lazyqml-3.1.1}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  20. {lazyqml-3.0.6 → lazyqml-3.1.1}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  21. {lazyqml-3.0.6 → lazyqml-3.1.1}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  22. {lazyqml-3.0.6 → lazyqml-3.1.1}/.github/workflows/docs-build.yml +0 -0
  23. {lazyqml-3.0.6 → lazyqml-3.1.1}/.github/workflows/installation.yml +0 -0
  24. {lazyqml-3.0.6 → lazyqml-3.1.1}/.github/workflows/pypi.yml +0 -0
  25. {lazyqml-3.0.6 → lazyqml-3.1.1}/.github/workflows/ubuntu.yml +0 -0
  26. {lazyqml-3.0.6 → lazyqml-3.1.1}/.gitignore +0 -0
  27. {lazyqml-3.0.6 → lazyqml-3.1.1}/AUTHORS.rst +0 -0
  28. {lazyqml-3.0.6 → lazyqml-3.1.1}/LICENSE +0 -0
  29. {lazyqml-3.0.6 → lazyqml-3.1.1}/LICENSE copy +0 -0
  30. {lazyqml-3.0.6 → lazyqml-3.1.1}/MANIFEST.in +0 -0
  31. {lazyqml-3.0.6 → lazyqml-3.1.1}/docs/authors.rst +0 -0
  32. {lazyqml-3.0.6 → lazyqml-3.1.1}/docs/changelog.md +0 -0
  33. {lazyqml-3.0.6 → lazyqml-3.1.1}/docs/contributing.md +0 -0
  34. {lazyqml-3.0.6 → lazyqml-3.1.1}/docs/examples/intro.ipynb +0 -0
  35. {lazyqml-3.0.6 → lazyqml-3.1.1}/docs/faq.md +0 -0
  36. {lazyqml-3.0.6 → lazyqml-3.1.1}/docs/index.md +0 -0
  37. {lazyqml-3.0.6 → lazyqml-3.1.1}/docs/installation.md +0 -0
  38. /lazyqml-3.0.6/lazyqml/Factories/Preprocessing/__init__.py → /lazyqml-3.1.1/docs/lazyqml.md +0 -0
  39. {lazyqml-3.0.6 → lazyqml-3.1.1}/docs/overrides/main.html +0 -0
  40. {lazyqml-3.0.6 → lazyqml-3.1.1}/docs/usage.md +0 -0
  41. {lazyqml-3.0.6 → lazyqml-3.1.1}/experimentallibs.txt +0 -0
  42. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/AmplitudeEmbedding.py +0 -0
  43. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/HCzRx.py +0 -0
  44. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/HardwareEfficient.py +0 -0
  45. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/RxEmbedding.py +0 -0
  46. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/RyEmbedding.py +0 -0
  47. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/RzEmbedding.py +0 -0
  48. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/TreeTensor.py +0 -0
  49. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/TwoLocal.py +0 -0
  50. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/ZzEmbedding.py +0 -0
  51. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Circuits/fCircuits.py +0 -0
  52. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Dispatchers/Dispatcher.py +0 -0
  53. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Models/Hybrid.py +0 -0
  54. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Models/QNNBag.py +0 -0
  55. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Models/QNNTorch.py +0 -0
  56. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Models/QSVM.py +0 -0
  57. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Models/_QNNPennylane.py +0 -0
  58. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Models/fModels.py +0 -0
  59. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Preprocessing/Pca.py +0 -0
  60. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Preprocessing/Sanitizer.py +0 -0
  61. {lazyqml-3.0.6/lazyqml/Factories → lazyqml-3.1.1/lazyqml/Factories/Preprocessing}/__init__.py +0 -0
  62. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Factories/Preprocessing/fPreprocessing.py +0 -0
  63. {lazyqml-3.0.6/lazyqml/Interfaces → lazyqml-3.1.1/lazyqml/Factories}/__init__.py +0 -0
  64. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Global/globalEnums.py +0 -0
  65. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Interfaces/iAnsatz.py +0 -0
  66. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Interfaces/iCircuit.py +0 -0
  67. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Interfaces/iModel.py +0 -0
  68. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Interfaces/iPreprocessing.py +0 -0
  69. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Utils/Utils.py +0 -0
  70. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/Utils/Validator.py +0 -0
  71. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml/lazyqml.py +0 -0
  72. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml.egg-info/dependency_links.txt +0 -0
  73. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml.egg-info/entry_points.txt +0 -0
  74. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml.egg-info/requires.txt +0 -0
  75. {lazyqml-3.0.6 → lazyqml-3.1.1}/lazyqml.egg-info/top_level.txt +0 -0
  76. {lazyqml-3.0.6 → lazyqml-3.1.1}/requirements.txt +0 -0
  77. {lazyqml-3.0.6 → lazyqml-3.1.1}/requirements_dev.txt +0 -0
  78. {lazyqml-3.0.6 → lazyqml-3.1.1}/setup.cfg +0 -0
  79. {lazyqml-3.0.6 → lazyqml-3.1.1}/tests/__init__.py +0 -0
  80. {lazyqml-3.0.6 → lazyqml-3.1.1}/tests/test_lazyqml.py +0 -0
@@ -3,7 +3,6 @@ on:
3
3
  push:
4
4
  branches:
5
5
  - main
6
- - master
7
6
  jobs:
8
7
  deploy:
9
8
  runs-on: ubuntu-latest
@@ -11,19 +10,15 @@ jobs:
11
10
  - uses: actions/checkout@v4
12
11
  - uses: actions/setup-python@v5
13
12
  with:
14
- python-version: "3.9"
15
-
13
+ python-version: "3.11"
16
14
  - name: Install dependencies
17
15
  run: |
18
16
  python -m pip install --upgrade pip
19
17
  pip install --user --no-cache-dir Cython
20
- pip install --user -r requirements.txt -r requirements_dev.txt
21
- pip install .
22
- - name: Discover typos with codespell
23
- run: |
24
- codespell --skip="*.csv,*.geojson,*.json,*.js,*.html,*cff,./.git" --ignore-words-list="aci,hist"
18
+ pip install --user -r requirements.txt
25
19
  - name: PKG-TEST
26
20
  run: |
27
21
  python -m unittest discover tests/
28
- - run: mkdocs gh-deploy --force
29
-
22
+ - run: python -m pip install --upgrade pip
23
+ - run: pip install mkdocs-material mkdocstrings mkdocstrings-python-legacy mkdocs-git-revision-date-plugin mkdocs-jupyter
24
+ - run: mkdocs gh-deploy --force
lazyqml-3.1.1/PKG-INFO ADDED
@@ -0,0 +1,130 @@
1
+ Metadata-Version: 2.1
2
+ Name: lazyqml
3
+ Version: 3.1.1
4
+ Summary: LazyQML benchmarking utility to test quantum machine learning models.
5
+ Author-email: QHPC Group <qhpcgroup@gmail.com>
6
+ License: MIT License
7
+ Project-URL: Homepage, https://github.com/QHPC-SP-Research-Lab/LazyQML
8
+ Keywords: lazyqml
9
+ Classifier: Intended Audience :: Science/Research
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Natural Language :: English
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Requires-Python: >=3.9
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ License-File: LICENSE copy
17
+ License-File: AUTHORS.rst
18
+ Requires-Dist: wheel
19
+ Requires-Dist: tabulate
20
+ Requires-Dist: torch
21
+ Requires-Dist: torchaudio
22
+ Requires-Dist: torchvision
23
+ Requires-Dist: scipy
24
+ Requires-Dist: scikit-learn
25
+ Requires-Dist: PennyLane
26
+ Requires-Dist: PennyLane_Lightning
27
+ Requires-Dist: PennyLane_Lightning_GPU
28
+ Requires-Dist: custatevec_cu12
29
+ Requires-Dist: ucimlrepo
30
+ Requires-Dist: pydantic
31
+ Requires-Dist: psutil
32
+ Requires-Dist: pandas
33
+ Requires-Dist: joblib
34
+ Requires-Dist: gputil
35
+ Provides-Extra: all
36
+ Requires-Dist: lazyqml[extra]; extra == "all"
37
+ Provides-Extra: extra
38
+ Requires-Dist: pandas; extra == "extra"
39
+
40
+ ![logo](https://github.com/QHPC-SP-Research-Lab/LazyQML/blob/main/docs/logo.jpg)
41
+ ---
42
+ [![Pypi](https://img.shields.io/badge/pypi-%23ececec.svg?style=for-the-badge&logo=pypi&logoColor=1f73b7)](https://pypi.python.org/pypi/lazyqml)
43
+ ![GitHub Actions](https://img.shields.io/badge/github%20actions-%232671E5.svg?style=for-the-badge&logo=githubactions&logoColor=white)
44
+ ![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white)
45
+ ![Pandas](https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white)
46
+ ![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white)
47
+ ![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)
48
+ ![nVIDIA](https://img.shields.io/badge/cuda-000000.svg?style=for-the-badge&logo=nVIDIA&logoColor=green)
49
+ ![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)
50
+
51
+
52
+
53
+ LazyQML is a Python library designed to streamline, automate, and accelerate experimentation with Quantum Machine Learning (QML) architectures, right on classical computers.
54
+
55
+ With LazyQML, you can:
56
+ - 🛠️ Build, test, and benchmark QML models with minimal effort.
57
+
58
+ - ⚡ Compare different QML architectures, hyperparameters seamlessly.
59
+
60
+ - 🧠 Gather knowledge about the most suitable architecture for your problem.
61
+
62
+ ## ✨ Why LazyQML?
63
+
64
+ - Rapid Prototyping: Experiment with different QML models using just a few lines of code.
65
+
66
+ - Automated Benchmarking: Evaluate performance and trade-offs across architectures effortlessly.
67
+
68
+ - Flexible & Modular: From basic quantum circuits to hybrid quantum-classical models—LazyQML has you covered.
69
+
70
+ ## Documentation
71
+ For detailed usage instructions, API reference, and code examples, please refer to the official LazyQML documentation.
72
+
73
+ ## Requirements
74
+
75
+ - Python >= 3.10
76
+
77
+ > [!CAUTION]
78
+ > This library is only supported by Linux Systems. It doesn't support Windows nor MacOS.
79
+
80
+
81
+ ## Installation
82
+ To install lazyqml, run this command in your terminal:
83
+
84
+ ```
85
+ pip install lazyqml
86
+ ```
87
+
88
+ This is the preferred method to install lazyqml, as it will always install the most recent stable release.
89
+
90
+ If you don't have [pip](https://pip.pypa.io) installed, this [Python installation guide](http://docs.python-guide.org/en/latest/starting/installation/) can guide you through the process.
91
+
92
+ ### From sources
93
+
94
+ To install lazyqml from sources, run this command in your terminal:
95
+
96
+ ```
97
+ pip install git+https://github.com/QHPC-SP-Research-Lab/LazyQML
98
+ ```
99
+ ## Example
100
+
101
+ ```python
102
+ from sklearn.datasets import load_iris
103
+ from lazyqml.lazyqml import *
104
+
105
+ # Load data
106
+ data = load_iris()
107
+ X = data.data
108
+ y = data.target
109
+
110
+ classifier = QuantumClassifier(nqubits={4}, classifiers={Model.QNN, Model.QSVM}, epochs=10)
111
+
112
+ # Fit and predict
113
+ classifier.fit(X=X, y=y, test_size=0.4)
114
+ ```
115
+
116
+ ## Quantum and High Performance Computing (QHPC) - University of Oviedo
117
+ - José Ranilla Pastor - ranilla@uniovi.es
118
+ - Elías Fernández Combarro - efernandezca@uniovi.es
119
+ - Diego García Vega - diegogarciavega@gmail.com
120
+ - Fernando Álvaro Plou Llorente - ploufernando@uniovi.es
121
+ - Alejandro Leal Castaño - lealcalejandro@uniovi.es
122
+ - Group - https://qhpc.uniovi.es
123
+
124
+ ## Citing
125
+ If you used LazyQML in your work, please cite:
126
+ - García-Vega, D., Plou Llorente, F., Leal Castaño, A., Combarro, E.F., Ranilla, J.: Lazyqml: A python library to benchmark quantum machine learning models. In: 30th European Conference on Parallel and Distributed Processing (2024)
127
+
128
+ ## License
129
+ - Free software: MIT License
130
+
@@ -0,0 +1,91 @@
1
+ ![logo](https://github.com/QHPC-SP-Research-Lab/LazyQML/blob/main/docs/logo.jpg)
2
+ ---
3
+ [![Pypi](https://img.shields.io/badge/pypi-%23ececec.svg?style=for-the-badge&logo=pypi&logoColor=1f73b7)](https://pypi.python.org/pypi/lazyqml)
4
+ ![GitHub Actions](https://img.shields.io/badge/github%20actions-%232671E5.svg?style=for-the-badge&logo=githubactions&logoColor=white)
5
+ ![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white)
6
+ ![Pandas](https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white)
7
+ ![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white)
8
+ ![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)
9
+ ![nVIDIA](https://img.shields.io/badge/cuda-000000.svg?style=for-the-badge&logo=nVIDIA&logoColor=green)
10
+ ![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)
11
+
12
+
13
+
14
+ LazyQML is a Python library designed to streamline, automate, and accelerate experimentation with Quantum Machine Learning (QML) architectures, right on classical computers.
15
+
16
+ With LazyQML, you can:
17
+ - 🛠️ Build, test, and benchmark QML models with minimal effort.
18
+
19
+ - ⚡ Compare different QML architectures, hyperparameters seamlessly.
20
+
21
+ - 🧠 Gather knowledge about the most suitable architecture for your problem.
22
+
23
+ ## ✨ Why LazyQML?
24
+
25
+ - Rapid Prototyping: Experiment with different QML models using just a few lines of code.
26
+
27
+ - Automated Benchmarking: Evaluate performance and trade-offs across architectures effortlessly.
28
+
29
+ - Flexible & Modular: From basic quantum circuits to hybrid quantum-classical models—LazyQML has you covered.
30
+
31
+ ## Documentation
32
+ For detailed usage instructions, API reference, and code examples, please refer to the official LazyQML documentation.
33
+
34
+ ## Requirements
35
+
36
+ - Python >= 3.10
37
+
38
+ > [!CAUTION]
39
+ > This library is only supported by Linux Systems. It doesn't support Windows nor MacOS.
40
+
41
+
42
+ ## Installation
43
+ To install lazyqml, run this command in your terminal:
44
+
45
+ ```
46
+ pip install lazyqml
47
+ ```
48
+
49
+ This is the preferred method to install lazyqml, as it will always install the most recent stable release.
50
+
51
+ If you don't have [pip](https://pip.pypa.io) installed, this [Python installation guide](http://docs.python-guide.org/en/latest/starting/installation/) can guide you through the process.
52
+
53
+ ### From sources
54
+
55
+ To install lazyqml from sources, run this command in your terminal:
56
+
57
+ ```
58
+ pip install git+https://github.com/QHPC-SP-Research-Lab/LazyQML
59
+ ```
60
+ ## Example
61
+
62
+ ```python
63
+ from sklearn.datasets import load_iris
64
+ from lazyqml.lazyqml import *
65
+
66
+ # Load data
67
+ data = load_iris()
68
+ X = data.data
69
+ y = data.target
70
+
71
+ classifier = QuantumClassifier(nqubits={4}, classifiers={Model.QNN, Model.QSVM}, epochs=10)
72
+
73
+ # Fit and predict
74
+ classifier.fit(X=X, y=y, test_size=0.4)
75
+ ```
76
+
77
+ ## Quantum and High Performance Computing (QHPC) - University of Oviedo
78
+ - José Ranilla Pastor - ranilla@uniovi.es
79
+ - Elías Fernández Combarro - efernandezca@uniovi.es
80
+ - Diego García Vega - diegogarciavega@gmail.com
81
+ - Fernando Álvaro Plou Llorente - ploufernando@uniovi.es
82
+ - Alejandro Leal Castaño - lealcalejandro@uniovi.es
83
+ - Group - https://qhpc.uniovi.es
84
+
85
+ ## Citing
86
+ If you used LazyQML in your work, please cite:
87
+ - García-Vega, D., Plou Llorente, F., Leal Castaño, A., Combarro, E.F., Ranilla, J.: Lazyqml: A python library to benchmark quantum machine learning models. In: 30th European Conference on Parallel and Distributed Processing (2024)
88
+
89
+ ## License
90
+ - Free software: MIT License
91
+
@@ -0,0 +1,3 @@
1
+ # common module
2
+
3
+ ::: lazyqml.lazyqml
Binary file
File without changes
@@ -2,4 +2,4 @@
2
2
 
3
3
  __author__ = """Diego García Vega, Fernando Álvaro Plou Llorente, Alejandro Leal Castaño"""
4
4
  __email__ = "garciavdiego@uniovi.es, ploufernando@uniovi.es, lealcalejandro@uniovi.es"
5
- __version__ = "3.0.6"
5
+ __version__ = "3.1.1"
@@ -0,0 +1,130 @@
1
+ Metadata-Version: 2.1
2
+ Name: lazyqml
3
+ Version: 3.1.1
4
+ Summary: LazyQML benchmarking utility to test quantum machine learning models.
5
+ Author-email: QHPC Group <qhpcgroup@gmail.com>
6
+ License: MIT License
7
+ Project-URL: Homepage, https://github.com/QHPC-SP-Research-Lab/LazyQML
8
+ Keywords: lazyqml
9
+ Classifier: Intended Audience :: Science/Research
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Natural Language :: English
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Requires-Python: >=3.9
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ License-File: LICENSE copy
17
+ License-File: AUTHORS.rst
18
+ Requires-Dist: wheel
19
+ Requires-Dist: tabulate
20
+ Requires-Dist: torch
21
+ Requires-Dist: torchaudio
22
+ Requires-Dist: torchvision
23
+ Requires-Dist: scipy
24
+ Requires-Dist: scikit-learn
25
+ Requires-Dist: PennyLane
26
+ Requires-Dist: PennyLane_Lightning
27
+ Requires-Dist: PennyLane_Lightning_GPU
28
+ Requires-Dist: custatevec_cu12
29
+ Requires-Dist: ucimlrepo
30
+ Requires-Dist: pydantic
31
+ Requires-Dist: psutil
32
+ Requires-Dist: pandas
33
+ Requires-Dist: joblib
34
+ Requires-Dist: gputil
35
+ Provides-Extra: all
36
+ Requires-Dist: lazyqml[extra]; extra == "all"
37
+ Provides-Extra: extra
38
+ Requires-Dist: pandas; extra == "extra"
39
+
40
+ ![logo](https://github.com/QHPC-SP-Research-Lab/LazyQML/blob/main/docs/logo.jpg)
41
+ ---
42
+ [![Pypi](https://img.shields.io/badge/pypi-%23ececec.svg?style=for-the-badge&logo=pypi&logoColor=1f73b7)](https://pypi.python.org/pypi/lazyqml)
43
+ ![GitHub Actions](https://img.shields.io/badge/github%20actions-%232671E5.svg?style=for-the-badge&logo=githubactions&logoColor=white)
44
+ ![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white)
45
+ ![Pandas](https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white)
46
+ ![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white)
47
+ ![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)
48
+ ![nVIDIA](https://img.shields.io/badge/cuda-000000.svg?style=for-the-badge&logo=nVIDIA&logoColor=green)
49
+ ![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)
50
+
51
+
52
+
53
+ LazyQML is a Python library designed to streamline, automate, and accelerate experimentation with Quantum Machine Learning (QML) architectures, right on classical computers.
54
+
55
+ With LazyQML, you can:
56
+ - 🛠️ Build, test, and benchmark QML models with minimal effort.
57
+
58
+ - ⚡ Compare different QML architectures, hyperparameters seamlessly.
59
+
60
+ - 🧠 Gather knowledge about the most suitable architecture for your problem.
61
+
62
+ ## ✨ Why LazyQML?
63
+
64
+ - Rapid Prototyping: Experiment with different QML models using just a few lines of code.
65
+
66
+ - Automated Benchmarking: Evaluate performance and trade-offs across architectures effortlessly.
67
+
68
+ - Flexible & Modular: From basic quantum circuits to hybrid quantum-classical models—LazyQML has you covered.
69
+
70
+ ## Documentation
71
+ For detailed usage instructions, API reference, and code examples, please refer to the official LazyQML documentation.
72
+
73
+ ## Requirements
74
+
75
+ - Python >= 3.10
76
+
77
+ > [!CAUTION]
78
+ > This library is only supported by Linux Systems. It doesn't support Windows nor MacOS.
79
+
80
+
81
+ ## Installation
82
+ To install lazyqml, run this command in your terminal:
83
+
84
+ ```
85
+ pip install lazyqml
86
+ ```
87
+
88
+ This is the preferred method to install lazyqml, as it will always install the most recent stable release.
89
+
90
+ If you don't have [pip](https://pip.pypa.io) installed, this [Python installation guide](http://docs.python-guide.org/en/latest/starting/installation/) can guide you through the process.
91
+
92
+ ### From sources
93
+
94
+ To install lazyqml from sources, run this command in your terminal:
95
+
96
+ ```
97
+ pip install git+https://github.com/QHPC-SP-Research-Lab/LazyQML
98
+ ```
99
+ ## Example
100
+
101
+ ```python
102
+ from sklearn.datasets import load_iris
103
+ from lazyqml.lazyqml import *
104
+
105
+ # Load data
106
+ data = load_iris()
107
+ X = data.data
108
+ y = data.target
109
+
110
+ classifier = QuantumClassifier(nqubits={4}, classifiers={Model.QNN, Model.QSVM}, epochs=10)
111
+
112
+ # Fit and predict
113
+ classifier.fit(X=X, y=y, test_size=0.4)
114
+ ```
115
+
116
+ ## Quantum and High Performance Computing (QHPC) - University of Oviedo
117
+ - José Ranilla Pastor - ranilla@uniovi.es
118
+ - Elías Fernández Combarro - efernandezca@uniovi.es
119
+ - Diego García Vega - diegogarciavega@gmail.com
120
+ - Fernando Álvaro Plou Llorente - ploufernando@uniovi.es
121
+ - Alejandro Leal Castaño - lealcalejandro@uniovi.es
122
+ - Group - https://qhpc.uniovi.es
123
+
124
+ ## Citing
125
+ If you used LazyQML in your work, please cite:
126
+ - García-Vega, D., Plou Llorente, F., Leal Castaño, A., Combarro, E.F., Ranilla, J.: Lazyqml: A python library to benchmark quantum machine learning models. In: 30th European Conference on Parallel and Distributed Processing (2024)
127
+
128
+ ## License
129
+ - Free software: MIT License
130
+
@@ -4,7 +4,6 @@ AUTHORS.rst
4
4
  LICENSE
5
5
  LICENSE copy
6
6
  MANIFEST.in
7
- README copy.md
8
7
  README.md
9
8
  experimentallibs.txt
10
9
  mkdocs.yml
@@ -27,6 +26,7 @@ docs/faq.md
27
26
  docs/index.md
28
27
  docs/installation.md
29
28
  docs/lazyqml.md
29
+ docs/logo.jpg
30
30
  docs/usage.md
31
31
  docs/examples/intro.ipynb
32
32
  docs/overrides/main.html
@@ -1,8 +1,8 @@
1
1
  site_name: lazyqml
2
2
  site_description: LazyQML benchmarking utility to test quantum machine learning models.
3
- site_author: DiegoGV-Uniovi
4
- site_url: https://DiegoGV-Uniovi.github.io/lazyqml
5
- repo_url: https://github.com/DiegoGV-Uniovi/lazyqml
3
+ site_author: QHPC Group
4
+ site_url: https://QHPC-SP-Research-Lab.github.io/lazyqml
5
+ repo_url: https://github.com/QHPC-SP-Research-Lab/LazyQML
6
6
 
7
7
  copyright: "Copyright &copy; 2024 - 2024 Diego García Vega"
8
8
 
@@ -40,18 +40,7 @@ plugins:
40
40
  - search
41
41
  - mkdocstrings
42
42
  - git-revision-date
43
- - git-revision-date-localized:
44
- enable_creation_date: true
45
- type: timeago
46
- # - pdf-export
47
- - mkdocs-jupyter:
48
- include_source: True
49
- ignore_h1_titles: True
50
- execute: True
51
- allow_errors: false
52
- ignore: ["conf.py"]
53
- execute_ignore: ["*ignore.ipynb"]
54
-
43
+
55
44
  markdown_extensions:
56
45
  - admonition
57
46
  - abbr
@@ -78,9 +67,9 @@ nav:
78
67
  - Contributing: contributing.md
79
68
  - FAQ: faq.md
80
69
  - Changelog: changelog.md
81
- - Report Issues: https://github.com/DiegoGV-Uniovi/lazyqml/issues
70
+ - Report Issues: https://github.com/QHPC-SP-Research-Lab/LazyQML/issues
82
71
  - Examples:
83
72
  - examples/intro.ipynb
84
73
  - API Reference:
85
- - lazyqml module: lazyqml.md
86
- - common module: common.md
74
+ - lazyqml module: lazyqml.md
75
+
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "lazyqml"
3
- version = "3.0.6"
3
+ version = "3.1.1"
4
4
  dynamic = [
5
5
  "dependencies",
6
6
  ]
@@ -48,7 +48,7 @@ universal = true
48
48
 
49
49
 
50
50
  [tool.bumpversion]
51
- current_version = "3.0.6"
51
+ current_version = "3.1.1"
52
52
  commit = true
53
53
  tag = true
54
54