lattice-sub 1.1.3__tar.gz → 1.2.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/MANIFEST.in +1 -0
  2. {lattice_sub-1.1.3/src/lattice_sub.egg-info → lattice_sub-1.2.2}/PKG-INFO +71 -1
  3. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/README.md +70 -0
  4. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/pyproject.toml +1 -1
  5. {lattice_sub-1.1.3 → lattice_sub-1.2.2/src/lattice_sub.egg-info}/PKG-INFO +71 -1
  6. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/__init__.py +1 -1
  7. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/batch.py +259 -8
  8. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/cli.py +4 -1
  9. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/config.py +7 -0
  10. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/core.py +14 -4
  11. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/LICENSE +0 -0
  12. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/docs/images/example_comparison.png +0 -0
  13. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/docs/images/threshold_analysis.png +0 -0
  14. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/examples/config.yaml +0 -0
  15. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/examples/converted_params.yaml +0 -0
  16. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/setup.cfg +0 -0
  17. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_sub.egg-info/SOURCES.txt +0 -0
  18. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_sub.egg-info/dependency_links.txt +0 -0
  19. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_sub.egg-info/entry_points.txt +0 -0
  20. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_sub.egg-info/requires.txt +0 -0
  21. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_sub.egg-info/top_level.txt +0 -0
  22. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/io.py +0 -0
  23. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/masks.py +0 -0
  24. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/processing.py +0 -0
  25. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/threshold_optimizer.py +0 -0
  26. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/ui.py +0 -0
  27. {lattice_sub-1.1.3 → lattice_sub-1.2.2}/src/lattice_subtraction/visualization.py +0 -0
@@ -16,6 +16,7 @@ prune tests
16
16
  # Exclude internal/development files
17
17
  exclude NOTES_*.md
18
18
  exclude *.log
19
+ exclude environment.yml
19
20
  exclude benchmark_*.py
20
21
  exclude analyze_thresholds.py
21
22
  exclude test_search_strategies.py
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lattice-sub
3
- Version: 1.1.3
3
+ Version: 1.2.2
4
4
  Summary: Lattice subtraction for cryo-EM micrographs - removes periodic crystal signals to reveal non-periodic features
5
5
  Author-email: George Stephenson <george.stephenson@colorado.edu>, Vignesh Kasinath <vignesh.kasinath@colorado.edu>
6
6
  License: MIT
@@ -172,6 +172,76 @@ python -c "import torch; print(torch.cuda.get_device_name(0) if torch.cuda.is_av
172
172
 
173
173
  ---
174
174
 
175
+ ## Multi-GPU Support
176
+
177
+ When processing batches on systems with multiple GPUs, files are automatically distributed across all available GPUs for faster processing. No extra flags needed!
178
+
179
+ ```bash
180
+ # Automatically uses all available GPUs
181
+ lattice-sub batch input_folder/ output_folder/ -p 0.56
182
+ ```
183
+
184
+ **Example with 2 GPUs and 100 images:**
185
+ - GPU 0: processes images 1-50
186
+ - GPU 1: processes images 51-100
187
+ - Single progress bar shows combined progress
188
+
189
+ This provides near-linear speedup with additional GPUs.
190
+
191
+ ---
192
+
193
+ ## HPC Example (CU Boulder Alpine)
194
+
195
+ Using [Open OnDemand Core Desktop](https://curc.readthedocs.io/en/latest/open_ondemand/core_desktop.html) with 2× RTX 8000 GPUs:
196
+
197
+ ```bash
198
+ # Create environment
199
+ module load anaconda
200
+ conda create -n lattice_test python=3.11 -y
201
+ conda activate lattice_test
202
+ pip install lattice-sub
203
+
204
+ # Process 100 micrographs
205
+ lattice-sub batch input/ output/ -p 0.56
206
+ ```
207
+
208
+ **Output:**
209
+ ```
210
+ Phase-preserving FFT inpainting for cryo-EM | v1.2.2
211
+
212
+ Configuration
213
+ -------------
214
+ Pixel size: 0.56 A
215
+ Threshold: auto
216
+ Backend: Auto → GPU (Quadro RTX 8000)
217
+
218
+ Batch Processing
219
+ ----------------
220
+ Files: 100
221
+ Output: /projects/user/output
222
+ Workers: 1
223
+
224
+ ✓ Using 2 GPUs: GPU 0, GPU 1
225
+
226
+ ✓ GPU 0: Quadro RTX 8000
227
+ ✓ GPU 1: Quadro RTX 8000
228
+
229
+ Processing: 100%|█████████████████████████| 100/100 [05:12<00:00, 3.13s/file]
230
+
231
+ [OK] Batch complete (312.9s)
232
+ ```
233
+
234
+ **100 images processed in ~5 minutes** with automatic multi-GPU distribution.
235
+
236
+ For compute-focused workloads, use Alpine's [GPU partitions](https://curc.readthedocs.io/en/latest/clusters/alpine/alpine-hardware.html) (A100, L40, MI100):
237
+
238
+ ```bash
239
+ # Request 3 GPUs for 1 hour
240
+ sinteractive --partition=aa100 --gres=gpu:3 --ntasks=16 --nodes=1 --time=01:00:00 --qos=normal
241
+ ```
242
+
243
+ ---
244
+
175
245
  ## Python API
176
246
 
177
247
  ```python
@@ -131,6 +131,76 @@ python -c "import torch; print(torch.cuda.get_device_name(0) if torch.cuda.is_av
131
131
 
132
132
  ---
133
133
 
134
+ ## Multi-GPU Support
135
+
136
+ When processing batches on systems with multiple GPUs, files are automatically distributed across all available GPUs for faster processing. No extra flags needed!
137
+
138
+ ```bash
139
+ # Automatically uses all available GPUs
140
+ lattice-sub batch input_folder/ output_folder/ -p 0.56
141
+ ```
142
+
143
+ **Example with 2 GPUs and 100 images:**
144
+ - GPU 0: processes images 1-50
145
+ - GPU 1: processes images 51-100
146
+ - Single progress bar shows combined progress
147
+
148
+ This provides near-linear speedup with additional GPUs.
149
+
150
+ ---
151
+
152
+ ## HPC Example (CU Boulder Alpine)
153
+
154
+ Using [Open OnDemand Core Desktop](https://curc.readthedocs.io/en/latest/open_ondemand/core_desktop.html) with 2× RTX 8000 GPUs:
155
+
156
+ ```bash
157
+ # Create environment
158
+ module load anaconda
159
+ conda create -n lattice_test python=3.11 -y
160
+ conda activate lattice_test
161
+ pip install lattice-sub
162
+
163
+ # Process 100 micrographs
164
+ lattice-sub batch input/ output/ -p 0.56
165
+ ```
166
+
167
+ **Output:**
168
+ ```
169
+ Phase-preserving FFT inpainting for cryo-EM | v1.2.2
170
+
171
+ Configuration
172
+ -------------
173
+ Pixel size: 0.56 A
174
+ Threshold: auto
175
+ Backend: Auto → GPU (Quadro RTX 8000)
176
+
177
+ Batch Processing
178
+ ----------------
179
+ Files: 100
180
+ Output: /projects/user/output
181
+ Workers: 1
182
+
183
+ ✓ Using 2 GPUs: GPU 0, GPU 1
184
+
185
+ ✓ GPU 0: Quadro RTX 8000
186
+ ✓ GPU 1: Quadro RTX 8000
187
+
188
+ Processing: 100%|█████████████████████████| 100/100 [05:12<00:00, 3.13s/file]
189
+
190
+ [OK] Batch complete (312.9s)
191
+ ```
192
+
193
+ **100 images processed in ~5 minutes** with automatic multi-GPU distribution.
194
+
195
+ For compute-focused workloads, use Alpine's [GPU partitions](https://curc.readthedocs.io/en/latest/clusters/alpine/alpine-hardware.html) (A100, L40, MI100):
196
+
197
+ ```bash
198
+ # Request 3 GPUs for 1 hour
199
+ sinteractive --partition=aa100 --gres=gpu:3 --ntasks=16 --nodes=1 --time=01:00:00 --qos=normal
200
+ ```
201
+
202
+ ---
203
+
134
204
  ## Python API
135
205
 
136
206
  ```python
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "lattice-sub"
7
- version = "1.1.3"
7
+ version = "1.2.2"
8
8
  description = "Lattice subtraction for cryo-EM micrographs - removes periodic crystal signals to reveal non-periodic features"
9
9
  readme = "README.md"
10
10
  license = {text = "MIT"}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lattice-sub
3
- Version: 1.1.3
3
+ Version: 1.2.2
4
4
  Summary: Lattice subtraction for cryo-EM micrographs - removes periodic crystal signals to reveal non-periodic features
5
5
  Author-email: George Stephenson <george.stephenson@colorado.edu>, Vignesh Kasinath <vignesh.kasinath@colorado.edu>
6
6
  License: MIT
@@ -172,6 +172,76 @@ python -c "import torch; print(torch.cuda.get_device_name(0) if torch.cuda.is_av
172
172
 
173
173
  ---
174
174
 
175
+ ## Multi-GPU Support
176
+
177
+ When processing batches on systems with multiple GPUs, files are automatically distributed across all available GPUs for faster processing. No extra flags needed!
178
+
179
+ ```bash
180
+ # Automatically uses all available GPUs
181
+ lattice-sub batch input_folder/ output_folder/ -p 0.56
182
+ ```
183
+
184
+ **Example with 2 GPUs and 100 images:**
185
+ - GPU 0: processes images 1-50
186
+ - GPU 1: processes images 51-100
187
+ - Single progress bar shows combined progress
188
+
189
+ This provides near-linear speedup with additional GPUs.
190
+
191
+ ---
192
+
193
+ ## HPC Example (CU Boulder Alpine)
194
+
195
+ Using [Open OnDemand Core Desktop](https://curc.readthedocs.io/en/latest/open_ondemand/core_desktop.html) with 2× RTX 8000 GPUs:
196
+
197
+ ```bash
198
+ # Create environment
199
+ module load anaconda
200
+ conda create -n lattice_test python=3.11 -y
201
+ conda activate lattice_test
202
+ pip install lattice-sub
203
+
204
+ # Process 100 micrographs
205
+ lattice-sub batch input/ output/ -p 0.56
206
+ ```
207
+
208
+ **Output:**
209
+ ```
210
+ Phase-preserving FFT inpainting for cryo-EM | v1.2.2
211
+
212
+ Configuration
213
+ -------------
214
+ Pixel size: 0.56 A
215
+ Threshold: auto
216
+ Backend: Auto → GPU (Quadro RTX 8000)
217
+
218
+ Batch Processing
219
+ ----------------
220
+ Files: 100
221
+ Output: /projects/user/output
222
+ Workers: 1
223
+
224
+ ✓ Using 2 GPUs: GPU 0, GPU 1
225
+
226
+ ✓ GPU 0: Quadro RTX 8000
227
+ ✓ GPU 1: Quadro RTX 8000
228
+
229
+ Processing: 100%|█████████████████████████| 100/100 [05:12<00:00, 3.13s/file]
230
+
231
+ [OK] Batch complete (312.9s)
232
+ ```
233
+
234
+ **100 images processed in ~5 minutes** with automatic multi-GPU distribution.
235
+
236
+ For compute-focused workloads, use Alpine's [GPU partitions](https://curc.readthedocs.io/en/latest/clusters/alpine/alpine-hardware.html) (A100, L40, MI100):
237
+
238
+ ```bash
239
+ # Request 3 GPUs for 1 hour
240
+ sinteractive --partition=aa100 --gres=gpu:3 --ntasks=16 --nodes=1 --time=01:00:00 --qos=normal
241
+ ```
242
+
243
+ ---
244
+
175
245
  ## Python API
176
246
 
177
247
  ```python
@@ -19,7 +19,7 @@ Example:
19
19
  >>> result.save("output.mrc")
20
20
  """
21
21
 
22
- __version__ = "1.1.3"
22
+ __version__ = "1.2.2"
23
23
  __author__ = "George Stephenson & Vignesh Kasinath"
24
24
 
25
25
  from .config import Config
@@ -1,12 +1,14 @@
1
1
  """
2
2
  Batch processing for multiple micrographs.
3
3
 
4
- This module provides parallel processing capabilities for large datasets.
4
+ This module provides parallel processing capabilities for large datasets,
5
+ including automatic multi-GPU support for systems with multiple CUDA devices.
5
6
  """
6
7
 
7
8
  import os
9
+ import multiprocessing as mp
8
10
  from concurrent.futures import ProcessPoolExecutor, as_completed
9
- from dataclasses import dataclass
11
+ from dataclasses import dataclass, asdict
10
12
  from pathlib import Path
11
13
  from typing import List, Tuple, Optional, Callable
12
14
  import logging
@@ -63,6 +65,91 @@ def _process_single_file(args: tuple) -> Tuple[Path, Optional[str]]:
63
65
  return (Path(input_path), str(e))
64
66
 
65
67
 
68
+ def _gpu_worker(
69
+ gpu_id: int,
70
+ file_pairs: List[Tuple[str, str]],
71
+ config_dict: dict,
72
+ progress_queue: mp.Queue,
73
+ error_queue: mp.Queue,
74
+ ):
75
+ """
76
+ Worker function for multi-GPU processing.
77
+
78
+ Each worker processes its assigned files on a specific GPU and reports
79
+ progress through a shared queue.
80
+
81
+ Args:
82
+ gpu_id: CUDA device ID to use
83
+ file_pairs: List of (input_path, output_path) tuples
84
+ config_dict: Configuration dictionary
85
+ progress_queue: Queue to report progress (sends 1 for each completed file)
86
+ error_queue: Queue to report errors (sends (gpu_id, file_path, error_msg))
87
+ """
88
+ import torch
89
+
90
+ # Set this process to use the specific GPU
91
+ torch.cuda.set_device(gpu_id)
92
+
93
+ # Reconstruct config with the specific device_id and quiet mode
94
+ config_dict = config_dict.copy()
95
+ config_dict['device_id'] = gpu_id
96
+ config_dict['_quiet'] = True # Suppress messages - main process handles this
97
+ config = Config(**config_dict)
98
+
99
+ # Create subtractor (messages suppressed via _quiet flag)
100
+ subtractor = LatticeSubtractor(config)
101
+
102
+ for input_path, output_path in file_pairs:
103
+ try:
104
+ result = subtractor.process(input_path)
105
+ result.save(output_path, pixel_size=config.pixel_ang)
106
+ progress_queue.put(1)
107
+ except Exception as e:
108
+ error_queue.put((gpu_id, input_path, str(e)))
109
+ return # Fail-fast: exit on first error
110
+
111
+
112
+ def _check_gpu_memory(device_id: int, image_shape: Tuple[int, int]) -> Tuple[bool, str]:
113
+ """
114
+ Check if GPU has sufficient memory for processing.
115
+
116
+ Args:
117
+ device_id: CUDA device ID
118
+ image_shape: (height, width) of image
119
+
120
+ Returns:
121
+ (is_ok, message) - True if sufficient memory, False with warning message
122
+ """
123
+ try:
124
+ import torch
125
+ free_mem, total_mem = torch.cuda.mem_get_info(device_id)
126
+
127
+ # Estimate memory needed: image + FFT (complex) + masks + overhead
128
+ # Roughly 16x image size for safe margin (complex FFT, intermediate buffers)
129
+ image_bytes = image_shape[0] * image_shape[1] * 4 # float32
130
+ estimated_need = image_bytes * 16
131
+
132
+ if free_mem < estimated_need:
133
+ return False, (
134
+ f"GPU {device_id}: {free_mem / 1e9:.1f}GB free, "
135
+ f"need ~{estimated_need / 1e9:.1f}GB"
136
+ )
137
+ return True, ""
138
+ except Exception as e:
139
+ return True, "" # If we can't check, proceed anyway
140
+
141
+
142
+ def _get_available_gpus() -> List[int]:
143
+ """Get list of available CUDA GPU device IDs."""
144
+ try:
145
+ import torch
146
+ if torch.cuda.is_available():
147
+ return list(range(torch.cuda.device_count()))
148
+ return []
149
+ except ImportError:
150
+ return []
151
+
152
+
66
153
  class BatchProcessor:
67
154
  """
68
155
  Parallel batch processor for micrograph datasets.
@@ -157,6 +244,9 @@ class BatchProcessor:
157
244
  """
158
245
  Process a list of input/output file pairs.
159
246
 
247
+ Automatically uses multi-GPU processing when multiple GPUs are available.
248
+ Files are distributed evenly across GPUs in chunks.
249
+
160
250
  Args:
161
251
  file_pairs: List of (input_path, output_path) tuples
162
252
  show_progress: If True, show progress bar
@@ -168,8 +258,7 @@ class BatchProcessor:
168
258
  successful = 0
169
259
  failed_files = []
170
260
 
171
- # Check if using GPU - if so, process sequentially to avoid CUDA fork issues
172
- # With "auto" backend, check if PyTorch + CUDA is actually available
261
+ # Check if using GPU - if so, check for multi-GPU capability
173
262
  use_gpu = self.config.backend == "pytorch"
174
263
  if self.config.backend == "auto":
175
264
  try:
@@ -179,10 +268,19 @@ class BatchProcessor:
179
268
  use_gpu = False
180
269
 
181
270
  if use_gpu:
182
- # Sequential processing for GPU (CUDA doesn't support fork multiprocessing)
183
- successful, failed_files = self._process_sequential(
184
- file_pairs, show_progress
185
- )
271
+ # Check how many GPUs are available
272
+ available_gpus = _get_available_gpus()
273
+
274
+ if len(available_gpus) > 1 and total > 1:
275
+ # Multi-GPU processing
276
+ successful, failed_files = self._process_multi_gpu(
277
+ file_pairs, available_gpus, show_progress
278
+ )
279
+ else:
280
+ # Single GPU - sequential processing
281
+ successful, failed_files = self._process_sequential(
282
+ file_pairs, show_progress
283
+ )
186
284
  else:
187
285
  # Parallel processing for CPU
188
286
  successful, failed_files = self._process_parallel(
@@ -284,6 +382,159 @@ class BatchProcessor:
284
382
 
285
383
  return successful, failed_files
286
384
 
385
+ def _process_multi_gpu(
386
+ self,
387
+ file_pairs: List[Tuple[Path, Path]],
388
+ gpu_ids: List[int],
389
+ show_progress: bool = True,
390
+ ) -> Tuple[int, List[Tuple[Path, str]]]:
391
+ """
392
+ Process files in parallel across multiple GPUs.
393
+
394
+ Files are distributed evenly across GPUs in chunks.
395
+ Uses spawn-based multiprocessing to avoid CUDA fork issues.
396
+
397
+ Args:
398
+ file_pairs: List of (input_path, output_path) tuples
399
+ gpu_ids: List of CUDA device IDs to use
400
+ show_progress: If True, show unified progress bar
401
+
402
+ Returns:
403
+ (successful_count, failed_files_list)
404
+ """
405
+ import time
406
+
407
+ total = len(file_pairs)
408
+ num_gpus = len(gpu_ids)
409
+
410
+ # Print multi-GPU info with GPU names
411
+ try:
412
+ import torch
413
+ gpu_names = [torch.cuda.get_device_name(i) for i in gpu_ids]
414
+ print(f"✓ Using {num_gpus} GPUs: {', '.join(f'GPU {i}' for i in gpu_ids)}")
415
+ print("")
416
+ for i, name in zip(gpu_ids, gpu_names):
417
+ print(f" ✓ GPU {i}: {name}")
418
+ except Exception:
419
+ print(f"✓ Using {num_gpus} GPUs")
420
+
421
+ # Check GPU memory on first GPU (assume similar for all)
422
+ if file_pairs:
423
+ try:
424
+ sample_image = read_mrc(file_pairs[0][0])
425
+ is_ok, msg = _check_gpu_memory(gpu_ids[0], sample_image.shape)
426
+ if not is_ok:
427
+ print(f"⚠ Memory warning: {msg}")
428
+ except Exception:
429
+ pass # Proceed anyway
430
+
431
+ # Distribute files evenly across GPUs (chunked distribution)
432
+ chunk_size = (total + num_gpus - 1) // num_gpus # Ceiling division
433
+ gpu_file_assignments = []
434
+
435
+ for i, gpu_id in enumerate(gpu_ids):
436
+ start_idx = i * chunk_size
437
+ end_idx = min(start_idx + chunk_size, total)
438
+ if start_idx < total:
439
+ chunk = [(str(inp), str(out)) for inp, out in file_pairs[start_idx:end_idx]]
440
+ gpu_file_assignments.append((gpu_id, chunk))
441
+
442
+ # Create shared queues for progress and errors
443
+ # Use 'spawn' context to avoid CUDA fork issues
444
+ ctx = mp.get_context('spawn')
445
+ progress_queue = ctx.Queue()
446
+ error_queue = ctx.Queue()
447
+
448
+ # Create progress bar (after all GPU info printed)
449
+ if show_progress:
450
+ print() # Blank line for visual separation
451
+ pbar = tqdm(
452
+ total=total,
453
+ desc=" Processing",
454
+ unit="file",
455
+ ncols=80,
456
+ leave=True,
457
+ )
458
+ else:
459
+ pbar = None
460
+
461
+ # Start worker processes
462
+ processes = []
463
+ for gpu_id, file_chunk in gpu_file_assignments:
464
+ p = ctx.Process(
465
+ target=_gpu_worker,
466
+ args=(gpu_id, file_chunk, self._config_dict, progress_queue, error_queue),
467
+ )
468
+ p.start()
469
+ processes.append(p)
470
+
471
+ # Monitor progress and check for errors
472
+ successful = 0
473
+ failed_files = []
474
+ completed = 0
475
+
476
+ while completed < total:
477
+ # Check for progress updates (non-blocking with timeout)
478
+ try:
479
+ while True:
480
+ progress_queue.get(timeout=0.1)
481
+ successful += 1
482
+ completed += 1
483
+ if pbar:
484
+ pbar.update(1)
485
+ except:
486
+ pass # Queue empty, continue
487
+
488
+ # Check for errors (non-blocking)
489
+ try:
490
+ while True:
491
+ gpu_id, file_path, error_msg = error_queue.get_nowait()
492
+ failed_files.append((Path(file_path), error_msg))
493
+ completed += 1
494
+ if pbar:
495
+ pbar.update(1)
496
+
497
+ # Fail-fast: terminate all workers and report
498
+ print(f"\n✗ GPU {gpu_id} failed on {Path(file_path).name}: {error_msg}")
499
+ print(f"\nTip: Try a different configuration:")
500
+ print(f" lattice-sub batch <input> <output> -p {self.config.pixel_ang} --cpu -j 8")
501
+
502
+ # Terminate all processes
503
+ for p in processes:
504
+ if p.is_alive():
505
+ p.terminate()
506
+
507
+ if pbar:
508
+ pbar.close()
509
+
510
+ return successful, failed_files
511
+ except:
512
+ pass # No errors, continue
513
+
514
+ # Check if all processes have finished
515
+ all_done = all(not p.is_alive() for p in processes)
516
+ if all_done:
517
+ # Drain remaining queue items
518
+ try:
519
+ while True:
520
+ progress_queue.get_nowait()
521
+ successful += 1
522
+ completed += 1
523
+ if pbar:
524
+ pbar.update(1)
525
+ except:
526
+ pass
527
+ break
528
+
529
+ # Wait for all processes to finish
530
+ for p in processes:
531
+ p.join(timeout=1.0)
532
+
533
+ if pbar:
534
+ pbar.close()
535
+
536
+ return successful, failed_files
537
+
287
538
  def process_numbered_sequence(
288
539
  self,
289
540
  input_pattern: str,
@@ -122,8 +122,11 @@ def setup_logging(verbose: bool, interactive: bool = False) -> None:
122
122
  )
123
123
 
124
124
 
125
+ from . import __version__
126
+
127
+
125
128
  @click.group()
126
- @click.version_option(version="1.0.10", prog_name="lattice-sub")
129
+ @click.version_option(version=__version__, prog_name="lattice-sub")
127
130
  def main():
128
131
  """
129
132
  Lattice Subtraction for Cryo-EM Micrographs.
@@ -64,6 +64,13 @@ class Config:
64
64
  # Enabled by default when GPU is available
65
65
  use_kornia: bool = True
66
66
 
67
+ # GPU device ID for multi-GPU support. None = auto-select (GPU 0 for single-GPU mode)
68
+ # When using multi-GPU batch processing, this is set automatically per worker
69
+ device_id: Optional[int] = None
70
+
71
+ # Internal flag to suppress status messages (used by batch workers)
72
+ _quiet: bool = False
73
+
67
74
  def __post_init__(self):
68
75
  """Validate and set auto-calculated parameters."""
69
76
  if self.pixel_ang <= 0:
@@ -83,21 +83,31 @@ class LatticeSubtractor:
83
83
 
84
84
  Auto mode tries PyTorch+CUDA first, then PyTorch CPU, then NumPy.
85
85
  Prints user-friendly status message about which backend is active.
86
+
87
+ Uses config.device_id if specified for multi-GPU support.
86
88
  """
87
89
  backend = self.config.backend
88
90
  self._gpu_message_shown = getattr(self, '_gpu_message_shown', False)
89
91
 
92
+ # Check if quiet mode (suppress messages for batch workers)
93
+ quiet = getattr(self.config, '_quiet', False)
94
+ if quiet:
95
+ self._gpu_message_shown = True
96
+
97
+ # Get device ID from config (None means auto-select GPU 0)
98
+ device_id = self.config.device_id if self.config.device_id is not None else 0
99
+
90
100
  # Auto mode: try GPU first, then CPU
91
101
  if backend == "auto":
92
102
  try:
93
103
  import torch
94
104
  if torch.cuda.is_available():
95
- self.device = torch.device('cuda')
105
+ self.device = torch.device(f'cuda:{device_id}')
96
106
  self.use_gpu = True
97
107
  # Only print once per session (batch processing reuses subtractor)
98
108
  if not self._gpu_message_shown:
99
- gpu_name = torch.cuda.get_device_name(0)
100
- print(f"✓ Using GPU: {gpu_name}")
109
+ gpu_name = torch.cuda.get_device_name(device_id)
110
+ print(f"✓ Using GPU {device_id}: {gpu_name}")
101
111
  self._gpu_message_shown = True
102
112
  else:
103
113
  self.device = torch.device('cpu')
@@ -116,7 +126,7 @@ class LatticeSubtractor:
116
126
  try:
117
127
  import torch
118
128
  if torch.cuda.is_available():
119
- self.device = torch.device('cuda')
129
+ self.device = torch.device(f'cuda:{device_id}')
120
130
  self.use_gpu = True
121
131
  else:
122
132
  import warnings
File without changes
File without changes