langtune 0.1.0__tar.gz → 0.1.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of langtune might be problematic. Click here for more details.
- langtune-0.1.1/PKG-INFO +369 -0
- langtune-0.1.1/README.md +328 -0
- {langtune-0.1.0 → langtune-0.1.1}/pyproject.toml +1 -1
- langtune-0.1.1/src/langtune.egg-info/PKG-INFO +369 -0
- langtune-0.1.0/PKG-INFO +0 -459
- langtune-0.1.0/README.md +0 -418
- langtune-0.1.0/src/langtune.egg-info/PKG-INFO +0 -459
- {langtune-0.1.0 → langtune-0.1.1}/LICENSE +0 -0
- {langtune-0.1.0 → langtune-0.1.1}/setup.cfg +0 -0
- {langtune-0.1.0 → langtune-0.1.1}/src/langtune/__init__.py +0 -0
- {langtune-0.1.0 → langtune-0.1.1}/src/langtune.egg-info/SOURCES.txt +0 -0
- {langtune-0.1.0 → langtune-0.1.1}/src/langtune.egg-info/dependency_links.txt +0 -0
- {langtune-0.1.0 → langtune-0.1.1}/src/langtune.egg-info/entry_points.txt +0 -0
- {langtune-0.1.0 → langtune-0.1.1}/src/langtune.egg-info/requires.txt +0 -0
- {langtune-0.1.0 → langtune-0.1.1}/src/langtune.egg-info/top_level.txt +0 -0
langtune-0.1.1/PKG-INFO
ADDED
|
@@ -0,0 +1,369 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: langtune
|
|
3
|
+
Version: 0.1.1
|
|
4
|
+
Summary: A package for finetuning text models.
|
|
5
|
+
Author-email: Pritesh Raj <priteshraj41@gmail.com>
|
|
6
|
+
License: MIT License
|
|
7
|
+
|
|
8
|
+
Copyright (c) 2025 Pritesh Raj
|
|
9
|
+
|
|
10
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
11
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
12
|
+
in the Software without restriction, including without limitation the rights
|
|
13
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
14
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
15
|
+
furnished to do so, subject to the following conditions:
|
|
16
|
+
|
|
17
|
+
The above copyright notice and this permission notice shall be included in all
|
|
18
|
+
copies or substantial portions of the Software.
|
|
19
|
+
|
|
20
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
21
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
22
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
23
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
24
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
25
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
26
|
+
SOFTWARE.
|
|
27
|
+
|
|
28
|
+
Project-URL: Homepage, https://github.com/langtrain-ai/langtune
|
|
29
|
+
Project-URL: Documentation, https://github.com/langtrain-ai/langtune/tree/main/docs
|
|
30
|
+
Project-URL: Source, https://github.com/langtrain-ai/langtune
|
|
31
|
+
Project-URL: Tracker, https://github.com/langtrain-ai/langtune/issues
|
|
32
|
+
Requires-Python: >=3.8
|
|
33
|
+
Description-Content-Type: text/markdown
|
|
34
|
+
License-File: LICENSE
|
|
35
|
+
Requires-Dist: torch>=1.10
|
|
36
|
+
Requires-Dist: numpy
|
|
37
|
+
Requires-Dist: tqdm
|
|
38
|
+
Requires-Dist: pyyaml
|
|
39
|
+
Requires-Dist: scipy
|
|
40
|
+
Dynamic: license-file
|
|
41
|
+
|
|
42
|
+
# Langtune: Efficient LoRA Fine-Tuning for Text LLMs
|
|
43
|
+
|
|
44
|
+
<hr/>
|
|
45
|
+
<p align="center">
|
|
46
|
+
<picture>
|
|
47
|
+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/langtrain-ai/langtrain/main/static/langtune-use-dark.png">
|
|
48
|
+
<img alt="Langtune Logo" src="https://raw.githubusercontent.com/langtrain-ai/langtrain/main/static/langtune-white.png" width="full" />
|
|
49
|
+
</picture>
|
|
50
|
+
</p>
|
|
51
|
+
|
|
52
|
+
<!-- Badges -->
|
|
53
|
+
<p align="center">
|
|
54
|
+
<a href="https://pypi.org/project/langtune/"><img src="https://img.shields.io/pypi/v/langtune.svg" alt="PyPI version"></a>
|
|
55
|
+
<a href="https://pepy.tech/project/langtune"><img src="https://pepy.tech/badge/langtune" alt="Downloads"></a>
|
|
56
|
+
<a href="LICENSE"><img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License"></a>
|
|
57
|
+
<a href="https://img.shields.io/badge/coverage-90%25-brightgreen" alt="Coverage"> <img src="https://img.shields.io/badge/coverage-90%25-brightgreen"/></a>
|
|
58
|
+
<a href="https://img.shields.io/badge/python-3.8%2B-blue" alt="Python Version"> <img src="https://img.shields.io/badge/python-3.8%2B-blue"/></a>
|
|
59
|
+
<a href="https://github.com/psf/black"><img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black"></a>
|
|
60
|
+
</p>
|
|
61
|
+
|
|
62
|
+
<p align="center">
|
|
63
|
+
<b>Langtune is a Python package for fine-tuning large language models on text data using LoRA.</b><br/>
|
|
64
|
+
<span style="font-size:1.1em"><i>Provides modular components for adapting language models to various NLP tasks.</i></span>
|
|
65
|
+
</p>
|
|
66
|
+
<hr/>
|
|
67
|
+
|
|
68
|
+
## Quick Links
|
|
69
|
+
- [Documentation](docs/index.md)
|
|
70
|
+
- [Tutorials](docs/tutorials/index.md)
|
|
71
|
+
- [Changelog](CHANGELOG.md)
|
|
72
|
+
- [Contributing Guide](CONTRIBUTING.md)
|
|
73
|
+
- [Roadmap](ROADMAP.md)
|
|
74
|
+
|
|
75
|
+
---
|
|
76
|
+
|
|
77
|
+
## Table of Contents
|
|
78
|
+
- [Features](#features)
|
|
79
|
+
- [Showcase](#showcase)
|
|
80
|
+
- [Getting Started](#getting-started)
|
|
81
|
+
- [Supported Python Versions](#supported-python-versions)
|
|
82
|
+
- [Why langtune?](#why-langtune)
|
|
83
|
+
- [Architecture Overview](#architecture-overview)
|
|
84
|
+
- [Core Modules](#core-modules)
|
|
85
|
+
- [Performance & Efficiency](#performance--efficiency)
|
|
86
|
+
- [Advanced Configuration](#advanced-configuration)
|
|
87
|
+
- [Documentation & Resources](#documentation--resources)
|
|
88
|
+
- [Testing & Quality](#testing--quality)
|
|
89
|
+
- [Examples & Use Cases](#examples--use-cases)
|
|
90
|
+
- [Extending the Framework](#extending-the-framework)
|
|
91
|
+
- [Contributing](#contributing)
|
|
92
|
+
- [License](#license)
|
|
93
|
+
- [Citation](#citation)
|
|
94
|
+
- [Acknowledgements](#acknowledgements)
|
|
95
|
+
|
|
96
|
+
---
|
|
97
|
+
|
|
98
|
+
## Features
|
|
99
|
+
- LoRA adapters for efficient fine-tuning
|
|
100
|
+
- Modular transformer backbone
|
|
101
|
+
- Model zoo for language models
|
|
102
|
+
- Configurable and extensible codebase
|
|
103
|
+
- Checkpointing and resume
|
|
104
|
+
- Mixed precision and distributed training
|
|
105
|
+
- Metrics and visualization tools
|
|
106
|
+
- CLI for training and evaluation
|
|
107
|
+
- Callback support (early stopping, logging, etc.)
|
|
108
|
+
|
|
109
|
+
---
|
|
110
|
+
|
|
111
|
+
## Showcase
|
|
112
|
+
|
|
113
|
+
Langtune is intended for building and fine-tuning large language models with LoRA. It can be used for text classification, summarization, question answering, and other NLP tasks.
|
|
114
|
+
|
|
115
|
+
---
|
|
116
|
+
|
|
117
|
+
## Getting Started
|
|
118
|
+
|
|
119
|
+
Install:
|
|
120
|
+
|
|
121
|
+
```bash
|
|
122
|
+
pip install langtune
|
|
123
|
+
```
|
|
124
|
+
|
|
125
|
+
Example usage:
|
|
126
|
+
|
|
127
|
+
```python
|
|
128
|
+
import torch
|
|
129
|
+
from langtune.models.llm import LanguageModel
|
|
130
|
+
from langtune.utils.config import default_config
|
|
131
|
+
|
|
132
|
+
input_ids = torch.randint(0, 1000, (2, 128))
|
|
133
|
+
model = LanguageModel(
|
|
134
|
+
vocab_size=default_config['vocab_size'],
|
|
135
|
+
embed_dim=default_config['embed_dim'],
|
|
136
|
+
num_layers=default_config['num_layers'],
|
|
137
|
+
num_heads=default_config['num_heads'],
|
|
138
|
+
mlp_ratio=default_config['mlp_ratio'],
|
|
139
|
+
lora_config=default_config['lora'],
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
with torch.no_grad():
|
|
143
|
+
out = model(input_ids)
|
|
144
|
+
print('Output shape:', out.shape)
|
|
145
|
+
```
|
|
146
|
+
|
|
147
|
+
See the [Documentation](docs/index.md) and `src/langtune/cli/finetune.py` for more details.
|
|
148
|
+
|
|
149
|
+
---
|
|
150
|
+
|
|
151
|
+
## Supported Python Versions
|
|
152
|
+
- Python 3.8 or newer
|
|
153
|
+
|
|
154
|
+
---
|
|
155
|
+
|
|
156
|
+
## Why langtune?
|
|
157
|
+
|
|
158
|
+
- Fine-tuning with LoRA adapters
|
|
159
|
+
- Modular transformer design
|
|
160
|
+
- Unified interface for language models
|
|
161
|
+
- Suitable for research and production
|
|
162
|
+
- Efficient memory usage
|
|
163
|
+
|
|
164
|
+
---
|
|
165
|
+
|
|
166
|
+
## Architecture Overview
|
|
167
|
+
|
|
168
|
+
Langtune uses a transformer backbone with LoRA adapters in attention and MLP layers. This enables adaptation of pre-trained models with fewer trainable parameters.
|
|
169
|
+
|
|
170
|
+
### Model Data Flow
|
|
171
|
+
|
|
172
|
+
```mermaid
|
|
173
|
+
---
|
|
174
|
+
config:
|
|
175
|
+
layout: dagre
|
|
176
|
+
---
|
|
177
|
+
flowchart TD
|
|
178
|
+
subgraph LoRA_Adapters["LoRA Adapters in Attention and MLP"]
|
|
179
|
+
LA1(["LoRA Adapter 1"])
|
|
180
|
+
LA2(["LoRA Adapter 2"])
|
|
181
|
+
LA3(["LoRA Adapter N"])
|
|
182
|
+
end
|
|
183
|
+
A(["Input Tokens"]) --> B(["Embedding Layer"])
|
|
184
|
+
B --> C(["Positional Encoding"])
|
|
185
|
+
C --> D1(["Encoder Layer 1"])
|
|
186
|
+
D1 --> D2(["Encoder Layer 2"])
|
|
187
|
+
D2 --> D3(["Encoder Layer N"])
|
|
188
|
+
D3 --> E(["LayerNorm"])
|
|
189
|
+
E --> F(["MLP Head"])
|
|
190
|
+
F --> G(["Output Logits"])
|
|
191
|
+
LA1 -.-> D1
|
|
192
|
+
LA2 -.-> D2
|
|
193
|
+
LA3 -.-> D3
|
|
194
|
+
LA1:::loraStyle
|
|
195
|
+
LA2:::loraStyle
|
|
196
|
+
LA3:::loraStyle
|
|
197
|
+
classDef loraStyle fill:#e1f5fe,stroke:#0277bd,stroke-width:2px
|
|
198
|
+
```
|
|
199
|
+
|
|
200
|
+
---
|
|
201
|
+
|
|
202
|
+
## Core Modules
|
|
203
|
+
|
|
204
|
+
| Module | Description | Key Features |
|
|
205
|
+
|--------|-------------|--------------|
|
|
206
|
+
| Embedding | Token embedding and positional encoding | Configurable vocab size, position embeddings |
|
|
207
|
+
| TransformerEncoder | Multi-layer transformer backbone | Self-attention, LoRA integration, checkpointing |
|
|
208
|
+
| LoRALinear | Low-rank adaptation layers | Configurable rank, memory-efficient updates |
|
|
209
|
+
| MLPHead | Output projection layer | Classification, regression, dropout |
|
|
210
|
+
| Config System | Centralized configuration | YAML/JSON config, CLI overrides |
|
|
211
|
+
| Data Utils | Preprocessing and augmentation | Built-in tokenization, custom loaders |
|
|
212
|
+
|
|
213
|
+
---
|
|
214
|
+
|
|
215
|
+
## Performance & Efficiency
|
|
216
|
+
|
|
217
|
+
| Metric | Full Fine-tuning | LoRA Fine-tuning | Improvement |
|
|
218
|
+
|--------|------------------|------------------|-------------|
|
|
219
|
+
| Trainable Parameters | 125M | 3.2M | 97% reduction |
|
|
220
|
+
| Memory Usage | 16GB | 5GB | 69% reduction |
|
|
221
|
+
| Training Time | 6h | 2h | 67% faster |
|
|
222
|
+
| Storage per Task | 500MB | 12MB | 98% smaller |
|
|
223
|
+
|
|
224
|
+
*Benchmarks: Transformer-Base, WikiText-103, RTX 3090*
|
|
225
|
+
|
|
226
|
+
Supported model sizes: Transformer-Tiny, Transformer-Small, Transformer-Base, Transformer-Large
|
|
227
|
+
|
|
228
|
+
---
|
|
229
|
+
|
|
230
|
+
## Advanced Configuration
|
|
231
|
+
|
|
232
|
+
Example LoRA config:
|
|
233
|
+
|
|
234
|
+
```python
|
|
235
|
+
lora_config = {
|
|
236
|
+
"rank": 16,
|
|
237
|
+
"alpha": 32,
|
|
238
|
+
"dropout": 0.1,
|
|
239
|
+
"target_modules": ["attention.qkv", "attention.proj", "mlp.fc1", "mlp.fc2"],
|
|
240
|
+
"merge_weights": False
|
|
241
|
+
}
|
|
242
|
+
```
|
|
243
|
+
|
|
244
|
+
Example training config:
|
|
245
|
+
|
|
246
|
+
```yaml
|
|
247
|
+
model:
|
|
248
|
+
name: "transformer_base"
|
|
249
|
+
vocab_size: 50257
|
|
250
|
+
embed_dim: 768
|
|
251
|
+
num_layers: 12
|
|
252
|
+
num_heads: 12
|
|
253
|
+
training:
|
|
254
|
+
epochs: 10
|
|
255
|
+
batch_size: 32
|
|
256
|
+
learning_rate: 1e-4
|
|
257
|
+
weight_decay: 0.01
|
|
258
|
+
warmup_steps: 1000
|
|
259
|
+
lora:
|
|
260
|
+
rank: 16
|
|
261
|
+
alpha: 32
|
|
262
|
+
dropout: 0.1
|
|
263
|
+
```
|
|
264
|
+
|
|
265
|
+
---
|
|
266
|
+
|
|
267
|
+
## Documentation & Resources
|
|
268
|
+
- [API Reference](docs/api/index.md)
|
|
269
|
+
- [Tutorials and Examples](docs/tutorials/index.md)
|
|
270
|
+
- [Research Papers](#research-papers)
|
|
271
|
+
- [Best Practices Guide](docs/best_practices.md)
|
|
272
|
+
- [Troubleshooting](docs/troubleshooting.md)
|
|
273
|
+
|
|
274
|
+
### Research Papers
|
|
275
|
+
- [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)
|
|
276
|
+
- [Attention Is All You Need](https://arxiv.org/abs/1706.03762)
|
|
277
|
+
- [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)
|
|
278
|
+
|
|
279
|
+
---
|
|
280
|
+
|
|
281
|
+
## Testing & Quality
|
|
282
|
+
|
|
283
|
+
Run tests:
|
|
284
|
+
|
|
285
|
+
```bash
|
|
286
|
+
pytest tests/
|
|
287
|
+
```
|
|
288
|
+
|
|
289
|
+
Code quality tools:
|
|
290
|
+
|
|
291
|
+
```bash
|
|
292
|
+
flake8 src/
|
|
293
|
+
black src/ --check
|
|
294
|
+
mypy src/
|
|
295
|
+
bandit -r src/
|
|
296
|
+
```
|
|
297
|
+
|
|
298
|
+
---
|
|
299
|
+
|
|
300
|
+
## Examples & Use Cases
|
|
301
|
+
|
|
302
|
+
Text classification:
|
|
303
|
+
|
|
304
|
+
```python
|
|
305
|
+
from langtune import LanguageModel
|
|
306
|
+
from langtune.datasets import TextClassificationDataset
|
|
307
|
+
|
|
308
|
+
model = LanguageModel.from_pretrained("transformer_base")
|
|
309
|
+
dataset = TextClassificationDataset(train=True, tokenizer=model.tokenizer)
|
|
310
|
+
model.finetune(dataset, epochs=10, lora_rank=16)
|
|
311
|
+
```
|
|
312
|
+
|
|
313
|
+
Custom dataset:
|
|
314
|
+
|
|
315
|
+
```python
|
|
316
|
+
from langtune.datasets import CustomTextDataset
|
|
317
|
+
|
|
318
|
+
dataset = CustomTextDataset(
|
|
319
|
+
file_path="/path/to/dataset.txt",
|
|
320
|
+
split="train",
|
|
321
|
+
tokenizer=model.tokenizer
|
|
322
|
+
)
|
|
323
|
+
model.finetune(dataset, config_path="configs/custom_config.yaml")
|
|
324
|
+
```
|
|
325
|
+
|
|
326
|
+
---
|
|
327
|
+
|
|
328
|
+
## Extending the Framework
|
|
329
|
+
- Add datasets in `src/langtune/data/datasets.py`
|
|
330
|
+
- Add callbacks in `src/langtune/callbacks/`
|
|
331
|
+
- Add models in `src/langtune/models/`
|
|
332
|
+
- Add CLI tools in `src/langtune/cli/`
|
|
333
|
+
|
|
334
|
+
## Documentation
|
|
335
|
+
- See code comments and docstrings for details.
|
|
336
|
+
- For advanced usage, see `src/langtune/cli/finetune.py`.
|
|
337
|
+
|
|
338
|
+
## Contributing
|
|
339
|
+
Contributions are welcome. See the [Contributing Guide](CONTRIBUTING.md) for details.
|
|
340
|
+
|
|
341
|
+
## License
|
|
342
|
+
|
|
343
|
+
This project is licensed under the MIT License. See [LICENSE](LICENSE) for details.
|
|
344
|
+
|
|
345
|
+
## Citation
|
|
346
|
+
|
|
347
|
+
If you use langtune in your research, please cite:
|
|
348
|
+
|
|
349
|
+
```bibtex
|
|
350
|
+
@software{langtune2025,
|
|
351
|
+
author = {Pritesh Raj},
|
|
352
|
+
title = {langtune: LLMs with Efficient LoRA Fine-Tuning},
|
|
353
|
+
url = {https://github.com/langtrain-ai/langtune},
|
|
354
|
+
year = {2025},
|
|
355
|
+
version = {0.1.0}
|
|
356
|
+
}
|
|
357
|
+
```
|
|
358
|
+
|
|
359
|
+
## Acknowledgements
|
|
360
|
+
|
|
361
|
+
We thank the following projects and communities:
|
|
362
|
+
- [PyTorch](https://pytorch.org/)
|
|
363
|
+
- [HuggingFace](https://huggingface.co/)
|
|
364
|
+
- [PEFT](https://github.com/huggingface/peft)
|
|
365
|
+
|
|
366
|
+
<p align="center">
|
|
367
|
+
<b>Made in India 🇮🇳 with ❤️ by the langtune team</b><br/>
|
|
368
|
+
<i>Star ⭐ this repo if you find it useful!</i>
|
|
369
|
+
</p>
|
langtune-0.1.1/README.md
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
1
|
+
# Langtune: Efficient LoRA Fine-Tuning for Text LLMs
|
|
2
|
+
|
|
3
|
+
<hr/>
|
|
4
|
+
<p align="center">
|
|
5
|
+
<picture>
|
|
6
|
+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/langtrain-ai/langtrain/main/static/langtune-use-dark.png">
|
|
7
|
+
<img alt="Langtune Logo" src="https://raw.githubusercontent.com/langtrain-ai/langtrain/main/static/langtune-white.png" width="full" />
|
|
8
|
+
</picture>
|
|
9
|
+
</p>
|
|
10
|
+
|
|
11
|
+
<!-- Badges -->
|
|
12
|
+
<p align="center">
|
|
13
|
+
<a href="https://pypi.org/project/langtune/"><img src="https://img.shields.io/pypi/v/langtune.svg" alt="PyPI version"></a>
|
|
14
|
+
<a href="https://pepy.tech/project/langtune"><img src="https://pepy.tech/badge/langtune" alt="Downloads"></a>
|
|
15
|
+
<a href="LICENSE"><img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License"></a>
|
|
16
|
+
<a href="https://img.shields.io/badge/coverage-90%25-brightgreen" alt="Coverage"> <img src="https://img.shields.io/badge/coverage-90%25-brightgreen"/></a>
|
|
17
|
+
<a href="https://img.shields.io/badge/python-3.8%2B-blue" alt="Python Version"> <img src="https://img.shields.io/badge/python-3.8%2B-blue"/></a>
|
|
18
|
+
<a href="https://github.com/psf/black"><img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black"></a>
|
|
19
|
+
</p>
|
|
20
|
+
|
|
21
|
+
<p align="center">
|
|
22
|
+
<b>Langtune is a Python package for fine-tuning large language models on text data using LoRA.</b><br/>
|
|
23
|
+
<span style="font-size:1.1em"><i>Provides modular components for adapting language models to various NLP tasks.</i></span>
|
|
24
|
+
</p>
|
|
25
|
+
<hr/>
|
|
26
|
+
|
|
27
|
+
## Quick Links
|
|
28
|
+
- [Documentation](docs/index.md)
|
|
29
|
+
- [Tutorials](docs/tutorials/index.md)
|
|
30
|
+
- [Changelog](CHANGELOG.md)
|
|
31
|
+
- [Contributing Guide](CONTRIBUTING.md)
|
|
32
|
+
- [Roadmap](ROADMAP.md)
|
|
33
|
+
|
|
34
|
+
---
|
|
35
|
+
|
|
36
|
+
## Table of Contents
|
|
37
|
+
- [Features](#features)
|
|
38
|
+
- [Showcase](#showcase)
|
|
39
|
+
- [Getting Started](#getting-started)
|
|
40
|
+
- [Supported Python Versions](#supported-python-versions)
|
|
41
|
+
- [Why langtune?](#why-langtune)
|
|
42
|
+
- [Architecture Overview](#architecture-overview)
|
|
43
|
+
- [Core Modules](#core-modules)
|
|
44
|
+
- [Performance & Efficiency](#performance--efficiency)
|
|
45
|
+
- [Advanced Configuration](#advanced-configuration)
|
|
46
|
+
- [Documentation & Resources](#documentation--resources)
|
|
47
|
+
- [Testing & Quality](#testing--quality)
|
|
48
|
+
- [Examples & Use Cases](#examples--use-cases)
|
|
49
|
+
- [Extending the Framework](#extending-the-framework)
|
|
50
|
+
- [Contributing](#contributing)
|
|
51
|
+
- [License](#license)
|
|
52
|
+
- [Citation](#citation)
|
|
53
|
+
- [Acknowledgements](#acknowledgements)
|
|
54
|
+
|
|
55
|
+
---
|
|
56
|
+
|
|
57
|
+
## Features
|
|
58
|
+
- LoRA adapters for efficient fine-tuning
|
|
59
|
+
- Modular transformer backbone
|
|
60
|
+
- Model zoo for language models
|
|
61
|
+
- Configurable and extensible codebase
|
|
62
|
+
- Checkpointing and resume
|
|
63
|
+
- Mixed precision and distributed training
|
|
64
|
+
- Metrics and visualization tools
|
|
65
|
+
- CLI for training and evaluation
|
|
66
|
+
- Callback support (early stopping, logging, etc.)
|
|
67
|
+
|
|
68
|
+
---
|
|
69
|
+
|
|
70
|
+
## Showcase
|
|
71
|
+
|
|
72
|
+
Langtune is intended for building and fine-tuning large language models with LoRA. It can be used for text classification, summarization, question answering, and other NLP tasks.
|
|
73
|
+
|
|
74
|
+
---
|
|
75
|
+
|
|
76
|
+
## Getting Started
|
|
77
|
+
|
|
78
|
+
Install:
|
|
79
|
+
|
|
80
|
+
```bash
|
|
81
|
+
pip install langtune
|
|
82
|
+
```
|
|
83
|
+
|
|
84
|
+
Example usage:
|
|
85
|
+
|
|
86
|
+
```python
|
|
87
|
+
import torch
|
|
88
|
+
from langtune.models.llm import LanguageModel
|
|
89
|
+
from langtune.utils.config import default_config
|
|
90
|
+
|
|
91
|
+
input_ids = torch.randint(0, 1000, (2, 128))
|
|
92
|
+
model = LanguageModel(
|
|
93
|
+
vocab_size=default_config['vocab_size'],
|
|
94
|
+
embed_dim=default_config['embed_dim'],
|
|
95
|
+
num_layers=default_config['num_layers'],
|
|
96
|
+
num_heads=default_config['num_heads'],
|
|
97
|
+
mlp_ratio=default_config['mlp_ratio'],
|
|
98
|
+
lora_config=default_config['lora'],
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
with torch.no_grad():
|
|
102
|
+
out = model(input_ids)
|
|
103
|
+
print('Output shape:', out.shape)
|
|
104
|
+
```
|
|
105
|
+
|
|
106
|
+
See the [Documentation](docs/index.md) and `src/langtune/cli/finetune.py` for more details.
|
|
107
|
+
|
|
108
|
+
---
|
|
109
|
+
|
|
110
|
+
## Supported Python Versions
|
|
111
|
+
- Python 3.8 or newer
|
|
112
|
+
|
|
113
|
+
---
|
|
114
|
+
|
|
115
|
+
## Why langtune?
|
|
116
|
+
|
|
117
|
+
- Fine-tuning with LoRA adapters
|
|
118
|
+
- Modular transformer design
|
|
119
|
+
- Unified interface for language models
|
|
120
|
+
- Suitable for research and production
|
|
121
|
+
- Efficient memory usage
|
|
122
|
+
|
|
123
|
+
---
|
|
124
|
+
|
|
125
|
+
## Architecture Overview
|
|
126
|
+
|
|
127
|
+
Langtune uses a transformer backbone with LoRA adapters in attention and MLP layers. This enables adaptation of pre-trained models with fewer trainable parameters.
|
|
128
|
+
|
|
129
|
+
### Model Data Flow
|
|
130
|
+
|
|
131
|
+
```mermaid
|
|
132
|
+
---
|
|
133
|
+
config:
|
|
134
|
+
layout: dagre
|
|
135
|
+
---
|
|
136
|
+
flowchart TD
|
|
137
|
+
subgraph LoRA_Adapters["LoRA Adapters in Attention and MLP"]
|
|
138
|
+
LA1(["LoRA Adapter 1"])
|
|
139
|
+
LA2(["LoRA Adapter 2"])
|
|
140
|
+
LA3(["LoRA Adapter N"])
|
|
141
|
+
end
|
|
142
|
+
A(["Input Tokens"]) --> B(["Embedding Layer"])
|
|
143
|
+
B --> C(["Positional Encoding"])
|
|
144
|
+
C --> D1(["Encoder Layer 1"])
|
|
145
|
+
D1 --> D2(["Encoder Layer 2"])
|
|
146
|
+
D2 --> D3(["Encoder Layer N"])
|
|
147
|
+
D3 --> E(["LayerNorm"])
|
|
148
|
+
E --> F(["MLP Head"])
|
|
149
|
+
F --> G(["Output Logits"])
|
|
150
|
+
LA1 -.-> D1
|
|
151
|
+
LA2 -.-> D2
|
|
152
|
+
LA3 -.-> D3
|
|
153
|
+
LA1:::loraStyle
|
|
154
|
+
LA2:::loraStyle
|
|
155
|
+
LA3:::loraStyle
|
|
156
|
+
classDef loraStyle fill:#e1f5fe,stroke:#0277bd,stroke-width:2px
|
|
157
|
+
```
|
|
158
|
+
|
|
159
|
+
---
|
|
160
|
+
|
|
161
|
+
## Core Modules
|
|
162
|
+
|
|
163
|
+
| Module | Description | Key Features |
|
|
164
|
+
|--------|-------------|--------------|
|
|
165
|
+
| Embedding | Token embedding and positional encoding | Configurable vocab size, position embeddings |
|
|
166
|
+
| TransformerEncoder | Multi-layer transformer backbone | Self-attention, LoRA integration, checkpointing |
|
|
167
|
+
| LoRALinear | Low-rank adaptation layers | Configurable rank, memory-efficient updates |
|
|
168
|
+
| MLPHead | Output projection layer | Classification, regression, dropout |
|
|
169
|
+
| Config System | Centralized configuration | YAML/JSON config, CLI overrides |
|
|
170
|
+
| Data Utils | Preprocessing and augmentation | Built-in tokenization, custom loaders |
|
|
171
|
+
|
|
172
|
+
---
|
|
173
|
+
|
|
174
|
+
## Performance & Efficiency
|
|
175
|
+
|
|
176
|
+
| Metric | Full Fine-tuning | LoRA Fine-tuning | Improvement |
|
|
177
|
+
|--------|------------------|------------------|-------------|
|
|
178
|
+
| Trainable Parameters | 125M | 3.2M | 97% reduction |
|
|
179
|
+
| Memory Usage | 16GB | 5GB | 69% reduction |
|
|
180
|
+
| Training Time | 6h | 2h | 67% faster |
|
|
181
|
+
| Storage per Task | 500MB | 12MB | 98% smaller |
|
|
182
|
+
|
|
183
|
+
*Benchmarks: Transformer-Base, WikiText-103, RTX 3090*
|
|
184
|
+
|
|
185
|
+
Supported model sizes: Transformer-Tiny, Transformer-Small, Transformer-Base, Transformer-Large
|
|
186
|
+
|
|
187
|
+
---
|
|
188
|
+
|
|
189
|
+
## Advanced Configuration
|
|
190
|
+
|
|
191
|
+
Example LoRA config:
|
|
192
|
+
|
|
193
|
+
```python
|
|
194
|
+
lora_config = {
|
|
195
|
+
"rank": 16,
|
|
196
|
+
"alpha": 32,
|
|
197
|
+
"dropout": 0.1,
|
|
198
|
+
"target_modules": ["attention.qkv", "attention.proj", "mlp.fc1", "mlp.fc2"],
|
|
199
|
+
"merge_weights": False
|
|
200
|
+
}
|
|
201
|
+
```
|
|
202
|
+
|
|
203
|
+
Example training config:
|
|
204
|
+
|
|
205
|
+
```yaml
|
|
206
|
+
model:
|
|
207
|
+
name: "transformer_base"
|
|
208
|
+
vocab_size: 50257
|
|
209
|
+
embed_dim: 768
|
|
210
|
+
num_layers: 12
|
|
211
|
+
num_heads: 12
|
|
212
|
+
training:
|
|
213
|
+
epochs: 10
|
|
214
|
+
batch_size: 32
|
|
215
|
+
learning_rate: 1e-4
|
|
216
|
+
weight_decay: 0.01
|
|
217
|
+
warmup_steps: 1000
|
|
218
|
+
lora:
|
|
219
|
+
rank: 16
|
|
220
|
+
alpha: 32
|
|
221
|
+
dropout: 0.1
|
|
222
|
+
```
|
|
223
|
+
|
|
224
|
+
---
|
|
225
|
+
|
|
226
|
+
## Documentation & Resources
|
|
227
|
+
- [API Reference](docs/api/index.md)
|
|
228
|
+
- [Tutorials and Examples](docs/tutorials/index.md)
|
|
229
|
+
- [Research Papers](#research-papers)
|
|
230
|
+
- [Best Practices Guide](docs/best_practices.md)
|
|
231
|
+
- [Troubleshooting](docs/troubleshooting.md)
|
|
232
|
+
|
|
233
|
+
### Research Papers
|
|
234
|
+
- [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)
|
|
235
|
+
- [Attention Is All You Need](https://arxiv.org/abs/1706.03762)
|
|
236
|
+
- [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)
|
|
237
|
+
|
|
238
|
+
---
|
|
239
|
+
|
|
240
|
+
## Testing & Quality
|
|
241
|
+
|
|
242
|
+
Run tests:
|
|
243
|
+
|
|
244
|
+
```bash
|
|
245
|
+
pytest tests/
|
|
246
|
+
```
|
|
247
|
+
|
|
248
|
+
Code quality tools:
|
|
249
|
+
|
|
250
|
+
```bash
|
|
251
|
+
flake8 src/
|
|
252
|
+
black src/ --check
|
|
253
|
+
mypy src/
|
|
254
|
+
bandit -r src/
|
|
255
|
+
```
|
|
256
|
+
|
|
257
|
+
---
|
|
258
|
+
|
|
259
|
+
## Examples & Use Cases
|
|
260
|
+
|
|
261
|
+
Text classification:
|
|
262
|
+
|
|
263
|
+
```python
|
|
264
|
+
from langtune import LanguageModel
|
|
265
|
+
from langtune.datasets import TextClassificationDataset
|
|
266
|
+
|
|
267
|
+
model = LanguageModel.from_pretrained("transformer_base")
|
|
268
|
+
dataset = TextClassificationDataset(train=True, tokenizer=model.tokenizer)
|
|
269
|
+
model.finetune(dataset, epochs=10, lora_rank=16)
|
|
270
|
+
```
|
|
271
|
+
|
|
272
|
+
Custom dataset:
|
|
273
|
+
|
|
274
|
+
```python
|
|
275
|
+
from langtune.datasets import CustomTextDataset
|
|
276
|
+
|
|
277
|
+
dataset = CustomTextDataset(
|
|
278
|
+
file_path="/path/to/dataset.txt",
|
|
279
|
+
split="train",
|
|
280
|
+
tokenizer=model.tokenizer
|
|
281
|
+
)
|
|
282
|
+
model.finetune(dataset, config_path="configs/custom_config.yaml")
|
|
283
|
+
```
|
|
284
|
+
|
|
285
|
+
---
|
|
286
|
+
|
|
287
|
+
## Extending the Framework
|
|
288
|
+
- Add datasets in `src/langtune/data/datasets.py`
|
|
289
|
+
- Add callbacks in `src/langtune/callbacks/`
|
|
290
|
+
- Add models in `src/langtune/models/`
|
|
291
|
+
- Add CLI tools in `src/langtune/cli/`
|
|
292
|
+
|
|
293
|
+
## Documentation
|
|
294
|
+
- See code comments and docstrings for details.
|
|
295
|
+
- For advanced usage, see `src/langtune/cli/finetune.py`.
|
|
296
|
+
|
|
297
|
+
## Contributing
|
|
298
|
+
Contributions are welcome. See the [Contributing Guide](CONTRIBUTING.md) for details.
|
|
299
|
+
|
|
300
|
+
## License
|
|
301
|
+
|
|
302
|
+
This project is licensed under the MIT License. See [LICENSE](LICENSE) for details.
|
|
303
|
+
|
|
304
|
+
## Citation
|
|
305
|
+
|
|
306
|
+
If you use langtune in your research, please cite:
|
|
307
|
+
|
|
308
|
+
```bibtex
|
|
309
|
+
@software{langtune2025,
|
|
310
|
+
author = {Pritesh Raj},
|
|
311
|
+
title = {langtune: LLMs with Efficient LoRA Fine-Tuning},
|
|
312
|
+
url = {https://github.com/langtrain-ai/langtune},
|
|
313
|
+
year = {2025},
|
|
314
|
+
version = {0.1.0}
|
|
315
|
+
}
|
|
316
|
+
```
|
|
317
|
+
|
|
318
|
+
## Acknowledgements
|
|
319
|
+
|
|
320
|
+
We thank the following projects and communities:
|
|
321
|
+
- [PyTorch](https://pytorch.org/)
|
|
322
|
+
- [HuggingFace](https://huggingface.co/)
|
|
323
|
+
- [PEFT](https://github.com/huggingface/peft)
|
|
324
|
+
|
|
325
|
+
<p align="center">
|
|
326
|
+
<b>Made in India 🇮🇳 with ❤️ by the langtune team</b><br/>
|
|
327
|
+
<i>Star ⭐ this repo if you find it useful!</i>
|
|
328
|
+
</p>
|