langroid 0.1.63__tar.gz → 0.1.65__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. {langroid-0.1.63 → langroid-0.1.65}/PKG-INFO +1 -1
  2. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/doc_chat_agent.py +6 -4
  3. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/table_chat_agent.py +4 -0
  4. {langroid-0.1.63 → langroid-0.1.65}/langroid/mytypes.py +1 -0
  5. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/parser.py +11 -3
  6. langroid-0.1.65/langroid/parsing/pdf_parser.py +174 -0
  7. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/repo_loader.py +9 -3
  8. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/url_loader.py +8 -3
  9. {langroid-0.1.63 → langroid-0.1.65}/pyproject.toml +1 -1
  10. {langroid-0.1.63 → langroid-0.1.65}/setup.py +1 -1
  11. langroid-0.1.63/langroid/parsing/pdf_parser.py +0 -51
  12. {langroid-0.1.63 → langroid-0.1.65}/LICENSE +0 -0
  13. {langroid-0.1.63 → langroid-0.1.65}/README.md +0 -0
  14. {langroid-0.1.63 → langroid-0.1.65}/langroid/__init__.py +0 -0
  15. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/__init__.py +0 -0
  16. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/base.py +0 -0
  17. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/chat_agent.py +0 -0
  18. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/chat_document.py +0 -0
  19. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/helpers.py +0 -0
  20. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/junk +0 -0
  21. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/__init__.py +0 -0
  22. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/recipient_validator_agent.py +0 -0
  23. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/retriever_agent.py +0 -0
  24. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/sql/__init__.py +0 -0
  25. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/sql/sql_chat_agent.py +0 -0
  26. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/sql/utils/__init__.py +0 -0
  27. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/sql/utils/description_extractors.py +0 -0
  28. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/sql/utils/populate_metadata.py +0 -0
  29. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/sql/utils/system_message.py +0 -0
  30. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/special/sql/utils/tools.py +0 -0
  31. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/task.py +0 -0
  32. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/tool_message.py +0 -0
  33. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/tools/__init__.py +0 -0
  34. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/tools/google_search_tool.py +0 -0
  35. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent/tools/recipient_tool.py +0 -0
  36. {langroid-0.1.63 → langroid-0.1.65}/langroid/agent_config.py +0 -0
  37. {langroid-0.1.63 → langroid-0.1.65}/langroid/cachedb/__init__.py +0 -0
  38. {langroid-0.1.63 → langroid-0.1.65}/langroid/cachedb/base.py +0 -0
  39. {langroid-0.1.63 → langroid-0.1.65}/langroid/cachedb/momento_cachedb.py +0 -0
  40. {langroid-0.1.63 → langroid-0.1.65}/langroid/cachedb/redis_cachedb.py +0 -0
  41. {langroid-0.1.63 → langroid-0.1.65}/langroid/embedding_models/__init__.py +0 -0
  42. {langroid-0.1.63 → langroid-0.1.65}/langroid/embedding_models/base.py +0 -0
  43. {langroid-0.1.63 → langroid-0.1.65}/langroid/embedding_models/clustering.py +0 -0
  44. {langroid-0.1.63 → langroid-0.1.65}/langroid/embedding_models/models.py +0 -0
  45. {langroid-0.1.63 → langroid-0.1.65}/langroid/language_models/__init__.py +0 -0
  46. {langroid-0.1.63 → langroid-0.1.65}/langroid/language_models/azure_openai.py +0 -0
  47. {langroid-0.1.63 → langroid-0.1.65}/langroid/language_models/base.py +0 -0
  48. {langroid-0.1.63 → langroid-0.1.65}/langroid/language_models/config.py +0 -0
  49. {langroid-0.1.63 → langroid-0.1.65}/langroid/language_models/openai_gpt.py +0 -0
  50. {langroid-0.1.63 → langroid-0.1.65}/langroid/language_models/prompt_formatter/__init__.py +0 -0
  51. {langroid-0.1.63 → langroid-0.1.65}/langroid/language_models/prompt_formatter/base.py +0 -0
  52. {langroid-0.1.63 → langroid-0.1.65}/langroid/language_models/prompt_formatter/llama2_formatter.py +0 -0
  53. {langroid-0.1.63 → langroid-0.1.65}/langroid/language_models/utils.py +0 -0
  54. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/__init__.py +0 -0
  55. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/agent_chats.py +0 -0
  56. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/code-parsing.md +0 -0
  57. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/code_parser.py +0 -0
  58. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/json.py +0 -0
  59. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/para_sentence_split.py +0 -0
  60. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/table_loader.py +0 -0
  61. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/url_loader_cookies.py +0 -0
  62. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/urls.py +0 -0
  63. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/utils.py +0 -0
  64. {langroid-0.1.63 → langroid-0.1.65}/langroid/parsing/web_search.py +0 -0
  65. {langroid-0.1.63 → langroid-0.1.65}/langroid/prompts/__init__.py +0 -0
  66. {langroid-0.1.63 → langroid-0.1.65}/langroid/prompts/dialog.py +0 -0
  67. {langroid-0.1.63 → langroid-0.1.65}/langroid/prompts/prompts_config.py +0 -0
  68. {langroid-0.1.63 → langroid-0.1.65}/langroid/prompts/templates.py +0 -0
  69. {langroid-0.1.63 → langroid-0.1.65}/langroid/prompts/transforms.py +0 -0
  70. {langroid-0.1.63 → langroid-0.1.65}/langroid/scripts/__init__.py +0 -0
  71. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/__init__.py +0 -0
  72. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/configuration.py +0 -0
  73. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/constants.py +0 -0
  74. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/docker.py +0 -0
  75. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/globals.py +0 -0
  76. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/llms/__init__.py +0 -0
  77. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/llms/strings.py +0 -0
  78. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/logging.py +0 -0
  79. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/output/__init__.py +0 -0
  80. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/output/printing.py +0 -0
  81. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/pydantic_utils.py +0 -0
  82. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/system.py +0 -0
  83. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/web/__init__.py +0 -0
  84. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/web/login.py +0 -0
  85. {langroid-0.1.63 → langroid-0.1.65}/langroid/utils/web/selenium_login.py +0 -0
  86. {langroid-0.1.63 → langroid-0.1.65}/langroid/vector_store/__init__.py +0 -0
  87. {langroid-0.1.63 → langroid-0.1.65}/langroid/vector_store/base.py +0 -0
  88. {langroid-0.1.63 → langroid-0.1.65}/langroid/vector_store/chromadb.py +0 -0
  89. {langroid-0.1.63 → langroid-0.1.65}/langroid/vector_store/qdrant_cloud.py +0 -0
  90. {langroid-0.1.63 → langroid-0.1.65}/langroid/vector_store/qdrantdb.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: langroid
3
- Version: 0.1.63
3
+ Version: 0.1.65
4
4
  Summary: Harness LLMs with Multi-Agent Programming
5
5
  License: MIT
6
6
  Author: Prasad Chalasani
@@ -19,7 +19,7 @@ from langroid.embedding_models.models import OpenAIEmbeddingsConfig
19
19
  from langroid.language_models.base import StreamingIfAllowed
20
20
  from langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig
21
21
  from langroid.mytypes import DocMetaData, Document, Entity
22
- from langroid.parsing.parser import ParsingConfig, Splitter
22
+ from langroid.parsing.parser import Parser, ParsingConfig, Splitter
23
23
  from langroid.parsing.repo_loader import RepoLoader
24
24
  from langroid.parsing.url_loader import URLLoader
25
25
  from langroid.parsing.urls import get_urls_and_paths
@@ -86,7 +86,8 @@ class DocChatAgentConfig(ChatAgentConfig):
86
86
  ]
87
87
  parsing: ParsingConfig = ParsingConfig( # modify as needed
88
88
  splitter=Splitter.TOKENS,
89
- chunk_size=500, # aim for this many tokens per chunk
89
+ chunk_size=800, # aim for this many tokens per chunk
90
+ overlap=100, # overlap between chunks
90
91
  max_chunks=10_000,
91
92
  # aim to have at least this many chars per chunk when
92
93
  # truncating due to punctuation
@@ -145,12 +146,13 @@ class DocChatAgent(ChatAgent):
145
146
  return
146
147
  urls, paths = get_urls_and_paths(self.config.doc_paths)
147
148
  docs: List[Document] = []
149
+ parser = Parser(self.config.parsing)
148
150
  if len(urls) > 0:
149
- loader = URLLoader(urls=urls)
151
+ loader = URLLoader(urls=urls, parser=parser)
150
152
  docs = loader.load()
151
153
  if len(paths) > 0:
152
154
  for p in paths:
153
- path_docs = RepoLoader.get_documents(p)
155
+ path_docs = RepoLoader.get_documents(p, parser=parser)
154
156
  docs.extend(path_docs)
155
157
  n_docs = len(docs)
156
158
  n_splits = self.ingest_docs(docs)
@@ -45,6 +45,10 @@ If you receive a null or other unexpected result, see if you have made an assump
45
45
  in your code, and try another way, or use `run_code` to explore the dataframe
46
46
  before submitting your final code.
47
47
 
48
+ Once you have the answer to the question, say DONE and show me the answer.
49
+ If you receive an error message, try using the `run_code` tool/function
50
+ again with the corrected code.
51
+
48
52
  Start by asking me what I want to know about the data.
49
53
  """
50
54
 
@@ -25,6 +25,7 @@ class DocMetaData(BaseModel):
25
25
  """Metadata for a document."""
26
26
 
27
27
  source: str = "context"
28
+ is_chunk: bool = False # if it is a chunk, don't split
28
29
 
29
30
  class Config:
30
31
  extra = Extra.allow
@@ -22,6 +22,7 @@ class Splitter(str, Enum):
22
22
  class ParsingConfig(BaseSettings):
23
23
  splitter: str = Splitter.TOKENS
24
24
  chunk_size: int = 200 # aim for this many tokens per chunk
25
+ overlap: int = 50 # overlap between chunks
25
26
  max_chunks: int = 10_000
26
27
  # aim to have at least this many chars per chunk when truncating due to punctuation
27
28
  min_chunk_chars: int = 350
@@ -198,11 +199,18 @@ class Parser:
198
199
  def split(self, docs: List[Document]) -> List[Document]:
199
200
  if len(docs) == 0:
200
201
  return []
202
+ # some docs are already splits, so don't split them further!
203
+ chunked_docs = [d for d in docs if d.metadata.is_chunk]
204
+ big_docs = [d for d in docs if not d.metadata.is_chunk]
205
+ if len(big_docs) == 0:
206
+ return chunked_docs
201
207
  if self.config.splitter == Splitter.PARA_SENTENCE:
202
- return self.split_para_sentence(docs)
208
+ big_doc_chunks = self.split_para_sentence(big_docs)
203
209
  elif self.config.splitter == Splitter.TOKENS:
204
- return self.split_chunk_tokens(docs)
210
+ big_doc_chunks = self.split_chunk_tokens(big_docs)
205
211
  elif self.config.splitter == Splitter.SIMPLE:
206
- return self.split_simple(docs)
212
+ big_doc_chunks = self.split_simple(big_docs)
207
213
  else:
208
214
  raise ValueError(f"Unknown splitter: {self.config.splitter}")
215
+
216
+ return chunked_docs + big_doc_chunks
@@ -0,0 +1,174 @@
1
+ from io import BytesIO
2
+ from typing import List
3
+
4
+ import requests
5
+ from pypdf import PdfReader
6
+
7
+ from langroid.mytypes import DocMetaData, Document
8
+ from langroid.parsing.parser import Parser
9
+
10
+
11
+ class PdfParser(Parser):
12
+ def __init__(self, parser: Parser):
13
+ super().__init__(parser.config)
14
+
15
+ @classmethod
16
+ def from_Parser(cls, parser: Parser) -> "PdfParser":
17
+ return cls(parser)
18
+
19
+ @staticmethod
20
+ def _text_from_pdf_reader(reader: PdfReader) -> str:
21
+ """
22
+ Extract text from a `PdfReader` object.
23
+ Args:
24
+ reader (PdfReader): a `PdfReader` object
25
+ Returns:
26
+ str: the extracted text
27
+ """
28
+ text = ""
29
+ for page in reader.pages:
30
+ text += page.extract_text()
31
+ return text
32
+
33
+ def _doc_chunks_from_pdf_reader(
34
+ self,
35
+ reader: PdfReader,
36
+ doc: str,
37
+ chunk_tokens: int,
38
+ overlap: int = 0,
39
+ ) -> List[Document]:
40
+ """
41
+ Get document chunks from a PdfReader object,
42
+ with page references in the document metadata.
43
+
44
+ Adapted from
45
+ https://github.com/whitead/paper-qa/blob/main/paperqa/readers.py
46
+
47
+ Args:
48
+ reader (PdfReader): a `PdfReader` object
49
+ doc: URL or filename of the PDF file
50
+ chunk_tokens (int): number of tokens in each chunk
51
+ overlap (int): number of tokens to overlap between chunks
52
+
53
+ Returns:
54
+ List[Document]: a list of `Document` objects,
55
+ each containing a chunk of text
56
+ """
57
+
58
+ split = [] # tokens in curr split
59
+ pages: List[str] = []
60
+ docs: List[Document] = []
61
+ for i, page in enumerate(reader.pages):
62
+ split += self.tokenizer.encode(page.extract_text())
63
+ pages.append(str(i + 1))
64
+ # split could be so long it needs to be split
65
+ # into multiple chunks. Or it could be so short
66
+ # that it needs to be combined with the next chunk.
67
+ while len(split) > chunk_tokens:
68
+ # pretty formatting of pages (e.g. 1-3, 4, 5-7)
69
+ pg = "-".join([pages[0], pages[-1]])
70
+ docs.append(
71
+ Document(
72
+ content=self.tokenizer.decode(split[:chunk_tokens]),
73
+ metadata=DocMetaData(
74
+ source=f"{doc} pages {pg}",
75
+ is_chunk=True,
76
+ ),
77
+ )
78
+ )
79
+ split = split[chunk_tokens - overlap :]
80
+ pages = [str(i + 1)]
81
+ if len(split) > overlap:
82
+ pg = "-".join([pages[0], pages[-1]])
83
+ docs.append(
84
+ Document(
85
+ content=self.tokenizer.decode(split[:chunk_tokens]),
86
+ metadata=DocMetaData(
87
+ source=f"{doc} pages {pg}",
88
+ is_chunk=True,
89
+ ),
90
+ )
91
+ )
92
+ return docs
93
+
94
+ @staticmethod
95
+ def doc_chunks_from_pdf_url(url: str, parser: Parser) -> List[Document]:
96
+ """
97
+ Get chunks of text from pdf URL as a list of Document objects,
98
+ using the parser's chunk_size and overlap settings.
99
+
100
+ Args:
101
+ url (str): contains the URL to the PDF file
102
+ Returns:
103
+ a `Document` object containing the content of the pdf file,
104
+ and metadata containing url
105
+ """
106
+
107
+ pdfParser = PdfParser.from_Parser(parser)
108
+ response = requests.get(url)
109
+ response.raise_for_status()
110
+ with BytesIO(response.content) as f:
111
+ reader = PdfReader(f)
112
+ docs = pdfParser._doc_chunks_from_pdf_reader(
113
+ reader,
114
+ doc=url,
115
+ chunk_tokens=parser.config.chunk_size,
116
+ overlap=parser.config.overlap,
117
+ )
118
+ return docs
119
+
120
+ @staticmethod
121
+ def get_doc_from_pdf_url(url: str) -> Document:
122
+ """
123
+ Get entire text from pdf URL as a single document.
124
+
125
+ Args:
126
+ url (str): contains the URL to the PDF file
127
+ Returns:
128
+ a `Document` object containing the content of the pdf file,
129
+ and metadata containing url
130
+ """
131
+ response = requests.get(url)
132
+ response.raise_for_status()
133
+ with BytesIO(response.content) as f:
134
+ reader = PdfReader(f)
135
+ text = PdfParser._text_from_pdf_reader(reader)
136
+ return Document(content=text, metadata=DocMetaData(source=str(url)))
137
+
138
+ @staticmethod
139
+ def doc_chunks_from_pdf_path(path: str, parser: Parser) -> List[Document]:
140
+ """
141
+ Get chunks of text from pdf path as a list of Document objects,
142
+ using the parser's chunk_size and overlap settings.
143
+
144
+ Args:
145
+ url (str): contains the URL to the PDF file
146
+ Returns:
147
+ a `Document` object containing the content of the pdf file,
148
+ and metadata containing url
149
+ """
150
+
151
+ pdfParser = PdfParser.from_Parser(parser)
152
+ reader = PdfReader(path)
153
+ docs = pdfParser._doc_chunks_from_pdf_reader(
154
+ reader,
155
+ doc=path,
156
+ chunk_tokens=parser.config.chunk_size,
157
+ overlap=parser.config.overlap,
158
+ )
159
+ return docs
160
+
161
+ @staticmethod
162
+ def get_doc_from_pdf_file(path: str) -> Document:
163
+ """
164
+ Given local path to a PDF file, extract the text content.
165
+ Args:
166
+ path (str): full path to the PDF file
167
+ PDF file obtained via URL
168
+ Returns:
169
+ a `Document` object containing the content of the pdf file,
170
+ and metadata containing path/url
171
+ """
172
+ reader = PdfReader(path)
173
+ text = PdfParser._text_from_pdf_reader(reader)
174
+ return Document(content=text, metadata=DocMetaData(source=str(path)))
@@ -18,7 +18,8 @@ from github.Repository import Repository
18
18
  from pydantic import BaseSettings
19
19
 
20
20
  from langroid.mytypes import DocMetaData, Document
21
- from langroid.parsing.pdf_parser import get_doc_from_pdf_file
21
+ from langroid.parsing.parser import Parser
22
+ from langroid.parsing.pdf_parser import PdfParser
22
23
 
23
24
  logger = logging.getLogger(__name__)
24
25
 
@@ -443,6 +444,7 @@ class RepoLoader:
443
444
  exclude_dirs: Optional[List[str]] = None,
444
445
  depth: int = -1,
445
446
  lines: Optional[int] = None,
447
+ parser: Optional[Parser] = None,
446
448
  ) -> List[Document]:
447
449
  """
448
450
  Recursively get all files under a path as Document objects.
@@ -458,6 +460,7 @@ class RepoLoader:
458
460
  which includes all depths.
459
461
  lines (int, optional): Number of lines to read from each file.
460
462
  Defaults to None, which reads all lines.
463
+ parser (Parser, optional): Parser to use to parse files.
461
464
 
462
465
  Returns:
463
466
  List[Document]: List of Document objects representing files.
@@ -490,8 +493,11 @@ class RepoLoader:
490
493
 
491
494
  for file_path in file_paths:
492
495
  _, file_extension = os.path.splitext(file_path)
493
- if file_extension == ".pdf":
494
- docs.append(get_doc_from_pdf_file(file_path))
496
+ if file_extension.lower() == ".pdf":
497
+ if parser is None:
498
+ docs.append(PdfParser.get_doc_from_pdf_file(file_path))
499
+ else:
500
+ docs.extend(PdfParser.doc_chunks_from_pdf_path(file_path, parser))
495
501
  else:
496
502
  with open(file_path, "r") as f:
497
503
  if lines is not None:
@@ -9,7 +9,8 @@ from trafilatura.downloads import (
9
9
  )
10
10
 
11
11
  from langroid.mytypes import DocMetaData, Document
12
- from langroid.parsing.pdf_parser import get_doc_from_pdf_url
12
+ from langroid.parsing.parser import Parser
13
+ from langroid.parsing.pdf_parser import PdfParser
13
14
 
14
15
  logging.getLogger("trafilatura").setLevel(logging.ERROR)
15
16
 
@@ -26,8 +27,9 @@ class URLLoader:
26
27
  the "accept" button on the cookie dialog.
27
28
  """
28
29
 
29
- def __init__(self, urls: List[str]):
30
+ def __init__(self, urls: List[str], parser: Parser | None = None):
30
31
  self.urls = urls
32
+ self.parser = parser
31
33
 
32
34
  @no_type_check
33
35
  def load(self) -> List[Document]:
@@ -43,7 +45,10 @@ class URLLoader:
43
45
  )
44
46
  for url, result in buffered_downloads(buffer, threads):
45
47
  if url.lower().endswith(".pdf"):
46
- docs.append(get_doc_from_pdf_url(url))
48
+ if self.parser is None:
49
+ docs.append(PdfParser.get_doc_from_pdf_url(url))
50
+ else:
51
+ docs.extend(PdfParser.doc_chunks_from_pdf_url(url, self.parser))
47
52
  else:
48
53
  text = trafilatura.extract(
49
54
  result,
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "langroid"
3
- version = "0.1.63"
3
+ version = "0.1.65"
4
4
  description = "Harness LLMs with Multi-Agent Programming"
5
5
  authors = ["Prasad Chalasani <pchalasani@gmail.com>"]
6
6
  readme = "README.md"
@@ -80,7 +80,7 @@ extras_require = \
80
80
 
81
81
  setup_kwargs = {
82
82
  'name': 'langroid',
83
- 'version': '0.1.63',
83
+ 'version': '0.1.65',
84
84
  'description': 'Harness LLMs with Multi-Agent Programming',
85
85
  'long_description': '<div align="center">\n <img src="docs/assets/langroid-card-lambda-ossem-rust-1200-630.png" alt="Logo" \n width="400" align="center">\n</div>\n\n<div align="center">\n\n[![PyPI - Version](https://img.shields.io/pypi/v/langroid)](https://pypi.org/project/langroid/)\n[![Pytest](https://github.com/langroid/langroid/actions/workflows/pytest.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/pytest.yml)\n[![codecov](https://codecov.io/gh/langroid/langroid/branch/main/graph/badge.svg?token=H94BX5F0TE)](https://codecov.io/gh/langroid/langroid)\n[![Lint](https://github.com/langroid/langroid/actions/workflows/validate.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/validate.yml)\n[![Docs](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml)\n\n[![Static Badge](https://img.shields.io/badge/Documentation-blue?link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F&link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F)](https://langroid.github.io/langroid)\n[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/ZU36McDgDs)\n[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langroid/langroid/blob/main/examples/langroid_quick_examples.ipynb)\n\n[![Docker Pulls](https://img.shields.io/docker/pulls/langroid/langroid.svg)](https://hub.docker.com/r/langroid/langroid)\n![Docker Image Size (tag)](https://img.shields.io/docker/image-size/langroid/langroid/latest)\n[![Multi-Architecture DockerHub](https://github.com/langroid/langroid/actions/workflows/docker-publish.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/docker-publish.yml)\n\n[![Substack](https://img.shields.io/badge/Substack-%23006f5c.svg?style=for-the-badge&logo=substack&logoColor=FF6719)](https://langroid.substack.com/p/langroid-harness-llms-with-multi-agent-programming)\n\n[![Share on Hacker News](https://img.shields.io/badge/-Share%20on%20Hacker%20News-orange)](https://news.ycombinator.com/submitlink?u=https%3A%2F%2Fgithub.com%2Flangroid%2Flangroid&t=Harness%20LLMs%20with%20Multi-Agent%20Programming)\n[![Share on Reddit](https://img.shields.io/badge/Reddit-FF4500?style=for-the-badge&logo=reddit&logoColor=white)](https://www.reddit.com/submit?url=https%3A%2F%2Fgithub.com%2Flangroid%2Flangroid&title=Harness%20LLMs%20with%20Multi-Agent%20Programming)\n[![Share on Twitter](https://img.shields.io/twitter/url?style=social&url=https://github.com/langroid/langroid)](https://twitter.com/intent/tweet?text=Langroid%20is%20a%20powerful,%20elegant%20new%20framework%20to%20easily%20build%20%23LLM%20applications.%20You%20set%20up%20LLM-powered%20Agents%20with%20vector-stores,%20assign%20tasks,%20and%20have%20them%20collaboratively%20solve%20problems%20via%20message-transformations.%20https://github.com/langroid/langroid)\n[![LinkedIn](https://img.shields.io/badge/linkedin-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/shareArticle?mini=true&url=https://github.com/langroid/langroid&title=Langroid:%20A%20Powerful,%20Elegant%20Framework&summary=Langroid%20is%20a%20powerful,%20elegant%20new%20framework%20to%20easily%20build%20%23LLM%20applications.%20You%20set%20up%20LLM-powered%20Agents%20with%20vector-stores,%20assign%20tasks,%20and%20have%20them%20collaboratively%20solve%20problems%20via%20message-transformations.)\n\n\n</div>\n\n<h3 align="center">\n <a target="_blank" \n href="https://langroid.github.io/langroid/" rel="dofollow">\n <strong>Documentation</strong></a>\n &middot;\n <a target="_blank" href="https://github.com/langroid/langroid-examples" rel="dofollow">\n <strong>Examples Repo</strong></a>\n &middot;\n <a target="_blank" href="https://discord.gg/ZU36McDgDs" rel="dofollow">\n <strong>Discord</strong></a>\n &middot;\n <a target="_blank" href="./CONTRIBUTING.md" rel="dofollow">\n <strong>Contributing</strong></a>\n\n <br />\n</h3>\n\n`Langroid` is an intuitive, lightweight, extensible and principled\nPython framework to easily build LLM-powered applications. \nYou set up Agents, equip them with optional components (LLM, \nvector-store and methods), assign them tasks, and have them \ncollaboratively solve a problem by exchanging messages. \nThis Multi-Agent paradigm is inspired by the\n[Actor Framework](https://en.wikipedia.org/wiki/Actor_model)\n(but you do not need to know anything about this!). \n\nLangroid is a fresh take on LLM app-development, where considerable thought has gone \ninto simplifying the developer experience. It does not use `Langchain` or `Llama-Index`.\n\nWe welcome contributions -- See the [contributions](./CONTRIBUTING.md) document\nfor ideas on what to contribute.\n\n**Questions, Feedback, Ideas? Join us on [Discord](https://discord.gg/ZU36McDgDs)!**\n\n<details>\n<summary> <b>:fire: Updates/Releases</b></summary>\n\n- **Sep 2023:**\n - **Use with local LLama Models:** see tutorial [here](https://langroid.github.io/langroid/blog/2023/09/14/using-langroid-with-local-llms/)\n - **Langroid Blog/Newsletter Launched!**: First post is [here](https://substack.com/notes/post/p-136704592) -- Please subscribe to stay updated. \n - **0.1.56:** Support Azure OpenAI. \n - **0.1.55:** Improved [`SQLChatAgent`](https://github.com/langroid/langroid/blob/main/langroid/agent/special/sql/sql_chat_agent.py) that efficiently retrieves relevant schema info when translating natural language to SQL. \n- **Aug 2023:**\n - **[Hierarchical computation](https://langroid.github.io/langroid/examples/agent-tree/)** example using Langroid agents and task orchestration.\n - **0.1.51:** Support for global state, see [test_global_state.py](tests/main/test_global_state.py).\n - **:whale: Langroid Docker image**, available, see instructions below.\n - [**RecipientTool**](langroid/agent/tools/recipient_tool.py) enables (+ enforces) LLM to \nspecify an intended recipient when talking to 2 or more agents. \nSee [this test](tests/main/test_recipient_tool.py) for example usage.\n - **Example:** [Answer questions](examples/docqa/chat-search.py) using Google Search + vecdb-retrieval from URL contents. \n - **0.1.39:** [`GoogleSearchTool`](langroid/agent/tools/google_search_tool.py) to enable Agents (their LLM) to do Google searches via function-calling/tools.\n See [this chat example](examples/basic/chat-search.py) for how easy it is to add this tool to an agent.\n - **Colab notebook** to try the quick-start examples: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langroid/langroid/blob/main/examples/langroid_quick_examples.ipynb) \n - **0.1.37:** Added [`SQLChatAgent`](langroid/agent/special/sql_chat_agent.py) -- thanks to our latest contributor [Rithwik Babu](https://github.com/rithwikbabu)!\n - Multi-agent Example: [Autocorrect chat](examples/basic/autocorrect.py)\n- **July 2023:** \n - **0.1.30:** Added [`TableChatAgent`](langroid/agent/special/table_chat_agent.py) to \n [chat](examples/data-qa/table_chat.py) with tabular datasets (dataframes, files, URLs): LLM generates Pandas code,\n and code is executed using Langroid\'s tool/function-call mechanism. \n - **Demo:** 3-agent system for Audience [Targeting](https://langroid.github.io/langroid/demos/targeting/audience-targeting/).\n - **0.1.27**: Added [support](langroid/cachedb/momento_cachedb.py) \n for [Momento Serverless Cache](https://www.gomomento.com/) as an alternative to Redis.\n - **0.1.24**: [`DocChatAgent`](langroid/agent/special/doc_chat_agent.py) \n now [accepts](langroid/parsing/pdf_parser.py) PDF files or URLs.\n\n</details>\n\n# :rocket: Demo\nSuppose you want to extract structured information about the key terms \nof a commercial lease document. You can easily do this with Langroid using a two-agent system,\nas we show in the [langroid-examples](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py) repo.\nThe demo showcases just a few of the many features of Langroid, such as:\n- Multi-agent collaboration: `LeaseExtractor` is in charge of the task, and its LLM (GPT4) generates questions \nto be answered by the `DocAgent`.\n- Retrieval augmented question-answering, with **source-citation**: `DocAgent` LLM (GPT4) uses retrieval from a vector-store to \nanswer the `LeaseExtractor`\'s questions, cites the specific excerpt supporting the answer. \n- Function-calling (also known as tool/plugin): When it has all the information it \nneeds, the `LeaseExtractor` LLM presents the information in a structured \nformat using a Function-call. \n\nHere is what it looks like in action:\n\n![Demo](docs/assets/demos/lease-extractor-demo.gif)\n\n\n# :zap: Highlights\n\n- **Agents as first-class citizens:** The [Agent](https://langroid.github.io/langroid/reference/agent/base/#langroid.agent.base.Agent) class encapsulates LLM conversation state,\n and optionally a vector-store and tools. Agents are a core abstraction in Langroid;\n Agents act as _message transformers_, and by default provide 3 _responder_ methods, one corresponding to each entity: LLM, Agent, User.\n- **Tasks:** A [Task](https://langroid.github.io/langroid/reference/agent/task/) class wraps an Agent, and gives the agent instructions (or roles, or goals), \n manages iteration over an Agent\'s responder methods, \n and orchestrates multi-agent interactions via hierarchical, recursive\n task-delegation. The `Task.run()` method has the same \n type-signature as an Agent\'s responder\'s methods, and this is key to how \n a task of an agent can delegate to other sub-tasks: from the point of view of a Task,\n sub-tasks are simply additional responders, to be used in a round-robin fashion \n after the agent\'s own responders.\n- **Modularity, Reusabilily, Loose coupling:** The `Agent` and `Task` abstractions allow users to design\n Agents with specific skills, wrap them in Tasks, and combine tasks in a flexible way.\n- **LLM Support**: Langroid supports OpenAI LLMs including GPT-3.5-Turbo,\n GPT-4.\n- **Caching of LLM responses:** Langroid supports [Redis](https://redis.com/try-free/) and \n [Momento](https://www.gomomento.com/) to cache LLM responses.\n- **Vector-stores**: [Qdrant](https://qdrant.tech/) and [Chroma](https://www.trychroma.com/) are currently supported.\n Vector stores allow for Retrieval-Augmented-Generation (RAG).\n- **Grounding and source-citation:** Access to external documents via vector-stores \n allows for grounding and source-citation.\n- **Observability, Logging, Lineage:** Langroid generates detailed logs of multi-agent interactions and\n maintains provenance/lineage of messages, so that you can trace back\n the origin of a message.\n- **Tools/Plugins/Function-calling**: Langroid supports OpenAI\'s recently\n released [function calling](https://platform.openai.com/docs/guides/gpt/function-calling)\n feature. In addition, Langroid has its own native equivalent, which we\n call **tools** (also known as "plugins" in other contexts). Function\n calling and tools have the same developer-facing interface, implemented\n using [Pydantic](https://docs.pydantic.dev/latest/),\n which makes it very easy to define tools/functions and enable agents\n to use them. Benefits of using Pydantic are that you never have to write\n complex JSON specs for function calling, and when the LLM\n hallucinates malformed JSON, the Pydantic error message is sent back to\n the LLM so it can fix it!\n\n--- \n\n# :gear: Installation and Setup\n\n:whale: For a simpler setup, see the Docker section below, which lets you get started just\nby setting up environment variables in a `.env` file.\n\n### Install `langroid`\nLangroid requires Python 3.11+. We recommend using a virtual environment.\nUse `pip` to install `langroid` (from PyPi) to your virtual environment:\n```bash\npip install langroid\n```\nThe core Langroid package lets you use OpenAI Embeddings models via their API. \nIf you instead want to use the `all-MiniLM-L6-v2` embeddings model\nfrom from HuggingFace, install Langroid like this:\n```bash\npip install langroid[hf-embeddings]\n```\nNote that this will install `torch` and `sentence-transformers` libraries.\n\n<details>\n<summary><b>Optional Installs for using SQL Chat with a PostgreSQL DB </b></summary>\n\nIf you are using `SQLChatAgent` \n(e.g. the script [`examples/data-qa/sql-chat/sql_chat.py`](examples/data-qa/sql-chat/sql_chat.py)),\nwith a postgres db, you will need to:\n\n- Install PostgreSQL dev libraries for your platform, e.g.\n - `sudo apt-get install libpq-dev` on Ubuntu,\n - `brew install postgresql` on Mac, etc.\n- Install langroid with the postgres extra, e.g. `pip install langroid[postgres]`\n or `poetry add langroid[postgres]` or `poetry install -E postgres`.\n If this gives you an error, try `pip install psycopg2-binary` in your virtualenv.\n</details>\n\n### Set up environment variables (API keys, etc)\n\nTo get started, all you need is an OpenAI API Key.\nIf you don\'t have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).\nCurrently only OpenAI models are supported. Others will be added later\n(Pull Requests welcome!).\n\nIn the root of the repo, copy the `.env-template` file to a new file `.env`: \n```bash\ncp .env-template .env\n```\nThen insert your OpenAI API Key. \nYour `.env` file should look like this:\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\n````\n\nAlternatively, you can set this as an environment variable in your shell\n(you will need to do this every time you open a new shell):\n```bash\nexport OPENAI_API_KEY=your-key-here-without-quotes\n```\n\n\n<details>\n<summary><b>Optional Setup Instructions (click to expand) </b></summary>\n\nAll of the following environment variable settings are optional, and some are only needed \nto use specific features (as noted below).\n\n- **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.\n You can sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).\n If you skip setting up these, Langroid will use Qdrant in local-storage mode.\n Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported. \n We use the local-storage version of Chroma, so there is no need for an API key.\n Langroid uses Qdrant by default.\n- **Redis** Password, host, port: This is optional, and only needed to cache LLM API responses\n using Redis Cloud. Redis [offers](https://redis.com/try-free/) a free 30MB Redis account\n which is more than sufficient to try out Langroid and even beyond.\n If you don\'t set up these, Langroid will use a pure-python \n Redis in-memory cache via the [Fakeredis](https://fakeredis.readthedocs.io/en/latest/) library.\n- **Momento** Serverless Caching of LLM API responses (as an alternative to Redis). \n To use Momento instead of Redis:\n - enter your Momento Token in the `.env` file, as the value of `MOMENTO_AUTH_TOKEN` (see example file below),\n - in the `.env` file set `CACHE_TYPE=momento` (instead of `CACHE_TYPE=redis` which is the default).\n- **GitHub** Personal Access Token (required for apps that need to analyze git\n repos; token-based API calls are less rate-limited). See this\n [GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).\n- **Google Custom Search API Credentials:** Only needed to enable an Agent to use the `GoogleSearchTool`.\n To use Google Search as an LLM Tool/Plugin/function-call, \n you\'ll need to set up \n [a Google API key](https://developers.google.com/custom-search/v1/introduction#identify_your_application_to_google_with_api_key),\n then [setup a Google Custom Search Engine (CSE) and get the CSE ID](https://developers.google.com/custom-search/docs/tutorial/creatingcse).\n (Documentation for these can be challenging, we suggest asking GPT4 for a step-by-step guide.)\n After obtaining these credentials, store them as values of \n `GOOGLE_API_KEY` and `GOOGLE_CSE_ID` in your `.env` file. \n Full documentation on using this (and other such "stateless" tools) is coming soon, but \n in the meantime take a peek at this [chat example](examples/basic/chat-search.py), which \n shows how you can easily equip an Agent with a `GoogleSearchtool`.\n \n\n\nIf you add all of these optional variables, your `.env` file should look like this:\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\nGITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes\nCACHE_TYPE=redis # or momento\nREDIS_PASSWORD=your-redis-password-no-quotes\nREDIS_HOST=your-redis-hostname-no-quotes\nREDIS_PORT=your-redis-port-no-quotes\nMOMENTO_AUTH_TOKEN=your-momento-token-no-quotes # instead of REDIS* variables\nQDRANT_API_KEY=your-key\nQDRANT_API_URL=https://your.url.here:6333 # note port number must be included\nGOOGLE_API_KEY=your-key\nGOOGLE_CSE_ID=your-cse-id\n```\n</details>\n\n<details>\n<summary><b>Optional setup instructions for Microsoft Azure OpenAI(click to expand)</b></summary> \n\nWhen using Azure OpenAI, additional environment variables are required in the \n`.env` file.\nThis page [Microsoft Azure OpenAI](https://learn.microsoft.com/en-us/azure/ai-services/openai/chatgpt-quickstart?tabs=command-line&pivots=programming-language-python#environment-variables)\nprovides more information, and you can set each environment variable as follows:\n\n- `AZURE_API_KEY`, from the value of `API_KEY`\n- `AZURE_OPENAI_API_BASE` from the value of `ENDPOINT`, typically looks like `https://your.domain.azure.com`.\n- For `AZURE_OPENAI_API_VERSION`, you can use the default value in `.env-template`, and latest version can be found [here](https://learn.microsoft.com/en-us/azure/ai-services/openai/whats-new#azure-openai-chat-completion-general-availability-ga)\n- `AZURE_OPENAI_DEPLOYMENT_NAME` is the name of the deployed model, which is defined by the user during the model setup \n- `AZURE_GPT_MODEL_NAME` GPT-3.5-Turbo or GPT-4 model names that you chose when you setup your Azure OpenAI account.\n\n</details>\n\n---\n\n# :whale: Docker Instructions\n\nWe provide a containerized version of the [`langroid-examples`](https://github.com/langroid/langroid-examples) \nrepository via this [Docker Image](https://hub.docker.com/r/langroid/langroid).\nAll you need to do is set up environment variables in the `.env` file.\nPlease follow these steps to setup the container:\n\n```bash\n# get the .env file template from `langroid` repo\nwget https://github.com/langroid/langroid/blob/main/.env-template .env\n\n# Edit the .env file with your favorite editor (here nano), \n# and add API keys as explained above\nnano .env\n\n# launch the container\ndocker run -it -v ./.env:/.env langroid/langroid\n\n# Use this command to run any of the scripts in the `examples` directory\npython examples/<Path/To/Example.py> \n``` \n\n\n\n# :tada: Usage Examples\n\nThese are quick teasers to give a glimpse of what you can do with Langroid\nand how your code would look. \n\n:warning: The code snippets below are intended to give a flavor of the code\nand they are **not** complete runnable examples! For that we encourage you to \nconsult the [`langroid-examples`](https://github.com/langroid/langroid-examples) \nrepository.\n\n:information_source: The various LLM prompts and instructions in Langroid\nhave been tested to work well with GPT4.\nSwitching to GPT3.5-Turbo is easy via a config flag\n(e.g., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT3_5_TURBO)`),\nand may suffice for some applications, but in general you may see inferior results.\n\n\n:book: Also see the\n[`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)\nfor a detailed tutorial.\n\n\n\nClick to expand any of the code examples below.\nAll of these can be run in a Colab notebook:\n[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langroid/langroid/blob/main/examples/langroid_quick_examples.ipynb)\n\n<details>\n<summary> <b> Direct interaction with OpenAI LLM </b> </summary>\n\n```python\nfrom langroid.language_models.openai_gpt import ( \n OpenAIGPTConfig, OpenAIChatModel, OpenAIGPT,\n)\nfrom langroid.language_models.base import LLMMessage, Role\n\ncfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)\n\nmdl = OpenAIGPT(cfg)\n\nmessages = [\n LLMMessage(content="You are a helpful assistant", role=Role.SYSTEM), \n LLMMessage(content="What is the capital of Ontario?", role=Role.USER),\n]\nresponse = mdl.chat(messages, max_tokens=200)\nprint(response.message)\n```\n</details>\n\n<details>\n<summary> <b> Define an agent, set up a task, and run it </b> </summary>\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\n\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None, # no vector store\n)\nagent = ChatAgent(config)\n# get response from agent\'s LLM, and put this in an interactive loop...\n# answer = agent.llm_response("What is the capital of Ontario?")\n # ... OR instead, set up a task (which has a built-in loop) and run it\ntask = Task(agent, name="Bot") \ntask.run() # ... a loop seeking response from LLM or User at each turn\n```\n</details>\n\n<details>\n<summary><b> Three communicating agents </b></summary>\n\nA toy numbers game, where when given a number `n`:\n- `repeater_agent`\'s LLM simply returns `n`,\n- `even_agent`\'s LLM returns `n/2` if `n` is even, else says "DO-NOT-KNOW"\n- `odd_agent`\'s LLM returns `3*n+1` if `n` is odd, else says "DO-NOT-KNOW"\n\nFirst define the 3 agents, and set up their tasks with instructions:\n\n```python\nfrom langroid.utils.constants import NO_ANSWER\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb = None,\n)\nrepeater_agent = ChatAgent(config)\nrepeater_task = Task(\n repeater_agent,\n name = "Repeater",\n system_message="""\n Your job is to repeat whatever number you receive.\n """,\n llm_delegate=True, # LLM takes charge of task\n single_round=False, \n)\neven_agent = ChatAgent(config)\neven_task = Task(\n even_agent,\n name = "EvenHandler",\n system_message=f"""\n You will be given a number. \n If it is even, divide by 2 and say the result, nothing else.\n If it is odd, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n\nodd_agent = ChatAgent(config)\nodd_task = Task(\n odd_agent,\n name = "OddHandler",\n system_message=f"""\n You will be given a number n. \n If it is odd, return (n*3+1), say nothing else. \n If it is even, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n```\nThen add the `even_task` and `odd_task` as sub-tasks of `repeater_task`, \nand run the `repeater_task`, kicking it off with a number as input:\n```python\nrepeater_task.add_sub_task([even_task, odd_task])\nrepeater_task.run("3")\n```\n\n</details>\n\n<details>\n<summary><b> Simple Tool/Function-calling example </b></summary>\n\nLangroid leverages Pydantic to support OpenAI\'s\n[Function-calling API](https://platform.openai.com/docs/guides/gpt/function-calling)\nas well as its own native tools. The benefits are that you don\'t have to write\nany JSON to specify the schema, and also if the LLM hallucinates a malformed\ntool syntax, Langroid sends the Pydantic validation error (suitiably sanitized) \nto the LLM so it can fix it!\n\nSimple example: Say the agent has a secret list of numbers, \nand we want the LLM to find the smallest number in the list. \nWe want to give the LLM a `probe` tool/function which takes a\nsingle number `n` as argument. The tool handler method in the agent\nreturns how many numbers in its list are at most `n`.\n\nFirst define the tool using Langroid\'s `ToolMessage` class:\n\n\n```python\nfrom langroid.agent.tool_message import ToolMessage\nclass ProbeTool(ToolMessage):\n request: str = "probe" # specifies which agent method handles this tool\n purpose: str = """\n To find how many numbers in my list are less than or equal to \n the <number> you specify.\n """ # description used to instruct the LLM on when/how to use the tool\n number: int # required argument to the tool\n```\n\nThen define a `SpyGameAgent` as a subclass of `ChatAgent`, \nwith a method `probe` that handles this tool:\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nclass SpyGameAgent(ChatAgent):\n def __init__(self, config: ChatAgentConfig):\n super().__init__(config)\n self.numbers = [3, 4, 8, 11, 15, 25, 40, 80, 90]\n\n def probe(self, msg: ProbeTool) -> str:\n # return how many numbers in self.numbers are less or equal to msg.number\n return str(len([n for n in self.numbers if n <= msg.number]))\n```\n\nWe then instantiate the agent and enable it to use and respond to the tool:\n\n```python\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nspy_game_agent = SpyGameAgent(\n ChatAgentConfig(\n name="Spy",\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None,\n use_tools=False, # don\'t use Langroid native tool\n use_functions_api=True, # use OpenAI function-call API\n )\n)\nspy_game_agent.enable_message(ProbeTool)\n```\n\nFor a full working example see the\n[chat-agent-tool.py](https://github.com/langroid/langroid-examples/blob/main/examples/quick-start/chat-agent-tool.py)\nscript in the `langroid-examples` repo.\n</details>\n\n<details>\n<summary> <b>Tool/Function-calling to extract structured information from text </b> </summary>\n\nSuppose you want an agent to extract \nthe key terms of a lease, from a lease document, as a nested JSON structure.\nFirst define the desired structure via Pydantic models:\n\n```python\nfrom pydantic import BaseModel\nclass LeasePeriod(BaseModel):\n start_date: str\n end_date: str\n\n\nclass LeaseFinancials(BaseModel):\n monthly_rent: str\n deposit: str\n\nclass Lease(BaseModel):\n period: LeasePeriod\n financials: LeaseFinancials\n address: str\n```\n\nThen define the `LeaseMessage` tool as a subclass of Langroid\'s `ToolMessage`.\nNote the tool has a required argument `terms` of type `Lease`:\n\n```python\nclass LeaseMessage(ToolMessage):\n request: str = "lease_info"\n purpose: str = """\n Collect information about a Commercial Lease.\n """\n terms: Lease\n```\n\nThen define a `LeaseExtractorAgent` with a method `lease_info` that handles this tool,\ninstantiate the agent, and enable it to use and respond to this tool:\n\n```python\nclass LeaseExtractorAgent(ChatAgent):\n def lease_info(self, message: LeaseMessage) -> str:\n print(\n f"""\n DONE! Successfully extracted Lease Info:\n {message.terms}\n """\n )\n return json.dumps(message.terms.dict())\n \nlease_extractor_agent = LeaseExtractorAgent(\n ChatAgentConfig(\n llm=OpenAIGPTConfig(),\n use_functions_api=False,\n use_tools=True,\n )\n)\nlease_extractor_agent.enable_message(LeaseMessage)\n```\n\nSee the [`chat_multi_extract.py`](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py)\nscript in the `langroid-examples` repo for a full working example.\n</details>\n\n<details>\n<summary><b> Chat with documents (file paths, URLs, etc) </b></summary>\n\nLangroid provides a specialized agent class `DocChatAgent` for this purpose.\nIt incorporates document sharding, embedding, storage in a vector-DB, \nand retrieval-augmented query-answer generation.\nUsing this class to chat with a collection of documents is easy.\nFirst create a `DocChatAgentConfig` instance, with a \n`doc_paths` field that specifies the documents to chat with.\n\n```python\nfrom langroid.agent.doc_chat_agent import DocChatAgentConfig\nconfig = DocChatAgentConfig(\n doc_paths = [\n "https://en.wikipedia.org/wiki/Language_model",\n "https://en.wikipedia.org/wiki/N-gram_language_model",\n "/path/to/my/notes-on-language-models.txt",\n ]\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=VectorStoreConfig(\n type="qdrant",\n ),\n)\n```\n\nThen instantiate the `DocChatAgent` (this ingests the docs into the vector-store):\n\n```python\nagent = DocChatAgent(config)\n```\nThen we can either ask the agent one-off questions,\n```python\nagent.chat("What is a language model?")\n```\nor wrap it in a `Task` and run an interactive loop with the user:\n```python\nfrom langroid.task import Task\ntask = Task(agent)\ntask.run()\n```\n\nSee full working scripts in the \n[`docqa`](https://github.com/langroid/langroid-examples/tree/main/examples/docqa)\nfolder of the `langroid-examples` repo.\n</details>\n\n<details>\n<summary><b> :fire: Chat with tabular data (file paths, URLs, dataframes) </b></summary>\n\nUsing Langroid you can set up a `TableChatAgent` with a dataset (file path, URL or dataframe),\nand query it. The Agent\'s LLM generates Pandas code to answer the query, \nvia function-calling (or tool/plugin), and the Agent\'s function-handling method\nexecutes the code and returns the answer.\n\nHere is how you can do this:\n\n```python\nfrom langroid.agent.special.table_chat_agent import TableChatAgent, TableChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\n```\n\nSet up a `TableChatAgent` for a data file, URL or dataframe\n(Ensure the data table has a header row; the delimiter/separator is auto-detected):\n```python\ndataset = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"\n# or dataset = "/path/to/my/data.csv"\n# or dataset = pd.read_csv("/path/to/my/data.csv")\nagent = TableChatAgent(\n config=TableChatAgentConfig(\n data=dataset, \n llm=OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n )\n)\n```\nSet up a task, and ask one-off questions like this: \n\n```python\ntask = Task(\n agent, \n name = "DataAssistant",\n default_human_response="", # to avoid waiting for user input\n)\nresult = task.run(\n "What is the average alcohol content of wines with a quality rating above 7?",\n turns=2 # return after user question, LLM fun-call/tool response, Agent code-exec result\n) \nprint(result.content)\n```\nOr alternatively, set up a task and run it in an interactive loop with the user:\n\n```python\ntask = Task(agent, name="DataAssistant")\ntask.run()\n``` \n\nFor a full working example see the \n[`table_chat.py`](https://github.com/langroid/langroid-examples/tree/main/examples/data-qa/table_chat.py)\nscript in the `langroid-examples` repo.\n\n\n</details>\n\n---\n\n# :heart: Thank you to our [supporters](https://github.com/langroid/langroid/stargazers)\n\nIf you like this project, please give it a star ⭐ and 📢 spread the word in your network or social media:\n\n[![Share on Twitter](https://img.shields.io/twitter/url?style=social&url=https://github.com/langroid/langroid)](https://twitter.com/intent/tweet?text=Langroid%20is%20a%20powerful,%20elegant%20new%20framework%20to%20easily%20build%20%23LLM%20applications.%20You%20set%20up%20LLM-powered%20Agents%20with%20vector-stores,%20assign%20tasks,%20and%20have%20them%20collaboratively%20solve%20problems%20via%20message-transformations.%20https://github.com/langroid/langroid)\n[![Share on LinkedIn](https://img.shields.io/badge/Share%20on-LinkedIn-blue)](https://www.linkedin.com/shareArticle?mini=true&url=https://github.com/langroid/langroid&title=Langroid:%20A%20Powerful,%20Elegant%20Framework&summary=Langroid%20is%20a%20powerful,%20elegant%20new%20framework%20to%20easily%20build%20%23LLM%20applications.%20You%20set%20up%20LLM-powered%20Agents%20with%20vector-stores,%20assign%20tasks,%20and%20have%20them%20collaboratively%20solve%20problems%20via%20message-transformations.)\n[![Share on Hacker News](https://img.shields.io/badge/-Share%20on%20Hacker%20News-orange)](https://news.ycombinator.com/submitlink?u=https%3A%2F%2Fgithub.com%2Flangroid%2Flangroid&t=Harness%20LLMs%20with%20Multi-Agent%20Programming)\n[![Share on Reddit](https://img.shields.io/badge/-Share%20on%20Reddit-blue)](https://www.reddit.com/submit?url=https%3A%2F%2Fgithub.com%2Flangroid%2Flangroid&title=Harness%20LLMs%20with%20Multi-Agent%20Programming)\n\n\n\n\nYour support will help build Langroid\'s momentum and community.\n\n\n\n\n# Langroid Co-Founders\n\n- [Prasad Chalasani](https://www.linkedin.com/in/pchalasani/) (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)\n- [Somesh Jha](https://www.linkedin.com/in/somesh-jha-80208015/) (IIT BTech/CS, CMU PhD/CS; Professor of CS, U Wisc at Madison)\n\n\n\n',
86
86
  'author': 'Prasad Chalasani',
@@ -1,51 +0,0 @@
1
- from io import BytesIO
2
-
3
- import requests
4
- from pypdf import PdfReader
5
-
6
- from langroid.mytypes import DocMetaData, Document
7
-
8
-
9
- def _text_from_pdf_reader(reader: PdfReader) -> str:
10
- """
11
- Extract text from a `PdfReader` object.
12
- Args:
13
- reader (PdfReader): a `PdfReader` object
14
- Returns:
15
- str: the extracted text
16
- """
17
- text = ""
18
- for page in reader.pages:
19
- text += page.extract_text()
20
- return text
21
-
22
-
23
- def get_doc_from_pdf_url(url: str) -> Document:
24
- """
25
- Args:
26
- url (str): contains the URL to the PDF file
27
- Returns:
28
- a `Document` object containing the content of the pdf file,
29
- and metadata containing url
30
- """
31
- response = requests.get(url)
32
- response.raise_for_status()
33
- with BytesIO(response.content) as f:
34
- reader = PdfReader(f)
35
- text = _text_from_pdf_reader(reader)
36
- return Document(content=text, metadata=DocMetaData(source=str(url)))
37
-
38
-
39
- def get_doc_from_pdf_file(path: str) -> Document:
40
- """
41
- Given local path to a PDF file, extract the text content.
42
- Args:
43
- path (str): full path to the PDF file
44
- PDF file obtained via URL
45
- Returns:
46
- a `Document` object containing the content of the pdf file,
47
- and metadata containing path/url
48
- """
49
- reader = PdfReader(path)
50
- text = _text_from_pdf_reader(reader)
51
- return Document(content=text, metadata=DocMetaData(source=str(path)))
File without changes
File without changes
File without changes