langroid 0.1.27__tar.gz → 0.1.28__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. {langroid-0.1.27 → langroid-0.1.28}/PKG-INFO +12 -5
  2. {langroid-0.1.27 → langroid-0.1.28}/README.md +11 -4
  3. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/logging.py +3 -5
  4. {langroid-0.1.27 → langroid-0.1.28}/langroid/vector_store/chromadb.py +2 -3
  5. {langroid-0.1.27 → langroid-0.1.28}/langroid/vector_store/qdrantdb.py +2 -3
  6. {langroid-0.1.27 → langroid-0.1.28}/pyproject.toml +1 -1
  7. langroid-0.1.28/setup.py +87 -0
  8. langroid-0.1.27/setup.py +0 -87
  9. {langroid-0.1.27 → langroid-0.1.28}/LICENSE +0 -0
  10. {langroid-0.1.27 → langroid-0.1.28}/langroid/__init__.py +0 -0
  11. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/__init__.py +0 -0
  12. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/base.py +0 -0
  13. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/chat_agent.py +0 -0
  14. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/chat_document.py +0 -0
  15. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/helpers.py +0 -0
  16. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/junk +0 -0
  17. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/special/__init__.py +0 -0
  18. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/special/doc_chat_agent.py +0 -0
  19. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/special/recipient_validator_agent.py +0 -0
  20. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/special/retriever_agent.py +0 -0
  21. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/task.py +0 -0
  22. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent/tool_message.py +0 -0
  23. {langroid-0.1.27 → langroid-0.1.28}/langroid/agent_config.py +0 -0
  24. {langroid-0.1.27 → langroid-0.1.28}/langroid/cachedb/__init__.py +0 -0
  25. {langroid-0.1.27 → langroid-0.1.28}/langroid/cachedb/base.py +0 -0
  26. {langroid-0.1.27 → langroid-0.1.28}/langroid/cachedb/momento_cachedb.py +0 -0
  27. {langroid-0.1.27 → langroid-0.1.28}/langroid/cachedb/redis_cachedb.py +0 -0
  28. {langroid-0.1.27 → langroid-0.1.28}/langroid/embedding_models/__init__.py +0 -0
  29. {langroid-0.1.27 → langroid-0.1.28}/langroid/embedding_models/base.py +0 -0
  30. {langroid-0.1.27 → langroid-0.1.28}/langroid/embedding_models/clustering.py +0 -0
  31. {langroid-0.1.27 → langroid-0.1.28}/langroid/embedding_models/models.py +0 -0
  32. {langroid-0.1.27 → langroid-0.1.28}/langroid/language_models/__init__.py +0 -0
  33. {langroid-0.1.27 → langroid-0.1.28}/langroid/language_models/base.py +0 -0
  34. {langroid-0.1.27 → langroid-0.1.28}/langroid/language_models/openai_gpt.py +0 -0
  35. {langroid-0.1.27 → langroid-0.1.28}/langroid/language_models/utils.py +0 -0
  36. {langroid-0.1.27 → langroid-0.1.28}/langroid/mytypes.py +0 -0
  37. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/__init__.py +0 -0
  38. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/agent_chats.py +0 -0
  39. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/code-parsing.md +0 -0
  40. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/code_parser.py +0 -0
  41. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/json.py +0 -0
  42. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/para_sentence_split.py +0 -0
  43. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/parser.py +0 -0
  44. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/pdf_parser.py +0 -0
  45. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/repo_loader.py +0 -0
  46. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/url_loader.py +0 -0
  47. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/url_loader_cookies.py +0 -0
  48. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/urls.py +0 -0
  49. {langroid-0.1.27 → langroid-0.1.28}/langroid/parsing/utils.py +0 -0
  50. {langroid-0.1.27 → langroid-0.1.28}/langroid/prompts/__init__.py +0 -0
  51. {langroid-0.1.27 → langroid-0.1.28}/langroid/prompts/dialog.py +0 -0
  52. {langroid-0.1.27 → langroid-0.1.28}/langroid/prompts/prompts_config.py +0 -0
  53. {langroid-0.1.27 → langroid-0.1.28}/langroid/prompts/templates.py +0 -0
  54. {langroid-0.1.27 → langroid-0.1.28}/langroid/prompts/transforms.py +0 -0
  55. {langroid-0.1.27 → langroid-0.1.28}/langroid/scripts/__init__.py +0 -0
  56. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/__init__.py +0 -0
  57. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/configuration.py +0 -0
  58. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/constants.py +0 -0
  59. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/docker.py +0 -0
  60. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/llms/__init__.py +0 -0
  61. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/llms/strings.py +0 -0
  62. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/output/__init__.py +0 -0
  63. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/output/printing.py +0 -0
  64. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/system.py +0 -0
  65. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/web/__init__.py +0 -0
  66. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/web/login.py +0 -0
  67. {langroid-0.1.27 → langroid-0.1.28}/langroid/utils/web/selenium_login.py +0 -0
  68. {langroid-0.1.27 → langroid-0.1.28}/langroid/vector_store/__init__.py +0 -0
  69. {langroid-0.1.27 → langroid-0.1.28}/langroid/vector_store/base.py +0 -0
  70. {langroid-0.1.27 → langroid-0.1.28}/langroid/vector_store/qdrant_cloud.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: langroid
3
- Version: 0.1.27
3
+ Version: 0.1.28
4
4
  Summary: Harness LLMs with Multi-Agent Programming
5
5
  License: MIT
6
6
  Author: Prasad Chalasani
@@ -98,6 +98,8 @@ collaboratively solve a problem by exchanging messages.
98
98
  This Multi-Agent paradigm is inspired by the
99
99
  [Actor Framework](https://en.wikipedia.org/wiki/Actor_model)
100
100
  (but you do not need to know anything about this!).
101
+ We welcome contributions -- See the [contributions](./CONTRIBUTING.md) document
102
+ for ideas on what to contribute.
101
103
 
102
104
 
103
105
  # :rocket: Demo
@@ -190,9 +192,16 @@ Your `.env` file should look like this:
190
192
  OPENAI_API_KEY=your-key-here-without-quotes
191
193
  ````
192
194
 
195
+ Alternatively, you can set this as an environment variable in your shell
196
+ (you will need to do this every time you open a new shell):
197
+ ```bash
198
+ export OPENAI_API_KEY=your-key-here-without-quotes
199
+ ```
200
+
193
201
 
194
202
  <details>
195
- <summary>Optional Setup Instructions (click to expand) </summary>
203
+ <summary><b>Optional Setup Instructions (click to expand) </b></summary>
204
+
196
205
  All of the below are optional and not strictly needed to run any of the examples.
197
206
 
198
207
  - **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.
@@ -544,9 +553,7 @@ folder of the `langroid-examples` repo.
544
553
 
545
554
  ---
546
555
 
547
- # :heart: Thank you to our supporters!
548
-
549
- [![Stargazers repo roster for @langroid/langroid](https://reporoster.com/stars/langroid/langroid)](https://github.com/langroid/langroid/stargazers)
556
+ # :heart: Thank you to our [supporters](https://github.com/langroid/langroid/stargazers)
550
557
 
551
558
  # Contributors
552
559
 
@@ -39,6 +39,8 @@ collaboratively solve a problem by exchanging messages.
39
39
  This Multi-Agent paradigm is inspired by the
40
40
  [Actor Framework](https://en.wikipedia.org/wiki/Actor_model)
41
41
  (but you do not need to know anything about this!).
42
+ We welcome contributions -- See the [contributions](./CONTRIBUTING.md) document
43
+ for ideas on what to contribute.
42
44
 
43
45
 
44
46
  # :rocket: Demo
@@ -131,9 +133,16 @@ Your `.env` file should look like this:
131
133
  OPENAI_API_KEY=your-key-here-without-quotes
132
134
  ````
133
135
 
136
+ Alternatively, you can set this as an environment variable in your shell
137
+ (you will need to do this every time you open a new shell):
138
+ ```bash
139
+ export OPENAI_API_KEY=your-key-here-without-quotes
140
+ ```
141
+
134
142
 
135
143
  <details>
136
- <summary>Optional Setup Instructions (click to expand) </summary>
144
+ <summary><b>Optional Setup Instructions (click to expand) </b></summary>
145
+
137
146
  All of the below are optional and not strictly needed to run any of the examples.
138
147
 
139
148
  - **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.
@@ -485,9 +494,7 @@ folder of the `langroid-examples` repo.
485
494
 
486
495
  ---
487
496
 
488
- # :heart: Thank you to our supporters!
489
-
490
- [![Stargazers repo roster for @langroid/langroid](https://reporoster.com/stars/langroid/langroid)](https://github.com/langroid/langroid/stargazers)
497
+ # :heart: Thank you to our [supporters](https://github.com/langroid/langroid/stargazers)
491
498
 
492
499
  # Contributors
493
500
 
@@ -124,8 +124,6 @@ class RichFileLogger:
124
124
 
125
125
  @no_type_check
126
126
  def log(self, message: str) -> None:
127
- self.file = open(self.log_file, "a")
128
- self.console = Console(file=self.file, force_terminal=True, width=200)
129
- self.console.print(message)
130
- self.file.flush()
131
- self.file.close()
127
+ with open(self.log_file, "a") as f:
128
+ console = Console(file=f, force_terminal=True, width=200)
129
+ console.print(message)
@@ -7,6 +7,7 @@ from langroid.embedding_models.base import (
7
7
  EmbeddingModel,
8
8
  EmbeddingModelsConfig,
9
9
  )
10
+ from langroid.embedding_models.models import OpenAIEmbeddingsConfig
10
11
  from langroid.mytypes import DocMetaData, Document
11
12
  from langroid.utils.configuration import settings
12
13
  from langroid.utils.output.printing import print_long_text
@@ -19,9 +20,7 @@ class ChromaDBConfig(VectorStoreConfig):
19
20
  type: str = "chroma"
20
21
  collection_name: str = "chroma-langroid"
21
22
  storage_path: str = ".chroma/data"
22
- embedding: EmbeddingModelsConfig = EmbeddingModelsConfig(
23
- model_type="openai",
24
- )
23
+ embedding: EmbeddingModelsConfig = OpenAIEmbeddingsConfig()
25
24
  host: str = "127.0.0.1"
26
25
  port: int = 6333
27
26
 
@@ -19,6 +19,7 @@ from langroid.embedding_models.base import (
19
19
  EmbeddingModel,
20
20
  EmbeddingModelsConfig,
21
21
  )
22
+ from langroid.embedding_models.models import OpenAIEmbeddingsConfig
22
23
  from langroid.mytypes import Document
23
24
  from langroid.utils.configuration import settings
24
25
  from langroid.vector_store.base import VectorStore, VectorStoreConfig
@@ -32,9 +33,7 @@ class QdrantDBConfig(VectorStoreConfig):
32
33
 
33
34
  collection_name: str | None = None
34
35
  storage_path: str = ".qdrant/data"
35
- embedding: EmbeddingModelsConfig = EmbeddingModelsConfig(
36
- model_type="openai",
37
- )
36
+ embedding: EmbeddingModelsConfig = OpenAIEmbeddingsConfig()
38
37
  distance: str = Distance.COSINE
39
38
 
40
39
 
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "langroid"
3
- version = "0.1.27"
3
+ version = "0.1.28"
4
4
  description = "Harness LLMs with Multi-Agent Programming"
5
5
  authors = ["Prasad Chalasani <pchalasani@gmail.com>"]
6
6
  readme = "README.md"
@@ -0,0 +1,87 @@
1
+ # -*- coding: utf-8 -*-
2
+ from setuptools import setup
3
+
4
+ packages = \
5
+ ['langroid',
6
+ 'langroid.agent',
7
+ 'langroid.agent.special',
8
+ 'langroid.cachedb',
9
+ 'langroid.embedding_models',
10
+ 'langroid.language_models',
11
+ 'langroid.parsing',
12
+ 'langroid.prompts',
13
+ 'langroid.scripts',
14
+ 'langroid.utils',
15
+ 'langroid.utils.llms',
16
+ 'langroid.utils.output',
17
+ 'langroid.utils.web',
18
+ 'langroid.vector_store']
19
+
20
+ package_data = \
21
+ {'': ['*']}
22
+
23
+ install_requires = \
24
+ ['autopep8>=2.0.2,<3.0.0',
25
+ 'black[jupyter]>=23.3.0,<24.0.0',
26
+ 'bs4>=0.0.1,<0.0.2',
27
+ 'chromadb>=0.3.21,<0.4.0',
28
+ 'colorlog>=6.7.0,<7.0.0',
29
+ 'faker>=18.9.0,<19.0.0',
30
+ 'fakeredis>=2.12.1,<3.0.0',
31
+ 'fire>=0.5.0,<0.6.0',
32
+ 'flake8>=6.0.0,<7.0.0',
33
+ 'halo>=0.0.31,<0.0.32',
34
+ 'mkdocs-awesome-pages-plugin>=2.8.0,<3.0.0',
35
+ 'mkdocs-gen-files>=0.4.0,<0.5.0',
36
+ 'mkdocs-jupyter>=0.24.1,<0.25.0',
37
+ 'mkdocs-literate-nav>=0.6.0,<0.7.0',
38
+ 'mkdocs-material>=9.1.5,<10.0.0',
39
+ 'mkdocs-section-index>=0.3.5,<0.4.0',
40
+ 'mkdocs>=1.4.2,<2.0.0',
41
+ 'mkdocstrings[python]>=0.21.2,<0.22.0',
42
+ 'momento>=1.7.0,<2.0.0',
43
+ 'mypy>=1.2.0,<2.0.0',
44
+ 'nltk>=3.8.1,<4.0.0',
45
+ 'openai>=0.27.5,<0.28.0',
46
+ 'pre-commit>=3.3.2,<4.0.0',
47
+ 'pydantic==1.10.11',
48
+ 'pygithub>=1.58.1,<2.0.0',
49
+ 'pygments>=2.15.1,<3.0.0',
50
+ 'pyparsing>=3.0.9,<4.0.0',
51
+ 'pypdf>=3.12.2,<4.0.0',
52
+ 'python-dotenv>=1.0.0,<2.0.0',
53
+ 'qdrant-client>=1.3.1,<2.0.0',
54
+ 'redis>=4.5.5,<5.0.0',
55
+ 'requests-oauthlib>=1.3.1,<2.0.0',
56
+ 'requests>=2.31.0,<3.0.0',
57
+ 'rich>=13.3.4,<14.0.0',
58
+ 'ruff>=0.0.270,<0.0.271',
59
+ 'tiktoken>=0.3.3,<0.4.0',
60
+ 'trafilatura>=1.5.0,<2.0.0',
61
+ 'typer>=0.7.0,<0.8.0',
62
+ 'types-redis>=4.5.5.2,<5.0.0.0',
63
+ 'types-requests>=2.31.0.1,<3.0.0.0',
64
+ 'wget>=3.2,<4.0']
65
+
66
+ extras_require = \
67
+ {'hf-embeddings': ['sentence-transformers==2.2.2', 'torch==2.0.0']}
68
+
69
+ setup_kwargs = {
70
+ 'name': 'langroid',
71
+ 'version': '0.1.28',
72
+ 'description': 'Harness LLMs with Multi-Agent Programming',
73
+ 'long_description': '<div align="center">\n <img src="docs/assets/langroid-card-lambda-ossem-rust-1200-630.png" alt="Logo" \n width="400" align="center">\n</div>\n\n<div align="center">\n\n[![Pytest](https://github.com/langroid/langroid/actions/workflows/pytest.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/pytest.yml)\n[![codecov](https://codecov.io/gh/langroid/langroid/branch/main/graph/badge.svg?token=H94BX5F0TE)](https://codecov.io/gh/langroid/langroid)\n[![Lint](https://github.com/langroid/langroid/actions/workflows/validate.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/validate.yml)\n[![Docs](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml)\n[![Static Badge](https://img.shields.io/badge/Documentation-blue?link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F&link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F)](https://langroid.github.io/langroid)\n[![Static Badge](https://img.shields.io/badge/Discord-Orange?link=https%3A%2F%2Fdiscord.gg%2Fg3nAXCbZ&link=https%3A%2F%2Fdiscord.gg%2Fg3nAXCbZ)](https://discord.gg/g3nAXCbZ)\n\n</div>\n\n<h3 align="center">\n <a target="_blank" \n href="https://langroid.github.io/langroid/" rel="dofollow">\n <strong>Documentation</strong></a>\n &middot;\n <a target="_blank" href="https://github.com/langroid/langroid-examples" rel="dofollow">\n <strong>Examples Repo</strong></a>\n &middot;\n <a target="_blank" href="https://discord.gg/g3nAXCbZ" rel="dofollow">\n <strong>Discord</strong></a>\n &middot;\n <a target="_blank" href="./CONTRIBUTING.md" rel="dofollow">\n <strong>Contributing</strong></a>\n\n <br />\n</h3>\n\n`Langroid` is an intuitive, lightweight, extensible and principled\nPython framework to easily build LLM-powered applications. \nYou set up Agents, equip them with optional components (LLM, \nvector-store and methods), assign them tasks, and have them \ncollaboratively solve a problem by exchanging messages. \nThis Multi-Agent paradigm is inspired by the\n[Actor Framework](https://en.wikipedia.org/wiki/Actor_model)\n(but you do not need to know anything about this!).\nWe welcome contributions -- See the [contributions](./CONTRIBUTING.md) document\nfor ideas on what to contribute.\n\n\n# :rocket: Demo\nSuppose you want to extract structured information about the key terms \nof a commercial lease document. You can easily do this with Langroid using a two-agent system,\nas we show in the [langroid-examples](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py) repo.\nThe demo showcases just a few of the many features of Langroid, such as:\n- Multi-agent collaboration: `LeaseExtractor` is in charge of the task, and its LLM (GPT4) generates questions \nto be answered by the `DocAgent`.\n- Retrieval augmented question-answering, with **source-citation**: `DocAgent` LLM (GPT4) uses retrieval from a vector-store to \nanswer the `LeaseExtractor`\'s questions, cites the specific excerpt supporting the answer. \n- Function-calling (also known as tool/plugin): When it has all the information it \nneeds, the `LeaseExtractor` LLM presents the information in a structured \nformat using a Function-call. \n\nHere is what it looks like in action:\n\n![Demo](docs/assets/demos/lease-extractor-demo.gif)\n\n\n# :zap: Highlights\n\n- **Agents as first-class citizens:** The [Agent](https://langroid.github.io/langroid/reference/agent/base/#langroid.agent.base.Agent) class encapsulates LLM conversation state,\n and optionally a vector-store and tools. Agents are a core abstraction in Langroid;\n Agents act as _message transformers_, and by default provide 3 _responder_ methods, one corresponding to each entity: LLM, Agent, User.\n- **Tasks:** A [Task](https://langroid.github.io/langroid/reference/agent/task/) class wraps an Agent, and gives the agent instructions (or roles, or goals), \n manages iteration over an Agent\'s responder methods, \n and orchestrates multi-agent interactions via hierarchical, recursive\n task-delegation. The `Task.run()` method has the same \n type-signature as an Agent\'s responder\'s methods, and this is key to how \n a task of an agent can delegate to other sub-tasks: from the point of view of a Task,\n sub-tasks are simply additional responders, to be used in a round-robin fashion \n after the agent\'s own responders.\n- **Modularity, Reusabilily, Loose coupling:** The `Agent` and `Task` abstractions allow users to design\n Agents with specific skills, wrap them in Tasks, and combine tasks in a flexible way.\n- **LLM Support**: Langroid supports OpenAI LLMs including GPT-3.5-Turbo,\n GPT-4-0613\n- **Caching of LLM prompts, responses:** Langroid uses [Redis](https://redis.com/try-free/) for caching.\n- **Vector-stores**: [Qdrant](https://qdrant.tech/) and [Chroma](https://www.trychroma.com/) are currently supported.\n Vector stores allow for Retrieval-Augmented-Generation (RAG).\n- **Grounding and source-citation:** Access to external documents via vector-stores \n allows for grounding and source-citation.\n- **Observability, Logging, Lineage:** Langroid generates detailed logs of multi-agent interactions and\n maintains provenance/lineage of messages, so that you can trace back\n the origin of a message.\n- **Tools/Plugins/Function-calling**: Langroid supports OpenAI\'s recently\n released [function calling](https://platform.openai.com/docs/guides/gpt/function-calling)\n feature. In addition, Langroid has its own native equivalent, which we\n call **tools** (also known as "plugins" in other contexts). Function\n calling and tools have the same developer-facing interface, implemented\n using [Pydantic](https://docs.pydantic.dev/latest/),\n which makes it very easy to define tools/functions and enable agents\n to use them. Benefits of using Pydantic are that you never have to write\n complex JSON specs for function calling, and when the LLM\n hallucinates malformed JSON, the Pydantic error message is sent back to\n the LLM so it can fix it!\n\n--- \n\n# :gear: Installation and Setup\n\n### Install `langroid`\nLangroid requires Python 3.11+. We recommend using a virtual environment.\nUse `pip` to install `langroid` (from PyPi) to your virtual environment:\n```bash\npip install langroid\n```\nThe core Langroid package lets you use OpenAI Embeddings models via their API. \nIf you instead want to use the `all-MiniLM-L6-v2` embeddings model\nfrom from HuggingFace, install Langroid like this:\n```bash\npip install langroid[hf-embeddings]\n```\nNote that this will install `torch` and `sentence-transformers` libraries.\n\n### Set up environment variables (API keys, etc)\n\nTo get started, all you need is an OpenAI API Key.\nIf you don\'t have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).\nCurrently only OpenAI models are supported. Others will be added later\n(Pull Requests welcome!).\n\nIn the root of the repo, copy the `.env-template` file to a new file `.env`: \n```bash\ncp .env-template .env\n```\nThen insert your OpenAI API Key. \nYour `.env` file should look like this:\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\n````\n\nAlternatively, you can set this as an environment variable in your shell\n(you will need to do this every time you open a new shell):\n```bash\nexport OPENAI_API_KEY=your-key-here-without-quotes\n```\n\n\n<details>\n<summary><b>Optional Setup Instructions (click to expand) </b></summary>\n\nAll of the below are optional and not strictly needed to run any of the examples.\n\n- **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.\n You can sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).\n If you skip setting up these, Langroid will use Qdrant in local-storage mode.\n Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported. \n We use the local-storage version of Chroma, so there is no need for an API key.\n- **Redis** Password, host, port: This is optional, and only needed to cache LLM API responses\n using Redis Cloud. Redis [offers](https://redis.com/try-free/) a free 30MB Redis account\n which is more than sufficient to try out Langroid and even beyond.\n If you don\'t set up these, Langroid will use a pure-python \n Redis in-memory cache via the [Fakeredis](https://fakeredis.readthedocs.io/en/latest/) library.\n- **Momento** Serverless Caching of LLM API responses (as an alternative to Redis). \n To use Momento instead of Redis, simply enter your Momento Token in the `.env` file,\n as the value of `MOMENTO_AUTH_TOKEN` (see example file below).\n- **GitHub** Personal Access Token (required for apps that need to analyze git\n repos; token-based API calls are less rate-limited). See this\n [GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).\n\nIf you add all of these optional variables, your `.env` file should look like this:\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\nGITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes\nREDIS_PASSWORD=your-redis-password-no-quotes\nREDIS_HOST=your-redis-hostname-no-quotes\nREDIS_PORT=your-redis-port-no-quotes\nMOMENTO_AUTH_TOKEN=your-momento-token-no-quotes # instead of REDIS* variables\nQDRANT_API_KEY=your-key\nQDRANT_API_URL=https://your.url.here:6333 # note port number must be included\n```\n</details>\n\n---\n\n# :tada: Usage Examples\n\nThese are quick teasers to give a glimpse of what you can do with Langroid\nand how your code would look. \n\n:warning: The code snippets below are intended to give a flavor of the code\nand they are **not** complete runnable examples! For that we encourage you to \nconsult the [`langroid-examples`](https://github.com/langroid/langroid-examples) \nrepository.\n\n:information_source: The various LLM prompts and instructions in Langroid\nhave been tested to work well with GPT4.\nSwitching to GPT3.5-Turbo is easy via a config flag\n(e.g., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT3_5_TURBO)`),\nand may suffice for some applications, but in general you may see inferior results.\n\n\n:book: Also see the\n[`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)\nfor a detailed tutorial.\n\nClick to expand any of the code examples below:\n\n<details>\n<summary> <b> Direct interaction with OpenAI LLM </b> </summary>\n\n```python\nfrom langroid.language_models.openai_gpt import ( \n OpenAIGPTConfig, OpenAIChatModel, OpenAIGPT,\n)\nfrom langroid.language_models.base import LLMMessage, Role\n\ncfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)\n\nmdl = OpenAIGPT(cfg)\n\nmessages = [\n LLMMessage(content="You are a helpful assistant", role=Role.SYSTEM), \n LLMMessage(content="What is the capital of Ontario?", role=Role.USER),\n]\nresponse = mdl.chat(messages, max_tokens=200)\nprint(response.message)\n```\n</details>\n\n<details>\n<summary> <b> Define an agent, set up a task, and run it </b> </summary>\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\n\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None, # no vector store\n)\nagent = ChatAgent(config)\n# get response from agent\'s LLM, and put this in an interactive loop...\n# answer = agent.llm_response("What is the capital of Ontario?")\n # ... OR instead, set up a task (which has a built-in loop) and run it\ntask = Task(agent, name="Bot") \ntask.run() # ... a loop seeking response from LLM or User at each turn\n```\n</details>\n\n<details>\n<summary><b> Three communicating agents </b></summary>\n\n```python\n\nA toy numbers game, where when given a number `n`:\n- `repeater_agent`\'s LLM simply returns `n`,\n- `even_agent`\'s LLM returns `n/2` if `n` is even, else says "DO-NOT-KNOW"\n- `odd_agent`\'s LLM returns `3*n+1` if `n` is odd, else says "DO-NOT-KNOW"\n\nFirst define the 3 agents, and set up their tasks with instructions:\n\n```python\nfrom langroid.utils.constants import NO_ANSWER\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb = None,\n)\nrepeater_agent = ChatAgent(config)\nrepeater_task = Task(\n repeater_agent,\n name = "Repeater",\n system_message="""\n Your job is to repeat whatever number you receive.\n """,\n llm_delegate=True, # LLM takes charge of task\n single_round=False, \n)\neven_agent = ChatAgent(config)\neven_task = Task(\n even_agent,\n name = "EvenHandler",\n system_message=f"""\n You will be given a number. \n If it is even, divide by 2 and say the result, nothing else.\n If it is odd, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n\nodd_agent = ChatAgent(config)\nodd_task = Task(\n odd_agent,\n name = "OddHandler",\n system_message=f"""\n You will be given a number n. \n If it is odd, return (n*3+1), say nothing else. \n If it is even, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n```\nThen add the `even_task` and `odd_task` as sub-tasks of `repeater_task`, \nand run the `repeater_task`, kicking it off with a number as input:\n```python\nrepeater_task.add_sub_task([even_task, odd_task])\nrepeater_task.run("3")\n```\n\n</details>\n\n<details>\n<summary><b> Simple Tool/Function-calling example </b></summary>\n\nLangroid leverages Pydantic to support OpenAI\'s\n[Function-calling API](https://platform.openai.com/docs/guides/gpt/function-calling)\nas well as its own native tools. The benefits are that you don\'t have to write\nany JSON to specify the schema, and also if the LLM hallucinates a malformed\ntool syntax, Langroid sends the Pydantic validation error (suitiably sanitized) \nto the LLM so it can fix it!\n\nSimple example: Say the agent has a secret list of numbers, \nand we want the LLM to find the smallest number in the list. \nWe want to give the LLM a `probe` tool/function which takes a\nsingle number `n` as argument. The tool handler method in the agent\nreturns how many numbers in its list are at most `n`.\n\nFirst define the tool using Langroid\'s `ToolMessage` class:\n\n\n```python\nfrom langroid.agent.tool_message import ToolMessage\nclass ProbeTool(ToolMessage):\n request: str = "probe" # specifies which agent method handles this tool\n purpose: str = """\n To find how many numbers in my list are less than or equal to \n the <number> you specify.\n """ # description used to instruct the LLM on when/how to use the tool\n number: int # required argument to the tool\n```\n\nThen define a `SpyGameAgent` as a subclass of `ChatAgent`, \nwith a method `probe` that handles this tool:\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nclass SpyGameAgent(ChatAgent):\n def __init__(self, config: ChatAgentConfig):\n super().__init__(config)\n self.numbers = [3, 4, 8, 11, 15, 25, 40, 80, 90]\n\n def probe(self, msg: ProbeTool) -> str:\n # return how many numbers in self.numbers are less or equal to msg.number\n return str(len([n for n in self.numbers if n <= msg.number]))\n```\n\nWe then instantiate the agent and enable it to use and respond to the tool:\n\n```python\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nspy_game_agent = SpyGameAgent(\n ChatAgentConfig(\n name="Spy",\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None,\n use_tools=False, # don\'t use Langroid native tool\n use_functions_api=True, # use OpenAI function-call API\n )\n)\nspy_game_agent.enable_message(ProbeTool)\n```\n\nFor a full working example see the\n[chat-agent-tool.py](https://github.com/langroid/langroid-examples/blob/main/examples/quick-start/chat-agent-tool.py)\nscript in the `langroid-examples` repo.\n</details>\n\n<details>\n<summary> <b>Tool/Function-calling to extract structured information from text </b> </summary>\n\nSuppose you want an agent to extract \nthe key terms of a lease, from a lease document, as a nested JSON structure.\nFirst define the desired structure via Pydantic models:\n\n```python\nfrom pydantic import BaseModel\nclass LeasePeriod(BaseModel):\n start_date: str\n end_date: str\n\n\nclass LeaseFinancials(BaseModel):\n monthly_rent: str\n deposit: str\n\nclass Lease(BaseModel):\n period: LeasePeriod\n financials: LeaseFinancials\n address: str\n```\n\nThen define the `LeaseMessage` tool as a subclass of Langroid\'s `ToolMessage`.\nNote the tool has a required argument `terms` of type `Lease`:\n\n```python\nclass LeaseMessage(ToolMessage):\n request: str = "lease_info"\n purpose: str = """\n Collect information about a Commercial Lease.\n """\n terms: Lease\n```\n\nThen define a `LeaseExtractorAgent` with a method `lease_info` that handles this tool,\ninstantiate the agent, and enable it to use and respond to this tool:\n\n```python\nclass LeaseExtractorAgent(ChatAgent):\n def lease_info(self, message: LeaseMessage) -> str:\n print(\n f"""\n DONE! Successfully extracted Lease Info:\n {message.terms}\n """\n )\n return json.dumps(message.terms.dict())\n \nlease_extractor_agent = LeaseExtractorAgent(\n ChatAgentConfig(\n llm=OpenAIGPTConfig(),\n use_functions_api=False,\n use_tools=True,\n )\n)\nlease_extractor_agent.enable_message(LeaseMessage)\n```\n\nSee the [`chat_multi_extract.py`](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py)\nscript in the `langroid-examples` repo for a full working example.\n</details>\n\n<details>\n<summary><b> Chat with documents (file paths, URLs, etc) </b></summary>\n\nLangroid provides a specialized agent class `DocChatAgent` for this purpose.\nIt incorporates document sharding, embedding, storage in a vector-DB, \nand retrieval-augmented query-answer generation.\nUsing this class to chat with a collection of documents is easy.\nFirst create a `DocChatAgentConfig` instance, with a \n`doc_paths` field that specifies the documents to chat with.\n\n```python\nfrom langroid.agent.doc_chat_agent import DocChatAgentConfig\nconfig = DocChatAgentConfig(\n doc_paths = [\n "https://en.wikipedia.org/wiki/Language_model",\n "https://en.wikipedia.org/wiki/N-gram_language_model",\n "/path/to/my/notes-on-language-models.txt",\n ]\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=VectorStoreConfig(\n type="qdrant",\n ),\n)\n```\n\nThen instantiate the `DocChatAgent`, ingest the docs into the vector-store:\n\n```python\nagent = DocChatAgent(config)\nagent.ingest()\n```\nThen we can either ask the agent one-off questions,\n```python\nagent.chat("What is a language model?")\n```\nor wrap it in a `Task` and run an interactive loop with the user:\n```python\nfrom langroid.task import Task\ntask = Task(agent)\ntask.run()\n```\n\nSee full working scripts in the \n[`docqa`](https://github.com/langroid/langroid-examples/tree/main/examples/docqa)\nfolder of the `langroid-examples` repo.\n</details>\n\n---\n\n# :heart: Thank you to our [supporters](https://github.com/langroid/langroid/stargazers)\n\n# Contributors\n\n- Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)\n- Somesh Jha (IIT BTech/CS, CMU PhD/CS; Professor of CS, U Wisc at Madison)\n- Mohannad Alhanahnah (Research Associate, U Wisc at Madison)\n- Ashish Hooda (IIT BTech/CS; PhD Candidate, U Wisc at Madison)\n\n',
74
+ 'author': 'Prasad Chalasani',
75
+ 'author_email': 'pchalasani@gmail.com',
76
+ 'maintainer': 'None',
77
+ 'maintainer_email': 'None',
78
+ 'url': 'None',
79
+ 'packages': packages,
80
+ 'package_data': package_data,
81
+ 'install_requires': install_requires,
82
+ 'extras_require': extras_require,
83
+ 'python_requires': '>=3.8.1,<3.12',
84
+ }
85
+
86
+
87
+ setup(**setup_kwargs)
langroid-0.1.27/setup.py DELETED
@@ -1,87 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- from setuptools import setup
3
-
4
- packages = \
5
- ['langroid',
6
- 'langroid.agent',
7
- 'langroid.agent.special',
8
- 'langroid.cachedb',
9
- 'langroid.embedding_models',
10
- 'langroid.language_models',
11
- 'langroid.parsing',
12
- 'langroid.prompts',
13
- 'langroid.scripts',
14
- 'langroid.utils',
15
- 'langroid.utils.llms',
16
- 'langroid.utils.output',
17
- 'langroid.utils.web',
18
- 'langroid.vector_store']
19
-
20
- package_data = \
21
- {'': ['*']}
22
-
23
- install_requires = \
24
- ['autopep8>=2.0.2,<3.0.0',
25
- 'black[jupyter]>=23.3.0,<24.0.0',
26
- 'bs4>=0.0.1,<0.0.2',
27
- 'chromadb>=0.3.21,<0.4.0',
28
- 'colorlog>=6.7.0,<7.0.0',
29
- 'faker>=18.9.0,<19.0.0',
30
- 'fakeredis>=2.12.1,<3.0.0',
31
- 'fire>=0.5.0,<0.6.0',
32
- 'flake8>=6.0.0,<7.0.0',
33
- 'halo>=0.0.31,<0.0.32',
34
- 'mkdocs-awesome-pages-plugin>=2.8.0,<3.0.0',
35
- 'mkdocs-gen-files>=0.4.0,<0.5.0',
36
- 'mkdocs-jupyter>=0.24.1,<0.25.0',
37
- 'mkdocs-literate-nav>=0.6.0,<0.7.0',
38
- 'mkdocs-material>=9.1.5,<10.0.0',
39
- 'mkdocs-section-index>=0.3.5,<0.4.0',
40
- 'mkdocs>=1.4.2,<2.0.0',
41
- 'mkdocstrings[python]>=0.21.2,<0.22.0',
42
- 'momento>=1.7.0,<2.0.0',
43
- 'mypy>=1.2.0,<2.0.0',
44
- 'nltk>=3.8.1,<4.0.0',
45
- 'openai>=0.27.5,<0.28.0',
46
- 'pre-commit>=3.3.2,<4.0.0',
47
- 'pydantic==1.10.11',
48
- 'pygithub>=1.58.1,<2.0.0',
49
- 'pygments>=2.15.1,<3.0.0',
50
- 'pyparsing>=3.0.9,<4.0.0',
51
- 'pypdf>=3.12.2,<4.0.0',
52
- 'python-dotenv>=1.0.0,<2.0.0',
53
- 'qdrant-client>=1.3.1,<2.0.0',
54
- 'redis>=4.5.5,<5.0.0',
55
- 'requests-oauthlib>=1.3.1,<2.0.0',
56
- 'requests>=2.31.0,<3.0.0',
57
- 'rich>=13.3.4,<14.0.0',
58
- 'ruff>=0.0.270,<0.0.271',
59
- 'tiktoken>=0.3.3,<0.4.0',
60
- 'trafilatura>=1.5.0,<2.0.0',
61
- 'typer>=0.7.0,<0.8.0',
62
- 'types-redis>=4.5.5.2,<5.0.0.0',
63
- 'types-requests>=2.31.0.1,<3.0.0.0',
64
- 'wget>=3.2,<4.0']
65
-
66
- extras_require = \
67
- {'hf-embeddings': ['sentence-transformers==2.2.2', 'torch==2.0.0']}
68
-
69
- setup_kwargs = {
70
- 'name': 'langroid',
71
- 'version': '0.1.27',
72
- 'description': 'Harness LLMs with Multi-Agent Programming',
73
- 'long_description': '<div align="center">\n <img src="docs/assets/langroid-card-lambda-ossem-rust-1200-630.png" alt="Logo" \n width="400" align="center">\n</div>\n\n<div align="center">\n\n[![Pytest](https://github.com/langroid/langroid/actions/workflows/pytest.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/pytest.yml)\n[![codecov](https://codecov.io/gh/langroid/langroid/branch/main/graph/badge.svg?token=H94BX5F0TE)](https://codecov.io/gh/langroid/langroid)\n[![Lint](https://github.com/langroid/langroid/actions/workflows/validate.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/validate.yml)\n[![Docs](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml)\n[![Static Badge](https://img.shields.io/badge/Documentation-blue?link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F&link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F)](https://langroid.github.io/langroid)\n[![Static Badge](https://img.shields.io/badge/Discord-Orange?link=https%3A%2F%2Fdiscord.gg%2Fg3nAXCbZ&link=https%3A%2F%2Fdiscord.gg%2Fg3nAXCbZ)](https://discord.gg/g3nAXCbZ)\n\n</div>\n\n<h3 align="center">\n <a target="_blank" \n href="https://langroid.github.io/langroid/" rel="dofollow">\n <strong>Documentation</strong></a>\n &middot;\n <a target="_blank" href="https://github.com/langroid/langroid-examples" rel="dofollow">\n <strong>Examples Repo</strong></a>\n &middot;\n <a target="_blank" href="https://discord.gg/g3nAXCbZ" rel="dofollow">\n <strong>Discord</strong></a>\n &middot;\n <a target="_blank" href="./CONTRIBUTING.md" rel="dofollow">\n <strong>Contributing</strong></a>\n\n <br />\n</h3>\n\n`Langroid` is an intuitive, lightweight, extensible and principled\nPython framework to easily build LLM-powered applications. \nYou set up Agents, equip them with optional components (LLM, \nvector-store and methods), assign them tasks, and have them \ncollaboratively solve a problem by exchanging messages. \nThis Multi-Agent paradigm is inspired by the\n[Actor Framework](https://en.wikipedia.org/wiki/Actor_model)\n(but you do not need to know anything about this!).\n\n\n# :rocket: Demo\nSuppose you want to extract structured information about the key terms \nof a commercial lease document. You can easily do this with Langroid using a two-agent system,\nas we show in the [langroid-examples](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py) repo.\nThe demo showcases just a few of the many features of Langroid, such as:\n- Multi-agent collaboration: `LeaseExtractor` is in charge of the task, and its LLM (GPT4) generates questions \nto be answered by the `DocAgent`.\n- Retrieval augmented question-answering, with **source-citation**: `DocAgent` LLM (GPT4) uses retrieval from a vector-store to \nanswer the `LeaseExtractor`\'s questions, cites the specific excerpt supporting the answer. \n- Function-calling (also known as tool/plugin): When it has all the information it \nneeds, the `LeaseExtractor` LLM presents the information in a structured \nformat using a Function-call. \n\nHere is what it looks like in action:\n\n![Demo](docs/assets/demos/lease-extractor-demo.gif)\n\n\n# :zap: Highlights\n\n- **Agents as first-class citizens:** The [Agent](https://langroid.github.io/langroid/reference/agent/base/#langroid.agent.base.Agent) class encapsulates LLM conversation state,\n and optionally a vector-store and tools. Agents are a core abstraction in Langroid;\n Agents act as _message transformers_, and by default provide 3 _responder_ methods, one corresponding to each entity: LLM, Agent, User.\n- **Tasks:** A [Task](https://langroid.github.io/langroid/reference/agent/task/) class wraps an Agent, and gives the agent instructions (or roles, or goals), \n manages iteration over an Agent\'s responder methods, \n and orchestrates multi-agent interactions via hierarchical, recursive\n task-delegation. The `Task.run()` method has the same \n type-signature as an Agent\'s responder\'s methods, and this is key to how \n a task of an agent can delegate to other sub-tasks: from the point of view of a Task,\n sub-tasks are simply additional responders, to be used in a round-robin fashion \n after the agent\'s own responders.\n- **Modularity, Reusabilily, Loose coupling:** The `Agent` and `Task` abstractions allow users to design\n Agents with specific skills, wrap them in Tasks, and combine tasks in a flexible way.\n- **LLM Support**: Langroid supports OpenAI LLMs including GPT-3.5-Turbo,\n GPT-4-0613\n- **Caching of LLM prompts, responses:** Langroid uses [Redis](https://redis.com/try-free/) for caching.\n- **Vector-stores**: [Qdrant](https://qdrant.tech/) and [Chroma](https://www.trychroma.com/) are currently supported.\n Vector stores allow for Retrieval-Augmented-Generation (RAG).\n- **Grounding and source-citation:** Access to external documents via vector-stores \n allows for grounding and source-citation.\n- **Observability, Logging, Lineage:** Langroid generates detailed logs of multi-agent interactions and\n maintains provenance/lineage of messages, so that you can trace back\n the origin of a message.\n- **Tools/Plugins/Function-calling**: Langroid supports OpenAI\'s recently\n released [function calling](https://platform.openai.com/docs/guides/gpt/function-calling)\n feature. In addition, Langroid has its own native equivalent, which we\n call **tools** (also known as "plugins" in other contexts). Function\n calling and tools have the same developer-facing interface, implemented\n using [Pydantic](https://docs.pydantic.dev/latest/),\n which makes it very easy to define tools/functions and enable agents\n to use them. Benefits of using Pydantic are that you never have to write\n complex JSON specs for function calling, and when the LLM\n hallucinates malformed JSON, the Pydantic error message is sent back to\n the LLM so it can fix it!\n\n--- \n\n# :gear: Installation and Setup\n\n### Install `langroid`\nLangroid requires Python 3.11+. We recommend using a virtual environment.\nUse `pip` to install `langroid` (from PyPi) to your virtual environment:\n```bash\npip install langroid\n```\nThe core Langroid package lets you use OpenAI Embeddings models via their API. \nIf you instead want to use the `all-MiniLM-L6-v2` embeddings model\nfrom from HuggingFace, install Langroid like this:\n```bash\npip install langroid[hf-embeddings]\n```\nNote that this will install `torch` and `sentence-transformers` libraries.\n\n### Set up environment variables (API keys, etc)\n\nTo get started, all you need is an OpenAI API Key.\nIf you don\'t have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).\nCurrently only OpenAI models are supported. Others will be added later\n(Pull Requests welcome!).\n\nIn the root of the repo, copy the `.env-template` file to a new file `.env`: \n```bash\ncp .env-template .env\n```\nThen insert your OpenAI API Key. \nYour `.env` file should look like this:\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\n````\n\n\n<details>\n<summary>Optional Setup Instructions (click to expand) </summary>\nAll of the below are optional and not strictly needed to run any of the examples.\n\n- **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.\n You can sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).\n If you skip setting up these, Langroid will use Qdrant in local-storage mode.\n Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported. \n We use the local-storage version of Chroma, so there is no need for an API key.\n- **Redis** Password, host, port: This is optional, and only needed to cache LLM API responses\n using Redis Cloud. Redis [offers](https://redis.com/try-free/) a free 30MB Redis account\n which is more than sufficient to try out Langroid and even beyond.\n If you don\'t set up these, Langroid will use a pure-python \n Redis in-memory cache via the [Fakeredis](https://fakeredis.readthedocs.io/en/latest/) library.\n- **Momento** Serverless Caching of LLM API responses (as an alternative to Redis). \n To use Momento instead of Redis, simply enter your Momento Token in the `.env` file,\n as the value of `MOMENTO_AUTH_TOKEN` (see example file below).\n- **GitHub** Personal Access Token (required for apps that need to analyze git\n repos; token-based API calls are less rate-limited). See this\n [GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).\n\nIf you add all of these optional variables, your `.env` file should look like this:\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\nGITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes\nREDIS_PASSWORD=your-redis-password-no-quotes\nREDIS_HOST=your-redis-hostname-no-quotes\nREDIS_PORT=your-redis-port-no-quotes\nMOMENTO_AUTH_TOKEN=your-momento-token-no-quotes # instead of REDIS* variables\nQDRANT_API_KEY=your-key\nQDRANT_API_URL=https://your.url.here:6333 # note port number must be included\n```\n</details>\n\n---\n\n# :tada: Usage Examples\n\nThese are quick teasers to give a glimpse of what you can do with Langroid\nand how your code would look. \n\n:warning: The code snippets below are intended to give a flavor of the code\nand they are **not** complete runnable examples! For that we encourage you to \nconsult the [`langroid-examples`](https://github.com/langroid/langroid-examples) \nrepository.\n\n:information_source: The various LLM prompts and instructions in Langroid\nhave been tested to work well with GPT4.\nSwitching to GPT3.5-Turbo is easy via a config flag\n(e.g., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT3_5_TURBO)`),\nand may suffice for some applications, but in general you may see inferior results.\n\n\n:book: Also see the\n[`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)\nfor a detailed tutorial.\n\nClick to expand any of the code examples below:\n\n<details>\n<summary> <b> Direct interaction with OpenAI LLM </b> </summary>\n\n```python\nfrom langroid.language_models.openai_gpt import ( \n OpenAIGPTConfig, OpenAIChatModel, OpenAIGPT,\n)\nfrom langroid.language_models.base import LLMMessage, Role\n\ncfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)\n\nmdl = OpenAIGPT(cfg)\n\nmessages = [\n LLMMessage(content="You are a helpful assistant", role=Role.SYSTEM), \n LLMMessage(content="What is the capital of Ontario?", role=Role.USER),\n]\nresponse = mdl.chat(messages, max_tokens=200)\nprint(response.message)\n```\n</details>\n\n<details>\n<summary> <b> Define an agent, set up a task, and run it </b> </summary>\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\n\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None, # no vector store\n)\nagent = ChatAgent(config)\n# get response from agent\'s LLM, and put this in an interactive loop...\n# answer = agent.llm_response("What is the capital of Ontario?")\n # ... OR instead, set up a task (which has a built-in loop) and run it\ntask = Task(agent, name="Bot") \ntask.run() # ... a loop seeking response from LLM or User at each turn\n```\n</details>\n\n<details>\n<summary><b> Three communicating agents </b></summary>\n\n```python\n\nA toy numbers game, where when given a number `n`:\n- `repeater_agent`\'s LLM simply returns `n`,\n- `even_agent`\'s LLM returns `n/2` if `n` is even, else says "DO-NOT-KNOW"\n- `odd_agent`\'s LLM returns `3*n+1` if `n` is odd, else says "DO-NOT-KNOW"\n\nFirst define the 3 agents, and set up their tasks with instructions:\n\n```python\nfrom langroid.utils.constants import NO_ANSWER\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb = None,\n)\nrepeater_agent = ChatAgent(config)\nrepeater_task = Task(\n repeater_agent,\n name = "Repeater",\n system_message="""\n Your job is to repeat whatever number you receive.\n """,\n llm_delegate=True, # LLM takes charge of task\n single_round=False, \n)\neven_agent = ChatAgent(config)\neven_task = Task(\n even_agent,\n name = "EvenHandler",\n system_message=f"""\n You will be given a number. \n If it is even, divide by 2 and say the result, nothing else.\n If it is odd, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n\nodd_agent = ChatAgent(config)\nodd_task = Task(\n odd_agent,\n name = "OddHandler",\n system_message=f"""\n You will be given a number n. \n If it is odd, return (n*3+1), say nothing else. \n If it is even, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n```\nThen add the `even_task` and `odd_task` as sub-tasks of `repeater_task`, \nand run the `repeater_task`, kicking it off with a number as input:\n```python\nrepeater_task.add_sub_task([even_task, odd_task])\nrepeater_task.run("3")\n```\n\n</details>\n\n<details>\n<summary><b> Simple Tool/Function-calling example </b></summary>\n\nLangroid leverages Pydantic to support OpenAI\'s\n[Function-calling API](https://platform.openai.com/docs/guides/gpt/function-calling)\nas well as its own native tools. The benefits are that you don\'t have to write\nany JSON to specify the schema, and also if the LLM hallucinates a malformed\ntool syntax, Langroid sends the Pydantic validation error (suitiably sanitized) \nto the LLM so it can fix it!\n\nSimple example: Say the agent has a secret list of numbers, \nand we want the LLM to find the smallest number in the list. \nWe want to give the LLM a `probe` tool/function which takes a\nsingle number `n` as argument. The tool handler method in the agent\nreturns how many numbers in its list are at most `n`.\n\nFirst define the tool using Langroid\'s `ToolMessage` class:\n\n\n```python\nfrom langroid.agent.tool_message import ToolMessage\nclass ProbeTool(ToolMessage):\n request: str = "probe" # specifies which agent method handles this tool\n purpose: str = """\n To find how many numbers in my list are less than or equal to \n the <number> you specify.\n """ # description used to instruct the LLM on when/how to use the tool\n number: int # required argument to the tool\n```\n\nThen define a `SpyGameAgent` as a subclass of `ChatAgent`, \nwith a method `probe` that handles this tool:\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nclass SpyGameAgent(ChatAgent):\n def __init__(self, config: ChatAgentConfig):\n super().__init__(config)\n self.numbers = [3, 4, 8, 11, 15, 25, 40, 80, 90]\n\n def probe(self, msg: ProbeTool) -> str:\n # return how many numbers in self.numbers are less or equal to msg.number\n return str(len([n for n in self.numbers if n <= msg.number]))\n```\n\nWe then instantiate the agent and enable it to use and respond to the tool:\n\n```python\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nspy_game_agent = SpyGameAgent(\n ChatAgentConfig(\n name="Spy",\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None,\n use_tools=False, # don\'t use Langroid native tool\n use_functions_api=True, # use OpenAI function-call API\n )\n)\nspy_game_agent.enable_message(ProbeTool)\n```\n\nFor a full working example see the\n[chat-agent-tool.py](https://github.com/langroid/langroid-examples/blob/main/examples/quick-start/chat-agent-tool.py)\nscript in the `langroid-examples` repo.\n</details>\n\n<details>\n<summary> <b>Tool/Function-calling to extract structured information from text </b> </summary>\n\nSuppose you want an agent to extract \nthe key terms of a lease, from a lease document, as a nested JSON structure.\nFirst define the desired structure via Pydantic models:\n\n```python\nfrom pydantic import BaseModel\nclass LeasePeriod(BaseModel):\n start_date: str\n end_date: str\n\n\nclass LeaseFinancials(BaseModel):\n monthly_rent: str\n deposit: str\n\nclass Lease(BaseModel):\n period: LeasePeriod\n financials: LeaseFinancials\n address: str\n```\n\nThen define the `LeaseMessage` tool as a subclass of Langroid\'s `ToolMessage`.\nNote the tool has a required argument `terms` of type `Lease`:\n\n```python\nclass LeaseMessage(ToolMessage):\n request: str = "lease_info"\n purpose: str = """\n Collect information about a Commercial Lease.\n """\n terms: Lease\n```\n\nThen define a `LeaseExtractorAgent` with a method `lease_info` that handles this tool,\ninstantiate the agent, and enable it to use and respond to this tool:\n\n```python\nclass LeaseExtractorAgent(ChatAgent):\n def lease_info(self, message: LeaseMessage) -> str:\n print(\n f"""\n DONE! Successfully extracted Lease Info:\n {message.terms}\n """\n )\n return json.dumps(message.terms.dict())\n \nlease_extractor_agent = LeaseExtractorAgent(\n ChatAgentConfig(\n llm=OpenAIGPTConfig(),\n use_functions_api=False,\n use_tools=True,\n )\n)\nlease_extractor_agent.enable_message(LeaseMessage)\n```\n\nSee the [`chat_multi_extract.py`](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py)\nscript in the `langroid-examples` repo for a full working example.\n</details>\n\n<details>\n<summary><b> Chat with documents (file paths, URLs, etc) </b></summary>\n\nLangroid provides a specialized agent class `DocChatAgent` for this purpose.\nIt incorporates document sharding, embedding, storage in a vector-DB, \nand retrieval-augmented query-answer generation.\nUsing this class to chat with a collection of documents is easy.\nFirst create a `DocChatAgentConfig` instance, with a \n`doc_paths` field that specifies the documents to chat with.\n\n```python\nfrom langroid.agent.doc_chat_agent import DocChatAgentConfig\nconfig = DocChatAgentConfig(\n doc_paths = [\n "https://en.wikipedia.org/wiki/Language_model",\n "https://en.wikipedia.org/wiki/N-gram_language_model",\n "/path/to/my/notes-on-language-models.txt",\n ]\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=VectorStoreConfig(\n type="qdrant",\n ),\n)\n```\n\nThen instantiate the `DocChatAgent`, ingest the docs into the vector-store:\n\n```python\nagent = DocChatAgent(config)\nagent.ingest()\n```\nThen we can either ask the agent one-off questions,\n```python\nagent.chat("What is a language model?")\n```\nor wrap it in a `Task` and run an interactive loop with the user:\n```python\nfrom langroid.task import Task\ntask = Task(agent)\ntask.run()\n```\n\nSee full working scripts in the \n[`docqa`](https://github.com/langroid/langroid-examples/tree/main/examples/docqa)\nfolder of the `langroid-examples` repo.\n</details>\n\n---\n\n# :heart: Thank you to our supporters!\n\n[![Stargazers repo roster for @langroid/langroid](https://reporoster.com/stars/langroid/langroid)](https://github.com/langroid/langroid/stargazers)\n\n# Contributors\n\n- Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)\n- Somesh Jha (IIT BTech/CS, CMU PhD/CS; Professor of CS, U Wisc at Madison)\n- Mohannad Alhanahnah (Research Associate, U Wisc at Madison)\n- Ashish Hooda (IIT BTech/CS; PhD Candidate, U Wisc at Madison)\n\n',
74
- 'author': 'Prasad Chalasani',
75
- 'author_email': 'pchalasani@gmail.com',
76
- 'maintainer': 'None',
77
- 'maintainer_email': 'None',
78
- 'url': 'None',
79
- 'packages': packages,
80
- 'package_data': package_data,
81
- 'install_requires': install_requires,
82
- 'extras_require': extras_require,
83
- 'python_requires': '>=3.8.1,<3.12',
84
- }
85
-
86
-
87
- setup(**setup_kwargs)
File without changes
File without changes
File without changes