langroid 0.1.25__tar.gz → 0.1.26__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. {langroid-0.1.25 → langroid-0.1.26}/PKG-INFO +33 -20
  2. {langroid-0.1.25 → langroid-0.1.26}/README.md +32 -19
  3. {langroid-0.1.25 → langroid-0.1.26}/langroid/vector_store/qdrantdb.py +11 -9
  4. {langroid-0.1.25 → langroid-0.1.26}/pyproject.toml +1 -1
  5. langroid-0.1.26/setup.py +86 -0
  6. langroid-0.1.25/setup.py +0 -86
  7. {langroid-0.1.25 → langroid-0.1.26}/LICENSE +0 -0
  8. {langroid-0.1.25 → langroid-0.1.26}/langroid/__init__.py +0 -0
  9. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/__init__.py +0 -0
  10. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/base.py +0 -0
  11. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/chat_agent.py +0 -0
  12. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/chat_document.py +0 -0
  13. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/helpers.py +0 -0
  14. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/junk +0 -0
  15. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/special/__init__.py +0 -0
  16. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/special/doc_chat_agent.py +0 -0
  17. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/special/recipient_validator_agent.py +0 -0
  18. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/special/retriever_agent.py +0 -0
  19. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/task.py +0 -0
  20. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent/tool_message.py +0 -0
  21. {langroid-0.1.25 → langroid-0.1.26}/langroid/agent_config.py +0 -0
  22. {langroid-0.1.25 → langroid-0.1.26}/langroid/cachedb/__init__.py +0 -0
  23. {langroid-0.1.25 → langroid-0.1.26}/langroid/cachedb/base.py +0 -0
  24. {langroid-0.1.25 → langroid-0.1.26}/langroid/cachedb/redis_cachedb.py +0 -0
  25. {langroid-0.1.25 → langroid-0.1.26}/langroid/embedding_models/__init__.py +0 -0
  26. {langroid-0.1.25 → langroid-0.1.26}/langroid/embedding_models/base.py +0 -0
  27. {langroid-0.1.25 → langroid-0.1.26}/langroid/embedding_models/clustering.py +0 -0
  28. {langroid-0.1.25 → langroid-0.1.26}/langroid/embedding_models/models.py +0 -0
  29. {langroid-0.1.25 → langroid-0.1.26}/langroid/language_models/__init__.py +0 -0
  30. {langroid-0.1.25 → langroid-0.1.26}/langroid/language_models/base.py +0 -0
  31. {langroid-0.1.25 → langroid-0.1.26}/langroid/language_models/openai_gpt.py +0 -0
  32. {langroid-0.1.25 → langroid-0.1.26}/langroid/language_models/utils.py +0 -0
  33. {langroid-0.1.25 → langroid-0.1.26}/langroid/mytypes.py +0 -0
  34. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/__init__.py +0 -0
  35. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/agent_chats.py +0 -0
  36. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/code-parsing.md +0 -0
  37. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/code_parser.py +0 -0
  38. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/json.py +0 -0
  39. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/para_sentence_split.py +0 -0
  40. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/parser.py +0 -0
  41. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/pdf_parser.py +0 -0
  42. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/repo_loader.py +0 -0
  43. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/url_loader.py +0 -0
  44. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/url_loader_cookies.py +0 -0
  45. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/urls.py +0 -0
  46. {langroid-0.1.25 → langroid-0.1.26}/langroid/parsing/utils.py +0 -0
  47. {langroid-0.1.25 → langroid-0.1.26}/langroid/prompts/__init__.py +0 -0
  48. {langroid-0.1.25 → langroid-0.1.26}/langroid/prompts/dialog.py +0 -0
  49. {langroid-0.1.25 → langroid-0.1.26}/langroid/prompts/prompts_config.py +0 -0
  50. {langroid-0.1.25 → langroid-0.1.26}/langroid/prompts/templates.py +0 -0
  51. {langroid-0.1.25 → langroid-0.1.26}/langroid/prompts/transforms.py +0 -0
  52. {langroid-0.1.25 → langroid-0.1.26}/langroid/scripts/__init__.py +0 -0
  53. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/__init__.py +0 -0
  54. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/configuration.py +0 -0
  55. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/constants.py +0 -0
  56. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/docker.py +0 -0
  57. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/llms/__init__.py +0 -0
  58. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/llms/strings.py +0 -0
  59. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/logging.py +0 -0
  60. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/output/__init__.py +0 -0
  61. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/output/printing.py +0 -0
  62. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/system.py +0 -0
  63. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/web/__init__.py +0 -0
  64. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/web/login.py +0 -0
  65. {langroid-0.1.25 → langroid-0.1.26}/langroid/utils/web/selenium_login.py +0 -0
  66. {langroid-0.1.25 → langroid-0.1.26}/langroid/vector_store/__init__.py +0 -0
  67. {langroid-0.1.25 → langroid-0.1.26}/langroid/vector_store/base.py +0 -0
  68. {langroid-0.1.25 → langroid-0.1.26}/langroid/vector_store/chromadb.py +0 -0
  69. {langroid-0.1.25 → langroid-0.1.26}/langroid/vector_store/qdrant_cloud.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: langroid
3
- Version: 0.1.25
3
+ Version: 0.1.26
4
4
  Summary: Harness LLMs with Multi-Agent Programming
5
5
  License: MIT
6
6
  Author: Prasad Chalasani
@@ -172,25 +172,37 @@ Note that this will install `torch` and `sentence-transformers` libraries.
172
172
 
173
173
  ### Set up environment variables (API keys, etc)
174
174
 
175
- Copy the `.env-template` file to a new file `.env` and
176
- insert these secrets:
177
- - **OpenAI API** key (required): If you don't have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).
178
- - **Qdrant** Vector Store API Key, URL (required for apps that need retrieval from
179
- documents): Sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).
175
+ In the root of the repo, copy the `.env-template` file to a new file `.env`:
176
+ ```bash
177
+ cp .env-template .env
178
+ ```
179
+ Then insert your OpenAI API Key. If you don't have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).
180
+ Your `.env` file should look like this:
181
+
182
+ ```bash
183
+ OPENAI_API_KEY=your-key-here-without-quotes
184
+ ````
185
+
186
+ Currently only OpenAI models are supported. Others will be added later
187
+ (Pull Requests welcome!).
188
+
189
+ All of the below are optional and not strictly needed to run any of the examples.
190
+
191
+ - **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.
192
+ You can sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).
193
+ If you skip setting up these, Langroid will use Qdrant in local-storage mode.
180
194
  Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported.
181
195
  We use the local-storage version of Chroma, so there is no need for an API key.
196
+ - **Redis** Password, host, port: This is optional, and only needed to cache LLM API responses
197
+ using Redis Cloud. Redis [offers](https://redis.com/try-free/) a free 30MB Redis account
198
+ which is more than sufficient to try out Langroid and even beyond.
199
+ If you don't set up these, Langroid will use a pure-python
200
+ Redis in-memory cache via the [Fakeredis](https://fakeredis.readthedocs.io/en/latest/) library.
182
201
  - **GitHub** Personal Access Token (required for apps that need to analyze git
183
202
  repos; token-based API calls are less rate-limited). See this
184
203
  [GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).
185
- - **Redis** Password, host, port (optional, only needed to cache LLM API responses):
186
- Redis [offers](https://redis.com/try-free/) a free 30MB Redis account
187
- which is more than sufficient to try out Langroid and even beyond.
188
-
189
- ```bash
190
- cp .env-template .env
191
- # now edit the .env file, insert your secrets as above
192
- ```
193
- Your `.env` file should look like this:
204
+
205
+ If you add all of these optional variables, your `.env` file should look like this:
194
206
  ```bash
195
207
  OPENAI_API_KEY=your-key-here-without-quotes
196
208
  GITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes
@@ -201,8 +213,6 @@ QDRANT_API_KEY=your-key
201
213
  QDRANT_API_URL=https://your.url.here:6333 # note port number must be included
202
214
  ```
203
215
 
204
- Currently only OpenAI models are supported. Others will be added later
205
- (Pull Requests welcome!).
206
216
 
207
217
  ---
208
218
 
@@ -216,9 +226,12 @@ and they are **not** complete runnable examples! For that we encourage you to
216
226
  consult the [`langroid-examples`](https://github.com/langroid/langroid-examples)
217
227
  repository.
218
228
 
219
- :information_source: The examples below will only work with OpenAI GPT4 model,
220
- which is the default in Langroid. Switching to GPT3.5-Turbo is easy via a config
221
- flag (i.e., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)`), but results may be inferior.
229
+ :information_source: The various LLM prompts and instructions in Langroid
230
+ have been tested to work well with GPT4.
231
+ Switching to GPT3.5-Turbo is easy via a config flag
232
+ (e.g., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT3_5_TURBO)`),
233
+ and may suffice for some applications, but in general you may see inferior results.
234
+
222
235
 
223
236
  :book: Also see the
224
237
  [`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)
@@ -114,25 +114,37 @@ Note that this will install `torch` and `sentence-transformers` libraries.
114
114
 
115
115
  ### Set up environment variables (API keys, etc)
116
116
 
117
- Copy the `.env-template` file to a new file `.env` and
118
- insert these secrets:
119
- - **OpenAI API** key (required): If you don't have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).
120
- - **Qdrant** Vector Store API Key, URL (required for apps that need retrieval from
121
- documents): Sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).
117
+ In the root of the repo, copy the `.env-template` file to a new file `.env`:
118
+ ```bash
119
+ cp .env-template .env
120
+ ```
121
+ Then insert your OpenAI API Key. If you don't have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).
122
+ Your `.env` file should look like this:
123
+
124
+ ```bash
125
+ OPENAI_API_KEY=your-key-here-without-quotes
126
+ ````
127
+
128
+ Currently only OpenAI models are supported. Others will be added later
129
+ (Pull Requests welcome!).
130
+
131
+ All of the below are optional and not strictly needed to run any of the examples.
132
+
133
+ - **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.
134
+ You can sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).
135
+ If you skip setting up these, Langroid will use Qdrant in local-storage mode.
122
136
  Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported.
123
137
  We use the local-storage version of Chroma, so there is no need for an API key.
138
+ - **Redis** Password, host, port: This is optional, and only needed to cache LLM API responses
139
+ using Redis Cloud. Redis [offers](https://redis.com/try-free/) a free 30MB Redis account
140
+ which is more than sufficient to try out Langroid and even beyond.
141
+ If you don't set up these, Langroid will use a pure-python
142
+ Redis in-memory cache via the [Fakeredis](https://fakeredis.readthedocs.io/en/latest/) library.
124
143
  - **GitHub** Personal Access Token (required for apps that need to analyze git
125
144
  repos; token-based API calls are less rate-limited). See this
126
145
  [GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).
127
- - **Redis** Password, host, port (optional, only needed to cache LLM API responses):
128
- Redis [offers](https://redis.com/try-free/) a free 30MB Redis account
129
- which is more than sufficient to try out Langroid and even beyond.
130
-
131
- ```bash
132
- cp .env-template .env
133
- # now edit the .env file, insert your secrets as above
134
- ```
135
- Your `.env` file should look like this:
146
+
147
+ If you add all of these optional variables, your `.env` file should look like this:
136
148
  ```bash
137
149
  OPENAI_API_KEY=your-key-here-without-quotes
138
150
  GITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes
@@ -143,8 +155,6 @@ QDRANT_API_KEY=your-key
143
155
  QDRANT_API_URL=https://your.url.here:6333 # note port number must be included
144
156
  ```
145
157
 
146
- Currently only OpenAI models are supported. Others will be added later
147
- (Pull Requests welcome!).
148
158
 
149
159
  ---
150
160
 
@@ -158,9 +168,12 @@ and they are **not** complete runnable examples! For that we encourage you to
158
168
  consult the [`langroid-examples`](https://github.com/langroid/langroid-examples)
159
169
  repository.
160
170
 
161
- :information_source: The examples below will only work with OpenAI GPT4 model,
162
- which is the default in Langroid. Switching to GPT3.5-Turbo is easy via a config
163
- flag (i.e., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)`), but results may be inferior.
171
+ :information_source: The various LLM prompts and instructions in Langroid
172
+ have been tested to work well with GPT4.
173
+ Switching to GPT3.5-Turbo is easy via a config flag
174
+ (e.g., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT3_5_TURBO)`),
175
+ and may suffice for some applications, but in general you may see inferior results.
176
+
164
177
 
165
178
  :book: Also see the
166
179
  [`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)
@@ -48,16 +48,18 @@ class QdrantDB(VectorStore):
48
48
  self.host = config.host
49
49
  self.port = config.port
50
50
  load_dotenv()
51
+ key = os.getenv("QDRANT_API_KEY")
52
+ url = os.getenv("QDRANT_API_URL")
53
+ if config.cloud and None in [key, url]:
54
+ logger.warning(
55
+ f"""QDRANT_API_KEY, QDRANT_API_URL env variable must be set to use
56
+ QdrantDB in cloud mode. Please set these values
57
+ in your .env file.
58
+ Switching to local storage at {config.storage_path}
59
+ """
60
+ )
61
+ config.cloud = False
51
62
  if config.cloud:
52
- key = os.getenv("QDRANT_API_KEY")
53
- url = os.getenv("QDRANT_API_URL")
54
- if key is None or key == "" or url is None or url == "":
55
- raise ValueError(
56
- """QDRANT_API_KEY, QDRANT_API_URL env variable must be set to use
57
- QdrantDB in cloud mode. Please set these values
58
- in your .env file.
59
- """
60
- )
61
63
  self.client = QdrantClient(
62
64
  url=url,
63
65
  api_key=key,
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "langroid"
3
- version = "0.1.25"
3
+ version = "0.1.26"
4
4
  description = "Harness LLMs with Multi-Agent Programming"
5
5
  authors = ["Prasad Chalasani <pchalasani@gmail.com>"]
6
6
  readme = "README.md"
@@ -0,0 +1,86 @@
1
+ # -*- coding: utf-8 -*-
2
+ from setuptools import setup
3
+
4
+ packages = \
5
+ ['langroid',
6
+ 'langroid.agent',
7
+ 'langroid.agent.special',
8
+ 'langroid.cachedb',
9
+ 'langroid.embedding_models',
10
+ 'langroid.language_models',
11
+ 'langroid.parsing',
12
+ 'langroid.prompts',
13
+ 'langroid.scripts',
14
+ 'langroid.utils',
15
+ 'langroid.utils.llms',
16
+ 'langroid.utils.output',
17
+ 'langroid.utils.web',
18
+ 'langroid.vector_store']
19
+
20
+ package_data = \
21
+ {'': ['*']}
22
+
23
+ install_requires = \
24
+ ['autopep8>=2.0.2,<3.0.0',
25
+ 'black[jupyter]>=23.3.0,<24.0.0',
26
+ 'bs4>=0.0.1,<0.0.2',
27
+ 'chromadb>=0.3.21,<0.4.0',
28
+ 'colorlog>=6.7.0,<7.0.0',
29
+ 'faker>=18.9.0,<19.0.0',
30
+ 'fakeredis>=2.12.1,<3.0.0',
31
+ 'fire>=0.5.0,<0.6.0',
32
+ 'flake8>=6.0.0,<7.0.0',
33
+ 'halo>=0.0.31,<0.0.32',
34
+ 'mkdocs-awesome-pages-plugin>=2.8.0,<3.0.0',
35
+ 'mkdocs-gen-files>=0.4.0,<0.5.0',
36
+ 'mkdocs-jupyter>=0.24.1,<0.25.0',
37
+ 'mkdocs-literate-nav>=0.6.0,<0.7.0',
38
+ 'mkdocs-material>=9.1.5,<10.0.0',
39
+ 'mkdocs-section-index>=0.3.5,<0.4.0',
40
+ 'mkdocs>=1.4.2,<2.0.0',
41
+ 'mkdocstrings[python]>=0.21.2,<0.22.0',
42
+ 'mypy>=1.2.0,<2.0.0',
43
+ 'nltk>=3.8.1,<4.0.0',
44
+ 'openai>=0.27.5,<0.28.0',
45
+ 'pre-commit>=3.3.2,<4.0.0',
46
+ 'pydantic==1.10.11',
47
+ 'pygithub>=1.58.1,<2.0.0',
48
+ 'pygments>=2.15.1,<3.0.0',
49
+ 'pyparsing>=3.0.9,<4.0.0',
50
+ 'pypdf>=3.12.2,<4.0.0',
51
+ 'python-dotenv>=1.0.0,<2.0.0',
52
+ 'qdrant-client>=1.3.1,<2.0.0',
53
+ 'redis>=4.5.5,<5.0.0',
54
+ 'requests-oauthlib>=1.3.1,<2.0.0',
55
+ 'requests>=2.31.0,<3.0.0',
56
+ 'rich>=13.3.4,<14.0.0',
57
+ 'ruff>=0.0.270,<0.0.271',
58
+ 'tiktoken>=0.3.3,<0.4.0',
59
+ 'trafilatura>=1.5.0,<2.0.0',
60
+ 'typer>=0.7.0,<0.8.0',
61
+ 'types-redis>=4.5.5.2,<5.0.0.0',
62
+ 'types-requests>=2.31.0.1,<3.0.0.0',
63
+ 'wget>=3.2,<4.0']
64
+
65
+ extras_require = \
66
+ {'hf-embeddings': ['sentence-transformers==2.2.2', 'torch==2.0.0']}
67
+
68
+ setup_kwargs = {
69
+ 'name': 'langroid',
70
+ 'version': '0.1.26',
71
+ 'description': 'Harness LLMs with Multi-Agent Programming',
72
+ 'long_description': '<div align="center">\n <img src="docs/assets/langroid-card-lambda-ossem-rust-1200-630.png" alt="Logo" \n width="400" align="center">\n</div>\n\n<div align="center">\n\n[![Pytest](https://github.com/langroid/langroid/actions/workflows/pytest.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/pytest.yml)\n[![Lint](https://github.com/langroid/langroid/actions/workflows/validate.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/validate.yml)\n[![Docs](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml)\n[![Static Badge](https://img.shields.io/badge/Documentation-blue?link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F&link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F)](https://langroid.github.io/langroid)\n[![Static Badge](https://img.shields.io/badge/Discord-Orange?link=https%3A%2F%2Fdiscord.gg%2Fg3nAXCbZ&link=https%3A%2F%2Fdiscord.gg%2Fg3nAXCbZ)](https://discord.gg/g3nAXCbZ)\n\n</div>\n\n<h3 align="center">\n <a target="_blank" \n href="https://langroid.github.io/langroid/" rel="dofollow">\n <strong>Explore the docs</strong></a>\n &middot;\n <a target="_blank" href="https://github.com/langroid/langroid-examples" rel="dofollow">\n <strong>Examples Repo</strong></a>\n &middot;\n <a target="_blank" href="https://discord.gg/g3nAXCbZ" rel="dofollow">\n <strong>Discord</strong></a>\n &middot;\n <a target="_blank" href="./CONTRIBUTING.md" rel="dofollow">\n <strong>Contributing</strong></a>\n\n <br />\n</h3>\n\n`Langroid` is an intuitive, lightweight, extensible and principled\nPython framework to easily build LLM-powered applications. \nYou set up Agents, equip them with optional components (LLM, \nvector-store and methods), assign them tasks, and have them \ncollaboratively solve a problem by exchanging messages. \nThis Multi-Agent paradigm is inspired by the\n[Actor Framework](https://en.wikipedia.org/wiki/Actor_model)\n(but you do not need to know anything about this!).\n\n\n# :rocket: Demo\nSuppose you want to extract structured information about the key terms \nof a commercial lease document. You can easily do this with Langroid using a two-agent system,\nas we show in the [langroid-examples](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py) repo.\nThe demo showcases several features of Langroid:\n- Multi-agent collaboration: `LeaseExtractor` is in charge of the task, and its LLM (GPT4) generates questions \nto be answered by the `DocAgent`.\n- Retrieval augmented question-answering: `DocAgent` LLM (GPT4) uses retrieval from a vector-store to \nanswer the `LeaseExtractor`\'s questions.\n- Function-calling (also known as tool/plugin): When it has all the information it \nneeds, the `LeaseExtractor` LLM presents the information in a structured \nformat using a Function-call. \n\nHere is what it looks like in action:\n\n![Demo](docs/assets/demos/lease-extractor-demo.gif)\n\n\n# :zap: Highlights\n\n- **Agents as first-class citizens:** The [Agent](https://langroid.github.io/langroid/reference/agent/base/#langroid.agent.base.Agent) class encapsulates LLM conversation state,\n and optionally a vector-store and tools. Agents are a core abstraction in Langroid;\n Agents act as _message transformers_, and by default provide 3 _responder_ methods, one corresponding to each entity: LLM, Agent, User.\n- **Tasks:** A [Task](https://langroid.github.io/langroid/reference/agent/task/) class wraps an Agent, and gives the agent instructions (or roles, or goals), \n manages iteration over an Agent\'s responder methods, \n and orchestrates multi-agent interactions via hierarchical, recursive\n task-delegation. The `Task.run()` method has the same \n type-signature as an Agent\'s responder\'s methods, and this is key to how \n a task of an agent can delegate to other sub-tasks: from the point of view of a Task,\n sub-tasks are simply additional responders, to be used in a round-robin fashion \n after the agent\'s own responders.\n- **Modularity, Reusabilily, Loose coupling:** The `Agent` and `Task` abstractions allow users to design\n Agents with specific skills, wrap them in Tasks, and combine tasks in a flexible way.\n- **LLM Support**: Langroid supports OpenAI LLMs including GPT-3.5-Turbo,\n GPT-4-0613\n- **Caching of LLM prompts, responses:** Langroid uses [Redis](https://redis.com/try-free/) for caching.\n- **Vector-stores**: [Qdrant](https://qdrant.tech/) and [Chroma](https://www.trychroma.com/) are currently supported.\n Vector stores allow for Retrieval-Augmented-Generation (RAG).\n- **Grounding and source-citation:** Access to external documents via vector-stores \n allows for grounding and source-citation.\n- **Observability, Logging, Lineage:** Langroid generates detailed logs of multi-agent interactions and\n maintains provenance/lineage of messages, so that you can trace back\n the origin of a message.\n- **Tools/Plugins/Function-calling**: Langroid supports OpenAI\'s recently\n released [function calling](https://platform.openai.com/docs/guides/gpt/function-calling)\n feature. In addition, Langroid has its own native equivalent, which we\n call **tools** (also known as "plugins" in other contexts). Function\n calling and tools have the same developer-facing interface, implemented\n using [Pydantic](https://docs.pydantic.dev/latest/),\n which makes it very easy to define tools/functions and enable agents\n to use them. Benefits of using Pydantic are that you never have to write\n complex JSON specs for function calling, and when the LLM\n hallucinates malformed JSON, the Pydantic error message is sent back to\n the LLM so it can fix it!\n\n--- \n\n# :gear: Installation and Setup\n\n### Install `langroid` \nUse `pip` to install `langroid` (from PyPi) to your virtual environment:\n```bash\npip install langroid\n```\nThe core Langroid package lets you use OpenAI Embeddings models via their API. \nIf you instead want to use the `all-MiniLM-L6-v2` embeddings model\nfrom from HuggingFace, install Langroid like this:\n```bash\npip install langroid[hf-embeddings]\n```\nNote that this will install `torch` and `sentence-transformers` libraries.\n\n### Set up environment variables (API keys, etc)\n\nIn the root of the repo, copy the `.env-template` file to a new file `.env`: \n```bash\ncp .env-template .env\n```\nThen insert your OpenAI API Key. If you don\'t have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).\nYour `.env` file should look like this:\n\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\n````\n\nCurrently only OpenAI models are supported. Others will be added later\n(Pull Requests welcome!).\n\nAll of the below are optional and not strictly needed to run any of the examples.\n\n- **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.\n You can sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).\n If you skip setting up these, Langroid will use Qdrant in local-storage mode.\n Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported. \n We use the local-storage version of Chroma, so there is no need for an API key.\n- **Redis** Password, host, port: This is optional, and only needed to cache LLM API responses\n using Redis Cloud. Redis [offers](https://redis.com/try-free/) a free 30MB Redis account\n which is more than sufficient to try out Langroid and even beyond.\n If you don\'t set up these, Langroid will use a pure-python \n Redis in-memory cache via the [Fakeredis](https://fakeredis.readthedocs.io/en/latest/) library.\n- **GitHub** Personal Access Token (required for apps that need to analyze git\n repos; token-based API calls are less rate-limited). See this\n [GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).\n\nIf you add all of these optional variables, your `.env` file should look like this:\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\nGITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes\nREDIS_PASSWORD=your-redis-password-no-quotes\nREDIS_HOST=your-redis-hostname-no-quotes\nREDIS_PORT=your-redis-port-no-quotes\nQDRANT_API_KEY=your-key\nQDRANT_API_URL=https://your.url.here:6333 # note port number must be included\n```\n\n\n---\n\n# :tada: Usage Examples\n\nThese are quick teasers to give a glimpse of what you can do with Langroid\nand how your code would look. \n\n:warning: The code snippets below are intended to give a flavor of the code\nand they are **not** complete runnable examples! For that we encourage you to \nconsult the [`langroid-examples`](https://github.com/langroid/langroid-examples) \nrepository.\n\n:information_source: The various LLM prompts and instructions in Langroid\nhave been tested to work well with GPT4.\nSwitching to GPT3.5-Turbo is easy via a config flag\n(e.g., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT3_5_TURBO)`),\nand may suffice for some applications, but in general you may see inferior results.\n\n\n:book: Also see the\n[`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)\nfor a detailed tutorial.\n\nClick to expand any of the code examples below:\n\n<details>\n<summary> <b> Direct interaction with OpenAI LLM </b> </summary>\n\n```python\nfrom langroid.language_models.openai_gpt import ( \n OpenAIGPTConfig, OpenAIChatModel, OpenAIGPT,\n)\nfrom langroid.language_models.base import LLMMessage, Role\n\ncfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)\n\nmdl = OpenAIGPT(cfg)\n\nmessages = [\n LLMMessage(content="You are a helpful assistant", role=Role.SYSTEM), \n LLMMessage(content="What is the capital of Ontario?", role=Role.USER),\n]\nresponse = mdl.chat(messages, max_tokens=200)\nprint(response.message)\n```\n</details>\n\n<details>\n<summary> <b> Define an agent, set up a task, and run it </b> </summary>\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\n\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None, # no vector store\n)\nagent = ChatAgent(config)\n# get response from agent\'s LLM, and put this in an interactive loop...\n# answer = agent.llm_response("What is the capital of Ontario?")\n # ... OR instead, set up a task (which has a built-in loop) and run it\ntask = Task(agent, name="Bot") \ntask.run() # ... a loop seeking response from LLM or User at each turn\n```\n</details>\n\n<details>\n<summary><b> Three communicating agents </b></summary>\n\n```python\n\nA toy numbers game, where when given a number `n`:\n- `repeater_agent`\'s LLM simply returns `n`,\n- `even_agent`\'s LLM returns `n/2` if `n` is even, else says "DO-NOT-KNOW"\n- `odd_agent`\'s LLM returns `3*n+1` if `n` is odd, else says "DO-NOT-KNOW"\n\nFirst define the 3 agents, and set up their tasks with instructions:\n\n```python\nfrom langroid.utils.constants import NO_ANSWER\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb = None,\n)\nrepeater_agent = ChatAgent(config)\nrepeater_task = Task(\n repeater_agent,\n name = "Repeater",\n system_message="""\n Your job is to repeat whatever number you receive.\n """,\n llm_delegate=True, # LLM takes charge of task\n single_round=False, \n)\neven_agent = ChatAgent(config)\neven_task = Task(\n even_agent,\n name = "EvenHandler",\n system_message=f"""\n You will be given a number. \n If it is even, divide by 2 and say the result, nothing else.\n If it is odd, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n\nodd_agent = ChatAgent(config)\nodd_task = Task(\n odd_agent,\n name = "OddHandler",\n system_message=f"""\n You will be given a number n. \n If it is odd, return (n*3+1), say nothing else. \n If it is even, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n```\nThen add the `even_task` and `odd_task` as sub-tasks of `repeater_task`, \nand run the `repeater_task`, kicking it off with a number as input:\n```python\nrepeater_task.add_sub_task([even_task, odd_task])\nrepeater_task.run("3")\n```\n\n</details>\n\n<details>\n<summary><b> Simple Tool/Function-calling example </b></summary>\n\nLangroid leverages Pydantic to support OpenAI\'s\n[Function-calling API](https://platform.openai.com/docs/guides/gpt/function-calling)\nas well as its own native tools. The benefits are that you don\'t have to write\nany JSON to specify the schema, and also if the LLM hallucinates a malformed\ntool syntax, Langroid sends the Pydantic validation error (suitiably sanitized) \nto the LLM so it can fix it!\n\nSimple example: Say the agent has a secret list of numbers, \nand we want the LLM to find the smallest number in the list. \nWe want to give the LLM a `probe` tool/function which takes a\nsingle number `n` as argument. The tool handler method in the agent\nreturns how many numbers in its list are at most `n`.\n\nFirst define the tool using Langroid\'s `ToolMessage` class:\n\n\n```python\nfrom langroid.agent.tool_message import ToolMessage\nclass ProbeTool(ToolMessage):\n request: str = "probe" # specifies which agent method handles this tool\n purpose: str = """\n To find how many numbers in my list are less than or equal to \n the <number> you specify.\n """ # description used to instruct the LLM on when/how to use the tool\n number: int # required argument to the tool\n```\n\nThen define a `SpyGameAgent` as a subclass of `ChatAgent`, \nwith a method `probe` that handles this tool:\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nclass SpyGameAgent(ChatAgent):\n def __init__(self, config: ChatAgentConfig):\n super().__init__(config)\n self.numbers = [3, 4, 8, 11, 15, 25, 40, 80, 90]\n\n def probe(self, msg: ProbeTool) -> str:\n # return how many numbers in self.numbers are less or equal to msg.number\n return str(len([n for n in self.numbers if n <= msg.number]))\n```\n\nWe then instantiate the agent and enable it to use and respond to the tool:\n\n```python\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nspy_game_agent = SpyGameAgent(\n ChatAgentConfig(\n name="Spy",\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None,\n use_tools=False, # don\'t use Langroid native tool\n use_functions_api=True, # use OpenAI function-call API\n )\n)\nspy_game_agent.enable_message(ProbeTool)\n```\n\nFor a full working example see the\n[chat-agent-tool.py](https://github.com/langroid/langroid-examples/blob/main/examples/quick-start/chat-agent-tool.py)\nscript in the `langroid-examples` repo.\n</details>\n\n<details>\n<summary> <b>Tool/Function-calling to extract structured information from text </b> </summary>\n\nSuppose you want an agent to extract \nthe key terms of a lease, from a lease document, as a nested JSON structure.\nFirst define the desired structure via Pydantic models:\n\n```python\nfrom pydantic import BaseModel\nclass LeasePeriod(BaseModel):\n start_date: str\n end_date: str\n\n\nclass LeaseFinancials(BaseModel):\n monthly_rent: str\n deposit: str\n\nclass Lease(BaseModel):\n period: LeasePeriod\n financials: LeaseFinancials\n address: str\n```\n\nThen define the `LeaseMessage` tool as a subclass of Langroid\'s `ToolMessage`.\nNote the tool has a required argument `terms` of type `Lease`:\n\n```python\nclass LeaseMessage(ToolMessage):\n request: str = "lease_info"\n purpose: str = """\n Collect information about a Commercial Lease.\n """\n terms: Lease\n```\n\nThen define a `LeaseExtractorAgent` with a method `lease_info` that handles this tool,\ninstantiate the agent, and enable it to use and respond to this tool:\n\n```python\nclass LeaseExtractorAgent(ChatAgent):\n def lease_info(self, message: LeaseMessage) -> str:\n print(\n f"""\n DONE! Successfully extracted Lease Info:\n {message.terms}\n """\n )\n return json.dumps(message.terms.dict())\n \nlease_extractor_agent = LeaseExtractorAgent(\n ChatAgentConfig(\n llm=OpenAIGPTConfig(),\n use_functions_api=False,\n use_tools=True,\n )\n)\nlease_extractor_agent.enable_message(LeaseMessage)\n```\n\nSee the [`chat_multi_extract.py`](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py)\nscript in the `langroid-examples` repo for a full working example.\n</details>\n\n<details>\n<summary><b> Chat with documents (file paths, URLs, etc) </b></summary>\n\nLangroid provides a specialized agent class `DocChatAgent` for this purpose.\nIt incorporates document sharding, embedding, storage in a vector-DB, \nand retrieval-augmented query-answer generation.\nUsing this class to chat with a collection of documents is easy.\nFirst create a `DocChatAgentConfig` instance, with a \n`doc_paths` field that specifies the documents to chat with.\n\n```python\nfrom langroid.agent.doc_chat_agent import DocChatAgentConfig\nconfig = DocChatAgentConfig(\n doc_paths = [\n "https://en.wikipedia.org/wiki/Language_model",\n "https://en.wikipedia.org/wiki/N-gram_language_model",\n "/path/to/my/notes-on-language-models.txt",\n ]\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=VectorStoreConfig(\n type="qdrant",\n ),\n)\n```\n\nThen instantiate the `DocChatAgent`, ingest the docs into the vector-store:\n\n```python\nagent = DocChatAgent(config)\nagent.ingest()\n```\nThen we can either ask the agent one-off questions,\n```python\nagent.chat("What is a language model?")\n```\nor wrap it in a `Task` and run an interactive loop with the user:\n```python\nfrom langroid.task import Task\ntask = Task(agent)\ntask.run()\n```\n\nSee full working scripts in the \n[`docqa`](https://github.com/langroid/langroid-examples/tree/main/examples/docqa)\nfolder of the `langroid-examples` repo.\n</details>\n\n---\n\n# :heart: Thank you to our supporters!\n\n[![Stargazers repo roster for @langroid/langroid](https://reporoster.com/stars/langroid/langroid)](https://github.com/langroid/langroid/stargazers)\n\n# Contributors\n\n- Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)\n- Somesh Jha (IIT BTech/CS, CMU PhD/CS; Professor of CS, U Wisc at Madison)\n- Mohannad Alhanahnah (Research Associate, U Wisc at Madison)\n- Ashish Hooda (IIT BTech/CS; PhD Candidate, U Wisc at Madison)\n\n',
73
+ 'author': 'Prasad Chalasani',
74
+ 'author_email': 'pchalasani@gmail.com',
75
+ 'maintainer': 'None',
76
+ 'maintainer_email': 'None',
77
+ 'url': 'None',
78
+ 'packages': packages,
79
+ 'package_data': package_data,
80
+ 'install_requires': install_requires,
81
+ 'extras_require': extras_require,
82
+ 'python_requires': '>=3.8.1,<3.12',
83
+ }
84
+
85
+
86
+ setup(**setup_kwargs)
langroid-0.1.25/setup.py DELETED
@@ -1,86 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- from setuptools import setup
3
-
4
- packages = \
5
- ['langroid',
6
- 'langroid.agent',
7
- 'langroid.agent.special',
8
- 'langroid.cachedb',
9
- 'langroid.embedding_models',
10
- 'langroid.language_models',
11
- 'langroid.parsing',
12
- 'langroid.prompts',
13
- 'langroid.scripts',
14
- 'langroid.utils',
15
- 'langroid.utils.llms',
16
- 'langroid.utils.output',
17
- 'langroid.utils.web',
18
- 'langroid.vector_store']
19
-
20
- package_data = \
21
- {'': ['*']}
22
-
23
- install_requires = \
24
- ['autopep8>=2.0.2,<3.0.0',
25
- 'black[jupyter]>=23.3.0,<24.0.0',
26
- 'bs4>=0.0.1,<0.0.2',
27
- 'chromadb>=0.3.21,<0.4.0',
28
- 'colorlog>=6.7.0,<7.0.0',
29
- 'faker>=18.9.0,<19.0.0',
30
- 'fakeredis>=2.12.1,<3.0.0',
31
- 'fire>=0.5.0,<0.6.0',
32
- 'flake8>=6.0.0,<7.0.0',
33
- 'halo>=0.0.31,<0.0.32',
34
- 'mkdocs-awesome-pages-plugin>=2.8.0,<3.0.0',
35
- 'mkdocs-gen-files>=0.4.0,<0.5.0',
36
- 'mkdocs-jupyter>=0.24.1,<0.25.0',
37
- 'mkdocs-literate-nav>=0.6.0,<0.7.0',
38
- 'mkdocs-material>=9.1.5,<10.0.0',
39
- 'mkdocs-section-index>=0.3.5,<0.4.0',
40
- 'mkdocs>=1.4.2,<2.0.0',
41
- 'mkdocstrings[python]>=0.21.2,<0.22.0',
42
- 'mypy>=1.2.0,<2.0.0',
43
- 'nltk>=3.8.1,<4.0.0',
44
- 'openai>=0.27.5,<0.28.0',
45
- 'pre-commit>=3.3.2,<4.0.0',
46
- 'pydantic==1.10.11',
47
- 'pygithub>=1.58.1,<2.0.0',
48
- 'pygments>=2.15.1,<3.0.0',
49
- 'pyparsing>=3.0.9,<4.0.0',
50
- 'pypdf>=3.12.2,<4.0.0',
51
- 'python-dotenv>=1.0.0,<2.0.0',
52
- 'qdrant-client>=1.3.1,<2.0.0',
53
- 'redis>=4.5.5,<5.0.0',
54
- 'requests-oauthlib>=1.3.1,<2.0.0',
55
- 'requests>=2.31.0,<3.0.0',
56
- 'rich>=13.3.4,<14.0.0',
57
- 'ruff>=0.0.270,<0.0.271',
58
- 'tiktoken>=0.3.3,<0.4.0',
59
- 'trafilatura>=1.5.0,<2.0.0',
60
- 'typer>=0.7.0,<0.8.0',
61
- 'types-redis>=4.5.5.2,<5.0.0.0',
62
- 'types-requests>=2.31.0.1,<3.0.0.0',
63
- 'wget>=3.2,<4.0']
64
-
65
- extras_require = \
66
- {'hf-embeddings': ['sentence-transformers==2.2.2', 'torch==2.0.0']}
67
-
68
- setup_kwargs = {
69
- 'name': 'langroid',
70
- 'version': '0.1.25',
71
- 'description': 'Harness LLMs with Multi-Agent Programming',
72
- 'long_description': '<div align="center">\n <img src="docs/assets/langroid-card-lambda-ossem-rust-1200-630.png" alt="Logo" \n width="400" align="center">\n</div>\n\n<div align="center">\n\n[![Pytest](https://github.com/langroid/langroid/actions/workflows/pytest.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/pytest.yml)\n[![Lint](https://github.com/langroid/langroid/actions/workflows/validate.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/validate.yml)\n[![Docs](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml/badge.svg)](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml)\n[![Static Badge](https://img.shields.io/badge/Documentation-blue?link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F&link=https%3A%2F%2Flangroid.github.io%2Flangroid%2F)](https://langroid.github.io/langroid)\n[![Static Badge](https://img.shields.io/badge/Discord-Orange?link=https%3A%2F%2Fdiscord.gg%2Fg3nAXCbZ&link=https%3A%2F%2Fdiscord.gg%2Fg3nAXCbZ)](https://discord.gg/g3nAXCbZ)\n\n</div>\n\n<h3 align="center">\n <a target="_blank" \n href="https://langroid.github.io/langroid/" rel="dofollow">\n <strong>Explore the docs</strong></a>\n &middot;\n <a target="_blank" href="https://github.com/langroid/langroid-examples" rel="dofollow">\n <strong>Examples Repo</strong></a>\n &middot;\n <a target="_blank" href="https://discord.gg/g3nAXCbZ" rel="dofollow">\n <strong>Discord</strong></a>\n &middot;\n <a target="_blank" href="./CONTRIBUTING.md" rel="dofollow">\n <strong>Contributing</strong></a>\n\n <br />\n</h3>\n\n`Langroid` is an intuitive, lightweight, extensible and principled\nPython framework to easily build LLM-powered applications. \nYou set up Agents, equip them with optional components (LLM, \nvector-store and methods), assign them tasks, and have them \ncollaboratively solve a problem by exchanging messages. \nThis Multi-Agent paradigm is inspired by the\n[Actor Framework](https://en.wikipedia.org/wiki/Actor_model)\n(but you do not need to know anything about this!).\n\n\n# :rocket: Demo\nSuppose you want to extract structured information about the key terms \nof a commercial lease document. You can easily do this with Langroid using a two-agent system,\nas we show in the [langroid-examples](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py) repo.\nThe demo showcases several features of Langroid:\n- Multi-agent collaboration: `LeaseExtractor` is in charge of the task, and its LLM (GPT4) generates questions \nto be answered by the `DocAgent`.\n- Retrieval augmented question-answering: `DocAgent` LLM (GPT4) uses retrieval from a vector-store to \nanswer the `LeaseExtractor`\'s questions.\n- Function-calling (also known as tool/plugin): When it has all the information it \nneeds, the `LeaseExtractor` LLM presents the information in a structured \nformat using a Function-call. \n\nHere is what it looks like in action:\n\n![Demo](docs/assets/demos/lease-extractor-demo.gif)\n\n\n# :zap: Highlights\n\n- **Agents as first-class citizens:** The [Agent](https://langroid.github.io/langroid/reference/agent/base/#langroid.agent.base.Agent) class encapsulates LLM conversation state,\n and optionally a vector-store and tools. Agents are a core abstraction in Langroid;\n Agents act as _message transformers_, and by default provide 3 _responder_ methods, one corresponding to each entity: LLM, Agent, User.\n- **Tasks:** A [Task](https://langroid.github.io/langroid/reference/agent/task/) class wraps an Agent, and gives the agent instructions (or roles, or goals), \n manages iteration over an Agent\'s responder methods, \n and orchestrates multi-agent interactions via hierarchical, recursive\n task-delegation. The `Task.run()` method has the same \n type-signature as an Agent\'s responder\'s methods, and this is key to how \n a task of an agent can delegate to other sub-tasks: from the point of view of a Task,\n sub-tasks are simply additional responders, to be used in a round-robin fashion \n after the agent\'s own responders.\n- **Modularity, Reusabilily, Loose coupling:** The `Agent` and `Task` abstractions allow users to design\n Agents with specific skills, wrap them in Tasks, and combine tasks in a flexible way.\n- **LLM Support**: Langroid supports OpenAI LLMs including GPT-3.5-Turbo,\n GPT-4-0613\n- **Caching of LLM prompts, responses:** Langroid uses [Redis](https://redis.com/try-free/) for caching.\n- **Vector-stores**: [Qdrant](https://qdrant.tech/) and [Chroma](https://www.trychroma.com/) are currently supported.\n Vector stores allow for Retrieval-Augmented-Generation (RAG).\n- **Grounding and source-citation:** Access to external documents via vector-stores \n allows for grounding and source-citation.\n- **Observability, Logging, Lineage:** Langroid generates detailed logs of multi-agent interactions and\n maintains provenance/lineage of messages, so that you can trace back\n the origin of a message.\n- **Tools/Plugins/Function-calling**: Langroid supports OpenAI\'s recently\n released [function calling](https://platform.openai.com/docs/guides/gpt/function-calling)\n feature. In addition, Langroid has its own native equivalent, which we\n call **tools** (also known as "plugins" in other contexts). Function\n calling and tools have the same developer-facing interface, implemented\n using [Pydantic](https://docs.pydantic.dev/latest/),\n which makes it very easy to define tools/functions and enable agents\n to use them. Benefits of using Pydantic are that you never have to write\n complex JSON specs for function calling, and when the LLM\n hallucinates malformed JSON, the Pydantic error message is sent back to\n the LLM so it can fix it!\n\n--- \n\n# :gear: Installation and Setup\n\n### Install `langroid` \nUse `pip` to install `langroid` (from PyPi) to your virtual environment:\n```bash\npip install langroid\n```\nThe core Langroid package lets you use OpenAI Embeddings models via their API. \nIf you instead want to use the `all-MiniLM-L6-v2` embeddings model\nfrom from HuggingFace, install Langroid like this:\n```bash\npip install langroid[hf-embeddings]\n```\nNote that this will install `torch` and `sentence-transformers` libraries.\n\n### Set up environment variables (API keys, etc)\n\nCopy the `.env-template` file to a new file `.env` and \ninsert these secrets:\n- **OpenAI API** key (required): If you don\'t have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).\n- **Qdrant** Vector Store API Key, URL (required for apps that need retrieval from\n documents): Sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).\n Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported. \n We use the local-storage version of Chroma, so there is no need for an API key.\n- **GitHub** Personal Access Token (required for apps that need to analyze git\n repos; token-based API calls are less rate-limited). See this\n [GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).\n- **Redis** Password, host, port (optional, only needed to cache LLM API responses):\n Redis [offers](https://redis.com/try-free/) a free 30MB Redis account\n which is more than sufficient to try out Langroid and even beyond.\n \n```bash\ncp .env-template .env\n# now edit the .env file, insert your secrets as above\n``` \nYour `.env` file should look like this:\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\nGITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes\nREDIS_PASSWORD=your-redis-password-no-quotes\nREDIS_HOST=your-redis-hostname-no-quotes\nREDIS_PORT=your-redis-port-no-quotes\nQDRANT_API_KEY=your-key\nQDRANT_API_URL=https://your.url.here:6333 # note port number must be included\n```\n\nCurrently only OpenAI models are supported. Others will be added later\n(Pull Requests welcome!).\n\n---\n\n# :tada: Usage Examples\n\nThese are quick teasers to give a glimpse of what you can do with Langroid\nand how your code would look. \n\n:warning: The code snippets below are intended to give a flavor of the code\nand they are **not** complete runnable examples! For that we encourage you to \nconsult the [`langroid-examples`](https://github.com/langroid/langroid-examples) \nrepository.\n\n:information_source: The examples below will only work with OpenAI GPT4 model,\nwhich is the default in Langroid. Switching to GPT3.5-Turbo is easy via a config \nflag (i.e., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)`), but results may be inferior.\n\n:book: Also see the\n[`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)\nfor a detailed tutorial.\n\nClick to expand any of the code examples below:\n\n<details>\n<summary> <b> Direct interaction with OpenAI LLM </b> </summary>\n\n```python\nfrom langroid.language_models.openai_gpt import ( \n OpenAIGPTConfig, OpenAIChatModel, OpenAIGPT,\n)\nfrom langroid.language_models.base import LLMMessage, Role\n\ncfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)\n\nmdl = OpenAIGPT(cfg)\n\nmessages = [\n LLMMessage(content="You are a helpful assistant", role=Role.SYSTEM), \n LLMMessage(content="What is the capital of Ontario?", role=Role.USER),\n]\nresponse = mdl.chat(messages, max_tokens=200)\nprint(response.message)\n```\n</details>\n\n<details>\n<summary> <b> Define an agent, set up a task, and run it </b> </summary>\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\n\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None, # no vector store\n)\nagent = ChatAgent(config)\n# get response from agent\'s LLM, and put this in an interactive loop...\n# answer = agent.llm_response("What is the capital of Ontario?")\n # ... OR instead, set up a task (which has a built-in loop) and run it\ntask = Task(agent, name="Bot") \ntask.run() # ... a loop seeking response from LLM or User at each turn\n```\n</details>\n\n<details>\n<summary><b> Three communicating agents </b></summary>\n\n```python\n\nA toy numbers game, where when given a number `n`:\n- `repeater_agent`\'s LLM simply returns `n`,\n- `even_agent`\'s LLM returns `n/2` if `n` is even, else says "DO-NOT-KNOW"\n- `odd_agent`\'s LLM returns `3*n+1` if `n` is odd, else says "DO-NOT-KNOW"\n\nFirst define the 3 agents, and set up their tasks with instructions:\n\n```python\nfrom langroid.utils.constants import NO_ANSWER\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb = None,\n)\nrepeater_agent = ChatAgent(config)\nrepeater_task = Task(\n repeater_agent,\n name = "Repeater",\n system_message="""\n Your job is to repeat whatever number you receive.\n """,\n llm_delegate=True, # LLM takes charge of task\n single_round=False, \n)\neven_agent = ChatAgent(config)\neven_task = Task(\n even_agent,\n name = "EvenHandler",\n system_message=f"""\n You will be given a number. \n If it is even, divide by 2 and say the result, nothing else.\n If it is odd, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n\nodd_agent = ChatAgent(config)\nodd_task = Task(\n odd_agent,\n name = "OddHandler",\n system_message=f"""\n You will be given a number n. \n If it is odd, return (n*3+1), say nothing else. \n If it is even, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n```\nThen add the `even_task` and `odd_task` as sub-tasks of `repeater_task`, \nand run the `repeater_task`, kicking it off with a number as input:\n```python\nrepeater_task.add_sub_task([even_task, odd_task])\nrepeater_task.run("3")\n```\n\n</details>\n\n<details>\n<summary><b> Simple Tool/Function-calling example </b></summary>\n\nLangroid leverages Pydantic to support OpenAI\'s\n[Function-calling API](https://platform.openai.com/docs/guides/gpt/function-calling)\nas well as its own native tools. The benefits are that you don\'t have to write\nany JSON to specify the schema, and also if the LLM hallucinates a malformed\ntool syntax, Langroid sends the Pydantic validation error (suitiably sanitized) \nto the LLM so it can fix it!\n\nSimple example: Say the agent has a secret list of numbers, \nand we want the LLM to find the smallest number in the list. \nWe want to give the LLM a `probe` tool/function which takes a\nsingle number `n` as argument. The tool handler method in the agent\nreturns how many numbers in its list are at most `n`.\n\nFirst define the tool using Langroid\'s `ToolMessage` class:\n\n\n```python\nfrom langroid.agent.tool_message import ToolMessage\nclass ProbeTool(ToolMessage):\n request: str = "probe" # specifies which agent method handles this tool\n purpose: str = """\n To find how many numbers in my list are less than or equal to \n the <number> you specify.\n """ # description used to instruct the LLM on when/how to use the tool\n number: int # required argument to the tool\n```\n\nThen define a `SpyGameAgent` as a subclass of `ChatAgent`, \nwith a method `probe` that handles this tool:\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nclass SpyGameAgent(ChatAgent):\n def __init__(self, config: ChatAgentConfig):\n super().__init__(config)\n self.numbers = [3, 4, 8, 11, 15, 25, 40, 80, 90]\n\n def probe(self, msg: ProbeTool) -> str:\n # return how many numbers in self.numbers are less or equal to msg.number\n return str(len([n for n in self.numbers if n <= msg.number]))\n```\n\nWe then instantiate the agent and enable it to use and respond to the tool:\n\n```python\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nspy_game_agent = SpyGameAgent(\n ChatAgentConfig(\n name="Spy",\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None,\n use_tools=False, # don\'t use Langroid native tool\n use_functions_api=True, # use OpenAI function-call API\n )\n)\nspy_game_agent.enable_message(ProbeTool)\n```\n\nFor a full working example see the\n[chat-agent-tool.py](https://github.com/langroid/langroid-examples/blob/main/examples/quick-start/chat-agent-tool.py)\nscript in the `langroid-examples` repo.\n</details>\n\n<details>\n<summary> <b>Tool/Function-calling to extract structured information from text </b> </summary>\n\nSuppose you want an agent to extract \nthe key terms of a lease, from a lease document, as a nested JSON structure.\nFirst define the desired structure via Pydantic models:\n\n```python\nfrom pydantic import BaseModel\nclass LeasePeriod(BaseModel):\n start_date: str\n end_date: str\n\n\nclass LeaseFinancials(BaseModel):\n monthly_rent: str\n deposit: str\n\nclass Lease(BaseModel):\n period: LeasePeriod\n financials: LeaseFinancials\n address: str\n```\n\nThen define the `LeaseMessage` tool as a subclass of Langroid\'s `ToolMessage`.\nNote the tool has a required argument `terms` of type `Lease`:\n\n```python\nclass LeaseMessage(ToolMessage):\n request: str = "lease_info"\n purpose: str = """\n Collect information about a Commercial Lease.\n """\n terms: Lease\n```\n\nThen define a `LeaseExtractorAgent` with a method `lease_info` that handles this tool,\ninstantiate the agent, and enable it to use and respond to this tool:\n\n```python\nclass LeaseExtractorAgent(ChatAgent):\n def lease_info(self, message: LeaseMessage) -> str:\n print(\n f"""\n DONE! Successfully extracted Lease Info:\n {message.terms}\n """\n )\n return json.dumps(message.terms.dict())\n \nlease_extractor_agent = LeaseExtractorAgent(\n ChatAgentConfig(\n llm=OpenAIGPTConfig(),\n use_functions_api=False,\n use_tools=True,\n )\n)\nlease_extractor_agent.enable_message(LeaseMessage)\n```\n\nSee the [`chat_multi_extract.py`](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py)\nscript in the `langroid-examples` repo for a full working example.\n</details>\n\n<details>\n<summary><b> Chat with documents (file paths, URLs, etc) </b></summary>\n\nLangroid provides a specialized agent class `DocChatAgent` for this purpose.\nIt incorporates document sharding, embedding, storage in a vector-DB, \nand retrieval-augmented query-answer generation.\nUsing this class to chat with a collection of documents is easy.\nFirst create a `DocChatAgentConfig` instance, with a \n`doc_paths` field that specifies the documents to chat with.\n\n```python\nfrom langroid.agent.doc_chat_agent import DocChatAgentConfig\nconfig = DocChatAgentConfig(\n doc_paths = [\n "https://en.wikipedia.org/wiki/Language_model",\n "https://en.wikipedia.org/wiki/N-gram_language_model",\n "/path/to/my/notes-on-language-models.txt",\n ]\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=VectorStoreConfig(\n type="qdrant",\n ),\n)\n```\n\nThen instantiate the `DocChatAgent`, ingest the docs into the vector-store:\n\n```python\nagent = DocChatAgent(config)\nagent.ingest()\n```\nThen we can either ask the agent one-off questions,\n```python\nagent.chat("What is a language model?")\n```\nor wrap it in a `Task` and run an interactive loop with the user:\n```python\nfrom langroid.task import Task\ntask = Task(agent)\ntask.run()\n```\n\nSee full working scripts in the \n[`docqa`](https://github.com/langroid/langroid-examples/tree/main/examples/docqa)\nfolder of the `langroid-examples` repo.\n</details>\n\n---\n\n# :heart: Thank you to our supporters!\n\n[![Stargazers repo roster for @langroid/langroid](https://reporoster.com/stars/langroid/langroid)](https://github.com/langroid/langroid/stargazers)\n\n# Contributors\n\n- Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)\n- Somesh Jha (IIT BTech/CS, CMU PhD/CS; Professor of CS, U Wisc at Madison)\n- Mohannad Alhanahnah (Research Associate, U Wisc at Madison)\n- Ashish Hooda (IIT BTech/CS; PhD Candidate, U Wisc at Madison)\n\n',
73
- 'author': 'Prasad Chalasani',
74
- 'author_email': 'pchalasani@gmail.com',
75
- 'maintainer': 'None',
76
- 'maintainer_email': 'None',
77
- 'url': 'None',
78
- 'packages': packages,
79
- 'package_data': package_data,
80
- 'install_requires': install_requires,
81
- 'extras_require': extras_require,
82
- 'python_requires': '>=3.8.1,<3.12',
83
- }
84
-
85
-
86
- setup(**setup_kwargs)
File without changes
File without changes
File without changes