langroid 0.1.24__tar.gz → 0.1.26__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {langroid-0.1.24 → langroid-0.1.26}/PKG-INFO +93 -68
- {langroid-0.1.24 → langroid-0.1.26}/README.md +92 -67
- {langroid-0.1.24 → langroid-0.1.26}/langroid/cachedb/redis_cachedb.py +6 -6
- {langroid-0.1.24 → langroid-0.1.26}/langroid/vector_store/qdrantdb.py +12 -10
- {langroid-0.1.24 → langroid-0.1.26}/pyproject.toml +1 -1
- langroid-0.1.26/setup.py +86 -0
- langroid-0.1.24/setup.py +0 -86
- {langroid-0.1.24 → langroid-0.1.26}/LICENSE +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/base.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/chat_agent.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/chat_document.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/helpers.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/junk +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/special/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/special/doc_chat_agent.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/special/recipient_validator_agent.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/special/retriever_agent.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/task.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent/tool_message.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/agent_config.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/cachedb/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/cachedb/base.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/embedding_models/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/embedding_models/base.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/embedding_models/clustering.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/embedding_models/models.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/language_models/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/language_models/base.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/language_models/openai_gpt.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/language_models/utils.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/mytypes.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/agent_chats.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/code-parsing.md +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/code_parser.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/json.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/para_sentence_split.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/parser.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/pdf_parser.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/repo_loader.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/url_loader.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/url_loader_cookies.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/urls.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/parsing/utils.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/prompts/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/prompts/dialog.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/prompts/prompts_config.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/prompts/templates.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/prompts/transforms.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/scripts/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/configuration.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/constants.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/docker.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/llms/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/llms/strings.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/logging.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/output/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/output/printing.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/system.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/web/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/web/login.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/utils/web/selenium_login.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/vector_store/__init__.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/vector_store/base.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/vector_store/chromadb.py +0 -0
- {langroid-0.1.24 → langroid-0.1.26}/langroid/vector_store/qdrant_cloud.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: langroid
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.26
|
4
4
|
Summary: Harness LLMs with Multi-Agent Programming
|
5
5
|
License: MIT
|
6
6
|
Author: Prasad Chalasani
|
@@ -57,7 +57,7 @@ Requires-Dist: wget (>=3.2,<4.0)
|
|
57
57
|
Description-Content-Type: text/markdown
|
58
58
|
|
59
59
|
<div align="center">
|
60
|
-
<img src="docs/assets/langroid-card-ossem-rust-
|
60
|
+
<img src="docs/assets/langroid-card-lambda-ossem-rust-1200-630.png" alt="Logo"
|
61
61
|
width="400" align="center">
|
62
62
|
</div>
|
63
63
|
|
@@ -75,47 +75,53 @@ Description-Content-Type: text/markdown
|
|
75
75
|
<a target="_blank"
|
76
76
|
href="https://langroid.github.io/langroid/" rel="dofollow">
|
77
77
|
<strong>Explore the docs</strong></a>
|
78
|
-
|
78
|
+
·
|
79
79
|
<a target="_blank" href="https://github.com/langroid/langroid-examples" rel="dofollow">
|
80
80
|
<strong>Examples Repo</strong></a>
|
81
|
-
|
81
|
+
·
|
82
82
|
<a target="_blank" href="https://discord.gg/g3nAXCbZ" rel="dofollow">
|
83
83
|
<strong>Discord</strong></a>
|
84
|
-
|
84
|
+
·
|
85
85
|
<a target="_blank" href="./CONTRIBUTING.md" rel="dofollow">
|
86
86
|
<strong>Contributing</strong></a>
|
87
87
|
|
88
88
|
<br />
|
89
89
|
</h3>
|
90
90
|
|
91
|
-
`Langroid` is an intuitive, lightweight,
|
92
|
-
Python framework to
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
91
|
+
`Langroid` is an intuitive, lightweight, extensible and principled
|
92
|
+
Python framework to easily build LLM-powered applications.
|
93
|
+
You set up Agents, equip them with optional components (LLM,
|
94
|
+
vector-store and methods), assign them tasks, and have them
|
95
|
+
collaboratively solve a problem by exchanging messages.
|
96
|
+
This Multi-Agent paradigm is inspired by the
|
97
|
+
[Actor Framework](https://en.wikipedia.org/wiki/Actor_model)
|
98
|
+
(but you do not need to know anything about this!).
|
97
99
|
|
98
100
|
|
99
101
|
# :rocket: Demo
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
102
|
+
Suppose you want to extract structured information about the key terms
|
103
|
+
of a commercial lease document. You can easily do this with Langroid using a two-agent system,
|
104
|
+
as we show in the [langroid-examples](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py) repo.
|
105
|
+
The demo showcases several features of Langroid:
|
106
|
+
- Multi-agent collaboration: `LeaseExtractor` is in charge of the task, and its LLM (GPT4) generates questions
|
107
|
+
to be answered by the `DocAgent`.
|
108
|
+
- Retrieval augmented question-answering: `DocAgent` LLM (GPT4) uses retrieval from a vector-store to
|
109
|
+
answer the `LeaseExtractor`'s questions.
|
110
|
+
- Function-calling (also known as tool/plugin): When it has all the information it
|
111
|
+
needs, the `LeaseExtractor` LLM presents the information in a structured
|
112
|
+
format using a Function-call.
|
113
|
+
|
114
|
+
Here is what it looks like in action:
|
109
115
|
|
110
116
|

|
111
117
|
|
112
118
|
|
113
119
|
# :zap: Highlights
|
114
120
|
|
115
|
-
- **Agents as first-class citizens:** The
|
121
|
+
- **Agents as first-class citizens:** The [Agent](https://langroid.github.io/langroid/reference/agent/base/#langroid.agent.base.Agent) class encapsulates LLM conversation state,
|
116
122
|
and optionally a vector-store and tools. Agents are a core abstraction in Langroid;
|
117
123
|
Agents act as _message transformers_, and by default provide 3 _responder_ methods, one corresponding to each entity: LLM, Agent, User.
|
118
|
-
- **Tasks:** A Task class wraps an Agent, and gives the agent instructions (or roles, or goals),
|
124
|
+
- **Tasks:** A [Task](https://langroid.github.io/langroid/reference/agent/task/) class wraps an Agent, and gives the agent instructions (or roles, or goals),
|
119
125
|
manages iteration over an Agent's responder methods,
|
120
126
|
and orchestrates multi-agent interactions via hierarchical, recursive
|
121
127
|
task-delegation. The `Task.run()` method has the same
|
@@ -166,34 +172,47 @@ Note that this will install `torch` and `sentence-transformers` libraries.
|
|
166
172
|
|
167
173
|
### Set up environment variables (API keys, etc)
|
168
174
|
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
175
|
+
In the root of the repo, copy the `.env-template` file to a new file `.env`:
|
176
|
+
```bash
|
177
|
+
cp .env-template .env
|
178
|
+
```
|
179
|
+
Then insert your OpenAI API Key. If you don't have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).
|
180
|
+
Your `.env` file should look like this:
|
181
|
+
|
182
|
+
```bash
|
183
|
+
OPENAI_API_KEY=your-key-here-without-quotes
|
184
|
+
````
|
185
|
+
|
186
|
+
Currently only OpenAI models are supported. Others will be added later
|
187
|
+
(Pull Requests welcome!).
|
188
|
+
|
189
|
+
All of the below are optional and not strictly needed to run any of the examples.
|
190
|
+
|
191
|
+
- **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.
|
192
|
+
You can sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).
|
193
|
+
If you skip setting up these, Langroid will use Qdrant in local-storage mode.
|
174
194
|
Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported.
|
175
195
|
We use the local-storage version of Chroma, so there is no need for an API key.
|
196
|
+
- **Redis** Password, host, port: This is optional, and only needed to cache LLM API responses
|
197
|
+
using Redis Cloud. Redis [offers](https://redis.com/try-free/) a free 30MB Redis account
|
198
|
+
which is more than sufficient to try out Langroid and even beyond.
|
199
|
+
If you don't set up these, Langroid will use a pure-python
|
200
|
+
Redis in-memory cache via the [Fakeredis](https://fakeredis.readthedocs.io/en/latest/) library.
|
176
201
|
- **GitHub** Personal Access Token (required for apps that need to analyze git
|
177
202
|
repos; token-based API calls are less rate-limited). See this
|
178
203
|
[GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).
|
179
|
-
|
180
|
-
|
181
|
-
which is more than sufficient to try out Langroid and even beyond.
|
182
|
-
|
183
|
-
```bash
|
184
|
-
cp .env-template .env
|
185
|
-
# now edit the .env file, insert your secrets as above
|
186
|
-
```
|
187
|
-
Your `.env` file should look like this:
|
204
|
+
|
205
|
+
If you add all of these optional variables, your `.env` file should look like this:
|
188
206
|
```bash
|
189
|
-
OPENAI_API_KEY
|
190
|
-
GITHUB_ACCESS_TOKEN
|
191
|
-
REDIS_PASSWORD
|
192
|
-
|
207
|
+
OPENAI_API_KEY=your-key-here-without-quotes
|
208
|
+
GITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes
|
209
|
+
REDIS_PASSWORD=your-redis-password-no-quotes
|
210
|
+
REDIS_HOST=your-redis-hostname-no-quotes
|
211
|
+
REDIS_PORT=your-redis-port-no-quotes
|
212
|
+
QDRANT_API_KEY=your-key
|
213
|
+
QDRANT_API_URL=https://your.url.here:6333 # note port number must be included
|
193
214
|
```
|
194
215
|
|
195
|
-
Currently only OpenAI models are supported. Others will be added later
|
196
|
-
(Pull Requests welcome!).
|
197
216
|
|
198
217
|
---
|
199
218
|
|
@@ -207,24 +226,21 @@ and they are **not** complete runnable examples! For that we encourage you to
|
|
207
226
|
consult the [`langroid-examples`](https://github.com/langroid/langroid-examples)
|
208
227
|
repository.
|
209
228
|
|
210
|
-
:information_source: The
|
211
|
-
|
212
|
-
|
229
|
+
:information_source: The various LLM prompts and instructions in Langroid
|
230
|
+
have been tested to work well with GPT4.
|
231
|
+
Switching to GPT3.5-Turbo is easy via a config flag
|
232
|
+
(e.g., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT3_5_TURBO)`),
|
233
|
+
and may suffice for some applications, but in general you may see inferior results.
|
234
|
+
|
213
235
|
|
214
236
|
:book: Also see the
|
215
237
|
[`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)
|
216
|
-
for a detailed tutorial.
|
238
|
+
for a detailed tutorial.
|
217
239
|
|
218
|
-
|
219
|
-
- [Simple Agent and Task](#agent-task)
|
220
|
-
- [Three Communicating Agents](#three-agents)
|
221
|
-
- [Agent with Tool/Function-calling](#agent-tool)
|
222
|
-
- [Extract Structured Info with Tool/Function-calling](#agent-tool-structured)
|
223
|
-
- [Retrieval-Augmented-Generation: Chat with Docs](#agent-rag)
|
224
|
-
|
225
|
-
---
|
240
|
+
Click to expand any of the code examples below:
|
226
241
|
|
227
|
-
|
242
|
+
<details>
|
243
|
+
<summary> <b> Direct interaction with OpenAI LLM </b> </summary>
|
228
244
|
|
229
245
|
```python
|
230
246
|
from langroid.language_models.openai_gpt import (
|
@@ -243,10 +259,10 @@ messages = [
|
|
243
259
|
response = mdl.chat(messages, max_tokens=200)
|
244
260
|
print(response.message)
|
245
261
|
```
|
262
|
+
</details>
|
246
263
|
|
247
|
-
|
248
|
-
|
249
|
-
## Define an agent, set up a task, and run it <a name="agent-task"></a>
|
264
|
+
<details>
|
265
|
+
<summary> <b> Define an agent, set up a task, and run it </b> </summary>
|
250
266
|
|
251
267
|
```python
|
252
268
|
from langroid.agent.chat_agent import ChatAgent, ChatAgentConfig
|
@@ -266,10 +282,12 @@ agent = ChatAgent(config)
|
|
266
282
|
task = Task(agent, name="Bot")
|
267
283
|
task.run() # ... a loop seeking response from LLM or User at each turn
|
268
284
|
```
|
285
|
+
</details>
|
269
286
|
|
270
|
-
|
287
|
+
<details>
|
288
|
+
<summary><b> Three communicating agents </b></summary>
|
271
289
|
|
272
|
-
|
290
|
+
```python
|
273
291
|
|
274
292
|
A toy numbers game, where when given a number `n`:
|
275
293
|
- `repeater_agent`'s LLM simply returns `n`,
|
@@ -329,9 +347,11 @@ and run the `repeater_task`, kicking it off with a number as input:
|
|
329
347
|
repeater_task.add_sub_task([even_task, odd_task])
|
330
348
|
repeater_task.run("3")
|
331
349
|
```
|
332
|
-
---
|
333
350
|
|
334
|
-
|
351
|
+
</details>
|
352
|
+
|
353
|
+
<details>
|
354
|
+
<summary><b> Simple Tool/Function-calling example </b></summary>
|
335
355
|
|
336
356
|
Langroid leverages Pydantic to support OpenAI's
|
337
357
|
[Function-calling API](https://platform.openai.com/docs/guides/gpt/function-calling)
|
@@ -396,10 +416,10 @@ spy_game_agent.enable_message(ProbeTool)
|
|
396
416
|
For a full working example see the
|
397
417
|
[chat-agent-tool.py](https://github.com/langroid/langroid-examples/blob/main/examples/quick-start/chat-agent-tool.py)
|
398
418
|
script in the `langroid-examples` repo.
|
419
|
+
</details>
|
399
420
|
|
400
|
-
|
401
|
-
|
402
|
-
## Tool/Function-calling to extract structured information from text <a name="agent-tool-structured"></a>
|
421
|
+
<details>
|
422
|
+
<summary> <b>Tool/Function-calling to extract structured information from text </b> </summary>
|
403
423
|
|
404
424
|
Suppose you want an agent to extract
|
405
425
|
the key terms of a lease, from a lease document, as a nested JSON structure.
|
@@ -460,10 +480,10 @@ lease_extractor_agent.enable_message(LeaseMessage)
|
|
460
480
|
|
461
481
|
See the [`chat_multi_extract.py`](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py)
|
462
482
|
script in the `langroid-examples` repo for a full working example.
|
483
|
+
</details>
|
463
484
|
|
464
|
-
|
465
|
-
|
466
|
-
## Chat with documents (file paths, URLs, etc) <a name="agent-docs"></a>
|
485
|
+
<details>
|
486
|
+
<summary><b> Chat with documents (file paths, URLs, etc) </b></summary>
|
467
487
|
|
468
488
|
Langroid provides a specialized agent class `DocChatAgent` for this purpose.
|
469
489
|
It incorporates document sharding, embedding, storage in a vector-DB,
|
@@ -509,9 +529,14 @@ task.run()
|
|
509
529
|
See full working scripts in the
|
510
530
|
[`docqa`](https://github.com/langroid/langroid-examples/tree/main/examples/docqa)
|
511
531
|
folder of the `langroid-examples` repo.
|
532
|
+
</details>
|
512
533
|
|
513
534
|
---
|
514
535
|
|
536
|
+
# :heart: Thank you to our supporters!
|
537
|
+
|
538
|
+
[](https://github.com/langroid/langroid/stargazers)
|
539
|
+
|
515
540
|
# Contributors
|
516
541
|
|
517
542
|
- Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)
|
@@ -1,5 +1,5 @@
|
|
1
1
|
<div align="center">
|
2
|
-
<img src="docs/assets/langroid-card-ossem-rust-
|
2
|
+
<img src="docs/assets/langroid-card-lambda-ossem-rust-1200-630.png" alt="Logo"
|
3
3
|
width="400" align="center">
|
4
4
|
</div>
|
5
5
|
|
@@ -17,47 +17,53 @@
|
|
17
17
|
<a target="_blank"
|
18
18
|
href="https://langroid.github.io/langroid/" rel="dofollow">
|
19
19
|
<strong>Explore the docs</strong></a>
|
20
|
-
|
20
|
+
·
|
21
21
|
<a target="_blank" href="https://github.com/langroid/langroid-examples" rel="dofollow">
|
22
22
|
<strong>Examples Repo</strong></a>
|
23
|
-
|
23
|
+
·
|
24
24
|
<a target="_blank" href="https://discord.gg/g3nAXCbZ" rel="dofollow">
|
25
25
|
<strong>Discord</strong></a>
|
26
|
-
|
26
|
+
·
|
27
27
|
<a target="_blank" href="./CONTRIBUTING.md" rel="dofollow">
|
28
28
|
<strong>Contributing</strong></a>
|
29
29
|
|
30
30
|
<br />
|
31
31
|
</h3>
|
32
32
|
|
33
|
-
`Langroid` is an intuitive, lightweight,
|
34
|
-
Python framework to
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
33
|
+
`Langroid` is an intuitive, lightweight, extensible and principled
|
34
|
+
Python framework to easily build LLM-powered applications.
|
35
|
+
You set up Agents, equip them with optional components (LLM,
|
36
|
+
vector-store and methods), assign them tasks, and have them
|
37
|
+
collaboratively solve a problem by exchanging messages.
|
38
|
+
This Multi-Agent paradigm is inspired by the
|
39
|
+
[Actor Framework](https://en.wikipedia.org/wiki/Actor_model)
|
40
|
+
(but you do not need to know anything about this!).
|
39
41
|
|
40
42
|
|
41
43
|
# :rocket: Demo
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
44
|
+
Suppose you want to extract structured information about the key terms
|
45
|
+
of a commercial lease document. You can easily do this with Langroid using a two-agent system,
|
46
|
+
as we show in the [langroid-examples](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py) repo.
|
47
|
+
The demo showcases several features of Langroid:
|
48
|
+
- Multi-agent collaboration: `LeaseExtractor` is in charge of the task, and its LLM (GPT4) generates questions
|
49
|
+
to be answered by the `DocAgent`.
|
50
|
+
- Retrieval augmented question-answering: `DocAgent` LLM (GPT4) uses retrieval from a vector-store to
|
51
|
+
answer the `LeaseExtractor`'s questions.
|
52
|
+
- Function-calling (also known as tool/plugin): When it has all the information it
|
53
|
+
needs, the `LeaseExtractor` LLM presents the information in a structured
|
54
|
+
format using a Function-call.
|
55
|
+
|
56
|
+
Here is what it looks like in action:
|
51
57
|
|
52
58
|

|
53
59
|
|
54
60
|
|
55
61
|
# :zap: Highlights
|
56
62
|
|
57
|
-
- **Agents as first-class citizens:** The
|
63
|
+
- **Agents as first-class citizens:** The [Agent](https://langroid.github.io/langroid/reference/agent/base/#langroid.agent.base.Agent) class encapsulates LLM conversation state,
|
58
64
|
and optionally a vector-store and tools. Agents are a core abstraction in Langroid;
|
59
65
|
Agents act as _message transformers_, and by default provide 3 _responder_ methods, one corresponding to each entity: LLM, Agent, User.
|
60
|
-
- **Tasks:** A Task class wraps an Agent, and gives the agent instructions (or roles, or goals),
|
66
|
+
- **Tasks:** A [Task](https://langroid.github.io/langroid/reference/agent/task/) class wraps an Agent, and gives the agent instructions (or roles, or goals),
|
61
67
|
manages iteration over an Agent's responder methods,
|
62
68
|
and orchestrates multi-agent interactions via hierarchical, recursive
|
63
69
|
task-delegation. The `Task.run()` method has the same
|
@@ -108,34 +114,47 @@ Note that this will install `torch` and `sentence-transformers` libraries.
|
|
108
114
|
|
109
115
|
### Set up environment variables (API keys, etc)
|
110
116
|
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
117
|
+
In the root of the repo, copy the `.env-template` file to a new file `.env`:
|
118
|
+
```bash
|
119
|
+
cp .env-template .env
|
120
|
+
```
|
121
|
+
Then insert your OpenAI API Key. If you don't have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).
|
122
|
+
Your `.env` file should look like this:
|
123
|
+
|
124
|
+
```bash
|
125
|
+
OPENAI_API_KEY=your-key-here-without-quotes
|
126
|
+
````
|
127
|
+
|
128
|
+
Currently only OpenAI models are supported. Others will be added later
|
129
|
+
(Pull Requests welcome!).
|
130
|
+
|
131
|
+
All of the below are optional and not strictly needed to run any of the examples.
|
132
|
+
|
133
|
+
- **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.
|
134
|
+
You can sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).
|
135
|
+
If you skip setting up these, Langroid will use Qdrant in local-storage mode.
|
116
136
|
Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported.
|
117
137
|
We use the local-storage version of Chroma, so there is no need for an API key.
|
138
|
+
- **Redis** Password, host, port: This is optional, and only needed to cache LLM API responses
|
139
|
+
using Redis Cloud. Redis [offers](https://redis.com/try-free/) a free 30MB Redis account
|
140
|
+
which is more than sufficient to try out Langroid and even beyond.
|
141
|
+
If you don't set up these, Langroid will use a pure-python
|
142
|
+
Redis in-memory cache via the [Fakeredis](https://fakeredis.readthedocs.io/en/latest/) library.
|
118
143
|
- **GitHub** Personal Access Token (required for apps that need to analyze git
|
119
144
|
repos; token-based API calls are less rate-limited). See this
|
120
145
|
[GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).
|
121
|
-
|
122
|
-
|
123
|
-
which is more than sufficient to try out Langroid and even beyond.
|
124
|
-
|
125
|
-
```bash
|
126
|
-
cp .env-template .env
|
127
|
-
# now edit the .env file, insert your secrets as above
|
128
|
-
```
|
129
|
-
Your `.env` file should look like this:
|
146
|
+
|
147
|
+
If you add all of these optional variables, your `.env` file should look like this:
|
130
148
|
```bash
|
131
|
-
OPENAI_API_KEY
|
132
|
-
GITHUB_ACCESS_TOKEN
|
133
|
-
REDIS_PASSWORD
|
134
|
-
|
149
|
+
OPENAI_API_KEY=your-key-here-without-quotes
|
150
|
+
GITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes
|
151
|
+
REDIS_PASSWORD=your-redis-password-no-quotes
|
152
|
+
REDIS_HOST=your-redis-hostname-no-quotes
|
153
|
+
REDIS_PORT=your-redis-port-no-quotes
|
154
|
+
QDRANT_API_KEY=your-key
|
155
|
+
QDRANT_API_URL=https://your.url.here:6333 # note port number must be included
|
135
156
|
```
|
136
157
|
|
137
|
-
Currently only OpenAI models are supported. Others will be added later
|
138
|
-
(Pull Requests welcome!).
|
139
158
|
|
140
159
|
---
|
141
160
|
|
@@ -149,24 +168,21 @@ and they are **not** complete runnable examples! For that we encourage you to
|
|
149
168
|
consult the [`langroid-examples`](https://github.com/langroid/langroid-examples)
|
150
169
|
repository.
|
151
170
|
|
152
|
-
:information_source: The
|
153
|
-
|
154
|
-
|
171
|
+
:information_source: The various LLM prompts and instructions in Langroid
|
172
|
+
have been tested to work well with GPT4.
|
173
|
+
Switching to GPT3.5-Turbo is easy via a config flag
|
174
|
+
(e.g., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT3_5_TURBO)`),
|
175
|
+
and may suffice for some applications, but in general you may see inferior results.
|
176
|
+
|
155
177
|
|
156
178
|
:book: Also see the
|
157
179
|
[`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)
|
158
|
-
for a detailed tutorial.
|
180
|
+
for a detailed tutorial.
|
159
181
|
|
160
|
-
|
161
|
-
- [Simple Agent and Task](#agent-task)
|
162
|
-
- [Three Communicating Agents](#three-agents)
|
163
|
-
- [Agent with Tool/Function-calling](#agent-tool)
|
164
|
-
- [Extract Structured Info with Tool/Function-calling](#agent-tool-structured)
|
165
|
-
- [Retrieval-Augmented-Generation: Chat with Docs](#agent-rag)
|
166
|
-
|
167
|
-
---
|
182
|
+
Click to expand any of the code examples below:
|
168
183
|
|
169
|
-
|
184
|
+
<details>
|
185
|
+
<summary> <b> Direct interaction with OpenAI LLM </b> </summary>
|
170
186
|
|
171
187
|
```python
|
172
188
|
from langroid.language_models.openai_gpt import (
|
@@ -185,10 +201,10 @@ messages = [
|
|
185
201
|
response = mdl.chat(messages, max_tokens=200)
|
186
202
|
print(response.message)
|
187
203
|
```
|
204
|
+
</details>
|
188
205
|
|
189
|
-
|
190
|
-
|
191
|
-
## Define an agent, set up a task, and run it <a name="agent-task"></a>
|
206
|
+
<details>
|
207
|
+
<summary> <b> Define an agent, set up a task, and run it </b> </summary>
|
192
208
|
|
193
209
|
```python
|
194
210
|
from langroid.agent.chat_agent import ChatAgent, ChatAgentConfig
|
@@ -208,10 +224,12 @@ agent = ChatAgent(config)
|
|
208
224
|
task = Task(agent, name="Bot")
|
209
225
|
task.run() # ... a loop seeking response from LLM or User at each turn
|
210
226
|
```
|
227
|
+
</details>
|
211
228
|
|
212
|
-
|
229
|
+
<details>
|
230
|
+
<summary><b> Three communicating agents </b></summary>
|
213
231
|
|
214
|
-
|
232
|
+
```python
|
215
233
|
|
216
234
|
A toy numbers game, where when given a number `n`:
|
217
235
|
- `repeater_agent`'s LLM simply returns `n`,
|
@@ -271,9 +289,11 @@ and run the `repeater_task`, kicking it off with a number as input:
|
|
271
289
|
repeater_task.add_sub_task([even_task, odd_task])
|
272
290
|
repeater_task.run("3")
|
273
291
|
```
|
274
|
-
---
|
275
292
|
|
276
|
-
|
293
|
+
</details>
|
294
|
+
|
295
|
+
<details>
|
296
|
+
<summary><b> Simple Tool/Function-calling example </b></summary>
|
277
297
|
|
278
298
|
Langroid leverages Pydantic to support OpenAI's
|
279
299
|
[Function-calling API](https://platform.openai.com/docs/guides/gpt/function-calling)
|
@@ -338,10 +358,10 @@ spy_game_agent.enable_message(ProbeTool)
|
|
338
358
|
For a full working example see the
|
339
359
|
[chat-agent-tool.py](https://github.com/langroid/langroid-examples/blob/main/examples/quick-start/chat-agent-tool.py)
|
340
360
|
script in the `langroid-examples` repo.
|
361
|
+
</details>
|
341
362
|
|
342
|
-
|
343
|
-
|
344
|
-
## Tool/Function-calling to extract structured information from text <a name="agent-tool-structured"></a>
|
363
|
+
<details>
|
364
|
+
<summary> <b>Tool/Function-calling to extract structured information from text </b> </summary>
|
345
365
|
|
346
366
|
Suppose you want an agent to extract
|
347
367
|
the key terms of a lease, from a lease document, as a nested JSON structure.
|
@@ -402,10 +422,10 @@ lease_extractor_agent.enable_message(LeaseMessage)
|
|
402
422
|
|
403
423
|
See the [`chat_multi_extract.py`](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py)
|
404
424
|
script in the `langroid-examples` repo for a full working example.
|
425
|
+
</details>
|
405
426
|
|
406
|
-
|
407
|
-
|
408
|
-
## Chat with documents (file paths, URLs, etc) <a name="agent-docs"></a>
|
427
|
+
<details>
|
428
|
+
<summary><b> Chat with documents (file paths, URLs, etc) </b></summary>
|
409
429
|
|
410
430
|
Langroid provides a specialized agent class `DocChatAgent` for this purpose.
|
411
431
|
It incorporates document sharding, embedding, storage in a vector-DB,
|
@@ -451,9 +471,14 @@ task.run()
|
|
451
471
|
See full working scripts in the
|
452
472
|
[`docqa`](https://github.com/langroid/langroid-examples/tree/main/examples/docqa)
|
453
473
|
folder of the `langroid-examples` repo.
|
474
|
+
</details>
|
454
475
|
|
455
476
|
---
|
456
477
|
|
478
|
+
# :heart: Thank you to our supporters!
|
479
|
+
|
480
|
+
[](https://github.com/langroid/langroid/stargazers)
|
481
|
+
|
457
482
|
# Contributors
|
458
483
|
|
459
484
|
- Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)
|
@@ -17,8 +17,6 @@ class RedisCacheConfig(BaseModel):
|
|
17
17
|
"""Configuration model for RedisCache."""
|
18
18
|
|
19
19
|
fake: bool = False
|
20
|
-
hostname: str = "redis-11524.c251.east-us-mz.azure.cloud.redislabs.com"
|
21
|
-
port: int = 11524
|
22
20
|
|
23
21
|
|
24
22
|
class RedisCache(CacheDB):
|
@@ -38,16 +36,18 @@ class RedisCache(CacheDB):
|
|
38
36
|
self.client = fakeredis.FakeStrictRedis() # type: ignore
|
39
37
|
else:
|
40
38
|
redis_password = os.getenv("REDIS_PASSWORD")
|
41
|
-
|
39
|
+
redis_host = os.getenv("REDIS_HOST")
|
40
|
+
redis_port = os.getenv("REDIS_PORT")
|
41
|
+
if None in [redis_password, redis_host, redis_port]:
|
42
42
|
logger.warning(
|
43
|
-
"""REDIS_PASSWORD not set in .env file,
|
43
|
+
"""REDIS_PASSWORD, REDIS_HOST, REDIS_PORT not set in .env file,
|
44
44
|
using fake redis client"""
|
45
45
|
)
|
46
46
|
self.client = fakeredis.FakeStrictRedis() # type: ignore
|
47
47
|
else:
|
48
48
|
self.client = redis.Redis( # type: ignore
|
49
|
-
host=
|
50
|
-
port=
|
49
|
+
host=redis_host,
|
50
|
+
port=redis_port,
|
51
51
|
password=redis_password,
|
52
52
|
)
|
53
53
|
|
@@ -29,7 +29,6 @@ logger = logging.getLogger(__name__)
|
|
29
29
|
class QdrantDBConfig(VectorStoreConfig):
|
30
30
|
type: str = "qdrant"
|
31
31
|
cloud: bool = True
|
32
|
-
url = "https://644cabc3-4141-4734-91f2-0cc3176514d4.us-east-1-0.aws.cloud.qdrant.io:6333"
|
33
32
|
|
34
33
|
collection_name: str | None = None
|
35
34
|
storage_path: str = ".qdrant/data"
|
@@ -49,17 +48,20 @@ class QdrantDB(VectorStore):
|
|
49
48
|
self.host = config.host
|
50
49
|
self.port = config.port
|
51
50
|
load_dotenv()
|
51
|
+
key = os.getenv("QDRANT_API_KEY")
|
52
|
+
url = os.getenv("QDRANT_API_URL")
|
53
|
+
if config.cloud and None in [key, url]:
|
54
|
+
logger.warning(
|
55
|
+
f"""QDRANT_API_KEY, QDRANT_API_URL env variable must be set to use
|
56
|
+
QdrantDB in cloud mode. Please set these values
|
57
|
+
in your .env file.
|
58
|
+
Switching to local storage at {config.storage_path}
|
59
|
+
"""
|
60
|
+
)
|
61
|
+
config.cloud = False
|
52
62
|
if config.cloud:
|
53
|
-
key = os.getenv("QDRANT_API_KEY")
|
54
|
-
if key is None or key == "":
|
55
|
-
raise ValueError(
|
56
|
-
"""QDRANT_API_KEY env variable must be set to use
|
57
|
-
QdrantDB in cloud mode. Please set the QDRANT_API_KEY value
|
58
|
-
in your .env file.
|
59
|
-
"""
|
60
|
-
)
|
61
63
|
self.client = QdrantClient(
|
62
|
-
url=
|
64
|
+
url=url,
|
63
65
|
api_key=key,
|
64
66
|
timeout=config.timeout,
|
65
67
|
)
|
langroid-0.1.26/setup.py
ADDED
@@ -0,0 +1,86 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
from setuptools import setup
|
3
|
+
|
4
|
+
packages = \
|
5
|
+
['langroid',
|
6
|
+
'langroid.agent',
|
7
|
+
'langroid.agent.special',
|
8
|
+
'langroid.cachedb',
|
9
|
+
'langroid.embedding_models',
|
10
|
+
'langroid.language_models',
|
11
|
+
'langroid.parsing',
|
12
|
+
'langroid.prompts',
|
13
|
+
'langroid.scripts',
|
14
|
+
'langroid.utils',
|
15
|
+
'langroid.utils.llms',
|
16
|
+
'langroid.utils.output',
|
17
|
+
'langroid.utils.web',
|
18
|
+
'langroid.vector_store']
|
19
|
+
|
20
|
+
package_data = \
|
21
|
+
{'': ['*']}
|
22
|
+
|
23
|
+
install_requires = \
|
24
|
+
['autopep8>=2.0.2,<3.0.0',
|
25
|
+
'black[jupyter]>=23.3.0,<24.0.0',
|
26
|
+
'bs4>=0.0.1,<0.0.2',
|
27
|
+
'chromadb>=0.3.21,<0.4.0',
|
28
|
+
'colorlog>=6.7.0,<7.0.0',
|
29
|
+
'faker>=18.9.0,<19.0.0',
|
30
|
+
'fakeredis>=2.12.1,<3.0.0',
|
31
|
+
'fire>=0.5.0,<0.6.0',
|
32
|
+
'flake8>=6.0.0,<7.0.0',
|
33
|
+
'halo>=0.0.31,<0.0.32',
|
34
|
+
'mkdocs-awesome-pages-plugin>=2.8.0,<3.0.0',
|
35
|
+
'mkdocs-gen-files>=0.4.0,<0.5.0',
|
36
|
+
'mkdocs-jupyter>=0.24.1,<0.25.0',
|
37
|
+
'mkdocs-literate-nav>=0.6.0,<0.7.0',
|
38
|
+
'mkdocs-material>=9.1.5,<10.0.0',
|
39
|
+
'mkdocs-section-index>=0.3.5,<0.4.0',
|
40
|
+
'mkdocs>=1.4.2,<2.0.0',
|
41
|
+
'mkdocstrings[python]>=0.21.2,<0.22.0',
|
42
|
+
'mypy>=1.2.0,<2.0.0',
|
43
|
+
'nltk>=3.8.1,<4.0.0',
|
44
|
+
'openai>=0.27.5,<0.28.0',
|
45
|
+
'pre-commit>=3.3.2,<4.0.0',
|
46
|
+
'pydantic==1.10.11',
|
47
|
+
'pygithub>=1.58.1,<2.0.0',
|
48
|
+
'pygments>=2.15.1,<3.0.0',
|
49
|
+
'pyparsing>=3.0.9,<4.0.0',
|
50
|
+
'pypdf>=3.12.2,<4.0.0',
|
51
|
+
'python-dotenv>=1.0.0,<2.0.0',
|
52
|
+
'qdrant-client>=1.3.1,<2.0.0',
|
53
|
+
'redis>=4.5.5,<5.0.0',
|
54
|
+
'requests-oauthlib>=1.3.1,<2.0.0',
|
55
|
+
'requests>=2.31.0,<3.0.0',
|
56
|
+
'rich>=13.3.4,<14.0.0',
|
57
|
+
'ruff>=0.0.270,<0.0.271',
|
58
|
+
'tiktoken>=0.3.3,<0.4.0',
|
59
|
+
'trafilatura>=1.5.0,<2.0.0',
|
60
|
+
'typer>=0.7.0,<0.8.0',
|
61
|
+
'types-redis>=4.5.5.2,<5.0.0.0',
|
62
|
+
'types-requests>=2.31.0.1,<3.0.0.0',
|
63
|
+
'wget>=3.2,<4.0']
|
64
|
+
|
65
|
+
extras_require = \
|
66
|
+
{'hf-embeddings': ['sentence-transformers==2.2.2', 'torch==2.0.0']}
|
67
|
+
|
68
|
+
setup_kwargs = {
|
69
|
+
'name': 'langroid',
|
70
|
+
'version': '0.1.26',
|
71
|
+
'description': 'Harness LLMs with Multi-Agent Programming',
|
72
|
+
'long_description': '<div align="center">\n <img src="docs/assets/langroid-card-lambda-ossem-rust-1200-630.png" alt="Logo" \n width="400" align="center">\n</div>\n\n<div align="center">\n\n[](https://github.com/langroid/langroid/actions/workflows/pytest.yml)\n[](https://github.com/langroid/langroid/actions/workflows/validate.yml)\n[](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml)\n[](https://langroid.github.io/langroid)\n[](https://discord.gg/g3nAXCbZ)\n\n</div>\n\n<h3 align="center">\n <a target="_blank" \n href="https://langroid.github.io/langroid/" rel="dofollow">\n <strong>Explore the docs</strong></a>\n ·\n <a target="_blank" href="https://github.com/langroid/langroid-examples" rel="dofollow">\n <strong>Examples Repo</strong></a>\n ·\n <a target="_blank" href="https://discord.gg/g3nAXCbZ" rel="dofollow">\n <strong>Discord</strong></a>\n ·\n <a target="_blank" href="./CONTRIBUTING.md" rel="dofollow">\n <strong>Contributing</strong></a>\n\n <br />\n</h3>\n\n`Langroid` is an intuitive, lightweight, extensible and principled\nPython framework to easily build LLM-powered applications. \nYou set up Agents, equip them with optional components (LLM, \nvector-store and methods), assign them tasks, and have them \ncollaboratively solve a problem by exchanging messages. \nThis Multi-Agent paradigm is inspired by the\n[Actor Framework](https://en.wikipedia.org/wiki/Actor_model)\n(but you do not need to know anything about this!).\n\n\n# :rocket: Demo\nSuppose you want to extract structured information about the key terms \nof a commercial lease document. You can easily do this with Langroid using a two-agent system,\nas we show in the [langroid-examples](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py) repo.\nThe demo showcases several features of Langroid:\n- Multi-agent collaboration: `LeaseExtractor` is in charge of the task, and its LLM (GPT4) generates questions \nto be answered by the `DocAgent`.\n- Retrieval augmented question-answering: `DocAgent` LLM (GPT4) uses retrieval from a vector-store to \nanswer the `LeaseExtractor`\'s questions.\n- Function-calling (also known as tool/plugin): When it has all the information it \nneeds, the `LeaseExtractor` LLM presents the information in a structured \nformat using a Function-call. \n\nHere is what it looks like in action:\n\n\n\n\n# :zap: Highlights\n\n- **Agents as first-class citizens:** The [Agent](https://langroid.github.io/langroid/reference/agent/base/#langroid.agent.base.Agent) class encapsulates LLM conversation state,\n and optionally a vector-store and tools. Agents are a core abstraction in Langroid;\n Agents act as _message transformers_, and by default provide 3 _responder_ methods, one corresponding to each entity: LLM, Agent, User.\n- **Tasks:** A [Task](https://langroid.github.io/langroid/reference/agent/task/) class wraps an Agent, and gives the agent instructions (or roles, or goals), \n manages iteration over an Agent\'s responder methods, \n and orchestrates multi-agent interactions via hierarchical, recursive\n task-delegation. The `Task.run()` method has the same \n type-signature as an Agent\'s responder\'s methods, and this is key to how \n a task of an agent can delegate to other sub-tasks: from the point of view of a Task,\n sub-tasks are simply additional responders, to be used in a round-robin fashion \n after the agent\'s own responders.\n- **Modularity, Reusabilily, Loose coupling:** The `Agent` and `Task` abstractions allow users to design\n Agents with specific skills, wrap them in Tasks, and combine tasks in a flexible way.\n- **LLM Support**: Langroid supports OpenAI LLMs including GPT-3.5-Turbo,\n GPT-4-0613\n- **Caching of LLM prompts, responses:** Langroid uses [Redis](https://redis.com/try-free/) for caching.\n- **Vector-stores**: [Qdrant](https://qdrant.tech/) and [Chroma](https://www.trychroma.com/) are currently supported.\n Vector stores allow for Retrieval-Augmented-Generation (RAG).\n- **Grounding and source-citation:** Access to external documents via vector-stores \n allows for grounding and source-citation.\n- **Observability, Logging, Lineage:** Langroid generates detailed logs of multi-agent interactions and\n maintains provenance/lineage of messages, so that you can trace back\n the origin of a message.\n- **Tools/Plugins/Function-calling**: Langroid supports OpenAI\'s recently\n released [function calling](https://platform.openai.com/docs/guides/gpt/function-calling)\n feature. In addition, Langroid has its own native equivalent, which we\n call **tools** (also known as "plugins" in other contexts). Function\n calling and tools have the same developer-facing interface, implemented\n using [Pydantic](https://docs.pydantic.dev/latest/),\n which makes it very easy to define tools/functions and enable agents\n to use them. Benefits of using Pydantic are that you never have to write\n complex JSON specs for function calling, and when the LLM\n hallucinates malformed JSON, the Pydantic error message is sent back to\n the LLM so it can fix it!\n\n--- \n\n# :gear: Installation and Setup\n\n### Install `langroid` \nUse `pip` to install `langroid` (from PyPi) to your virtual environment:\n```bash\npip install langroid\n```\nThe core Langroid package lets you use OpenAI Embeddings models via their API. \nIf you instead want to use the `all-MiniLM-L6-v2` embeddings model\nfrom from HuggingFace, install Langroid like this:\n```bash\npip install langroid[hf-embeddings]\n```\nNote that this will install `torch` and `sentence-transformers` libraries.\n\n### Set up environment variables (API keys, etc)\n\nIn the root of the repo, copy the `.env-template` file to a new file `.env`: \n```bash\ncp .env-template .env\n```\nThen insert your OpenAI API Key. If you don\'t have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).\nYour `.env` file should look like this:\n\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\n````\n\nCurrently only OpenAI models are supported. Others will be added later\n(Pull Requests welcome!).\n\nAll of the below are optional and not strictly needed to run any of the examples.\n\n- **Qdrant** Vector Store API Key, URL. This is only required if you want to use Qdrant cloud.\n You can sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).\n If you skip setting up these, Langroid will use Qdrant in local-storage mode.\n Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported. \n We use the local-storage version of Chroma, so there is no need for an API key.\n- **Redis** Password, host, port: This is optional, and only needed to cache LLM API responses\n using Redis Cloud. Redis [offers](https://redis.com/try-free/) a free 30MB Redis account\n which is more than sufficient to try out Langroid and even beyond.\n If you don\'t set up these, Langroid will use a pure-python \n Redis in-memory cache via the [Fakeredis](https://fakeredis.readthedocs.io/en/latest/) library.\n- **GitHub** Personal Access Token (required for apps that need to analyze git\n repos; token-based API calls are less rate-limited). See this\n [GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).\n\nIf you add all of these optional variables, your `.env` file should look like this:\n```bash\nOPENAI_API_KEY=your-key-here-without-quotes\nGITHUB_ACCESS_TOKEN=your-personal-access-token-no-quotes\nREDIS_PASSWORD=your-redis-password-no-quotes\nREDIS_HOST=your-redis-hostname-no-quotes\nREDIS_PORT=your-redis-port-no-quotes\nQDRANT_API_KEY=your-key\nQDRANT_API_URL=https://your.url.here:6333 # note port number must be included\n```\n\n\n---\n\n# :tada: Usage Examples\n\nThese are quick teasers to give a glimpse of what you can do with Langroid\nand how your code would look. \n\n:warning: The code snippets below are intended to give a flavor of the code\nand they are **not** complete runnable examples! For that we encourage you to \nconsult the [`langroid-examples`](https://github.com/langroid/langroid-examples) \nrepository.\n\n:information_source: The various LLM prompts and instructions in Langroid\nhave been tested to work well with GPT4.\nSwitching to GPT3.5-Turbo is easy via a config flag\n(e.g., `cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT3_5_TURBO)`),\nand may suffice for some applications, but in general you may see inferior results.\n\n\n:book: Also see the\n[`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)\nfor a detailed tutorial.\n\nClick to expand any of the code examples below:\n\n<details>\n<summary> <b> Direct interaction with OpenAI LLM </b> </summary>\n\n```python\nfrom langroid.language_models.openai_gpt import ( \n OpenAIGPTConfig, OpenAIChatModel, OpenAIGPT,\n)\nfrom langroid.language_models.base import LLMMessage, Role\n\ncfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)\n\nmdl = OpenAIGPT(cfg)\n\nmessages = [\n LLMMessage(content="You are a helpful assistant", role=Role.SYSTEM), \n LLMMessage(content="What is the capital of Ontario?", role=Role.USER),\n]\nresponse = mdl.chat(messages, max_tokens=200)\nprint(response.message)\n```\n</details>\n\n<details>\n<summary> <b> Define an agent, set up a task, and run it </b> </summary>\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\n\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None, # no vector store\n)\nagent = ChatAgent(config)\n# get response from agent\'s LLM, and put this in an interactive loop...\n# answer = agent.llm_response("What is the capital of Ontario?")\n # ... OR instead, set up a task (which has a built-in loop) and run it\ntask = Task(agent, name="Bot") \ntask.run() # ... a loop seeking response from LLM or User at each turn\n```\n</details>\n\n<details>\n<summary><b> Three communicating agents </b></summary>\n\n```python\n\nA toy numbers game, where when given a number `n`:\n- `repeater_agent`\'s LLM simply returns `n`,\n- `even_agent`\'s LLM returns `n/2` if `n` is even, else says "DO-NOT-KNOW"\n- `odd_agent`\'s LLM returns `3*n+1` if `n` is odd, else says "DO-NOT-KNOW"\n\nFirst define the 3 agents, and set up their tasks with instructions:\n\n```python\nfrom langroid.utils.constants import NO_ANSWER\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb = None,\n)\nrepeater_agent = ChatAgent(config)\nrepeater_task = Task(\n repeater_agent,\n name = "Repeater",\n system_message="""\n Your job is to repeat whatever number you receive.\n """,\n llm_delegate=True, # LLM takes charge of task\n single_round=False, \n)\neven_agent = ChatAgent(config)\neven_task = Task(\n even_agent,\n name = "EvenHandler",\n system_message=f"""\n You will be given a number. \n If it is even, divide by 2 and say the result, nothing else.\n If it is odd, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n\nodd_agent = ChatAgent(config)\nodd_task = Task(\n odd_agent,\n name = "OddHandler",\n system_message=f"""\n You will be given a number n. \n If it is odd, return (n*3+1), say nothing else. \n If it is even, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n```\nThen add the `even_task` and `odd_task` as sub-tasks of `repeater_task`, \nand run the `repeater_task`, kicking it off with a number as input:\n```python\nrepeater_task.add_sub_task([even_task, odd_task])\nrepeater_task.run("3")\n```\n\n</details>\n\n<details>\n<summary><b> Simple Tool/Function-calling example </b></summary>\n\nLangroid leverages Pydantic to support OpenAI\'s\n[Function-calling API](https://platform.openai.com/docs/guides/gpt/function-calling)\nas well as its own native tools. The benefits are that you don\'t have to write\nany JSON to specify the schema, and also if the LLM hallucinates a malformed\ntool syntax, Langroid sends the Pydantic validation error (suitiably sanitized) \nto the LLM so it can fix it!\n\nSimple example: Say the agent has a secret list of numbers, \nand we want the LLM to find the smallest number in the list. \nWe want to give the LLM a `probe` tool/function which takes a\nsingle number `n` as argument. The tool handler method in the agent\nreturns how many numbers in its list are at most `n`.\n\nFirst define the tool using Langroid\'s `ToolMessage` class:\n\n\n```python\nfrom langroid.agent.tool_message import ToolMessage\nclass ProbeTool(ToolMessage):\n request: str = "probe" # specifies which agent method handles this tool\n purpose: str = """\n To find how many numbers in my list are less than or equal to \n the <number> you specify.\n """ # description used to instruct the LLM on when/how to use the tool\n number: int # required argument to the tool\n```\n\nThen define a `SpyGameAgent` as a subclass of `ChatAgent`, \nwith a method `probe` that handles this tool:\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nclass SpyGameAgent(ChatAgent):\n def __init__(self, config: ChatAgentConfig):\n super().__init__(config)\n self.numbers = [3, 4, 8, 11, 15, 25, 40, 80, 90]\n\n def probe(self, msg: ProbeTool) -> str:\n # return how many numbers in self.numbers are less or equal to msg.number\n return str(len([n for n in self.numbers if n <= msg.number]))\n```\n\nWe then instantiate the agent and enable it to use and respond to the tool:\n\n```python\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nspy_game_agent = SpyGameAgent(\n ChatAgentConfig(\n name="Spy",\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None,\n use_tools=False, # don\'t use Langroid native tool\n use_functions_api=True, # use OpenAI function-call API\n )\n)\nspy_game_agent.enable_message(ProbeTool)\n```\n\nFor a full working example see the\n[chat-agent-tool.py](https://github.com/langroid/langroid-examples/blob/main/examples/quick-start/chat-agent-tool.py)\nscript in the `langroid-examples` repo.\n</details>\n\n<details>\n<summary> <b>Tool/Function-calling to extract structured information from text </b> </summary>\n\nSuppose you want an agent to extract \nthe key terms of a lease, from a lease document, as a nested JSON structure.\nFirst define the desired structure via Pydantic models:\n\n```python\nfrom pydantic import BaseModel\nclass LeasePeriod(BaseModel):\n start_date: str\n end_date: str\n\n\nclass LeaseFinancials(BaseModel):\n monthly_rent: str\n deposit: str\n\nclass Lease(BaseModel):\n period: LeasePeriod\n financials: LeaseFinancials\n address: str\n```\n\nThen define the `LeaseMessage` tool as a subclass of Langroid\'s `ToolMessage`.\nNote the tool has a required argument `terms` of type `Lease`:\n\n```python\nclass LeaseMessage(ToolMessage):\n request: str = "lease_info"\n purpose: str = """\n Collect information about a Commercial Lease.\n """\n terms: Lease\n```\n\nThen define a `LeaseExtractorAgent` with a method `lease_info` that handles this tool,\ninstantiate the agent, and enable it to use and respond to this tool:\n\n```python\nclass LeaseExtractorAgent(ChatAgent):\n def lease_info(self, message: LeaseMessage) -> str:\n print(\n f"""\n DONE! Successfully extracted Lease Info:\n {message.terms}\n """\n )\n return json.dumps(message.terms.dict())\n \nlease_extractor_agent = LeaseExtractorAgent(\n ChatAgentConfig(\n llm=OpenAIGPTConfig(),\n use_functions_api=False,\n use_tools=True,\n )\n)\nlease_extractor_agent.enable_message(LeaseMessage)\n```\n\nSee the [`chat_multi_extract.py`](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py)\nscript in the `langroid-examples` repo for a full working example.\n</details>\n\n<details>\n<summary><b> Chat with documents (file paths, URLs, etc) </b></summary>\n\nLangroid provides a specialized agent class `DocChatAgent` for this purpose.\nIt incorporates document sharding, embedding, storage in a vector-DB, \nand retrieval-augmented query-answer generation.\nUsing this class to chat with a collection of documents is easy.\nFirst create a `DocChatAgentConfig` instance, with a \n`doc_paths` field that specifies the documents to chat with.\n\n```python\nfrom langroid.agent.doc_chat_agent import DocChatAgentConfig\nconfig = DocChatAgentConfig(\n doc_paths = [\n "https://en.wikipedia.org/wiki/Language_model",\n "https://en.wikipedia.org/wiki/N-gram_language_model",\n "/path/to/my/notes-on-language-models.txt",\n ]\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=VectorStoreConfig(\n type="qdrant",\n ),\n)\n```\n\nThen instantiate the `DocChatAgent`, ingest the docs into the vector-store:\n\n```python\nagent = DocChatAgent(config)\nagent.ingest()\n```\nThen we can either ask the agent one-off questions,\n```python\nagent.chat("What is a language model?")\n```\nor wrap it in a `Task` and run an interactive loop with the user:\n```python\nfrom langroid.task import Task\ntask = Task(agent)\ntask.run()\n```\n\nSee full working scripts in the \n[`docqa`](https://github.com/langroid/langroid-examples/tree/main/examples/docqa)\nfolder of the `langroid-examples` repo.\n</details>\n\n---\n\n# :heart: Thank you to our supporters!\n\n[](https://github.com/langroid/langroid/stargazers)\n\n# Contributors\n\n- Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)\n- Somesh Jha (IIT BTech/CS, CMU PhD/CS; Professor of CS, U Wisc at Madison)\n- Mohannad Alhanahnah (Research Associate, U Wisc at Madison)\n- Ashish Hooda (IIT BTech/CS; PhD Candidate, U Wisc at Madison)\n\n',
|
73
|
+
'author': 'Prasad Chalasani',
|
74
|
+
'author_email': 'pchalasani@gmail.com',
|
75
|
+
'maintainer': 'None',
|
76
|
+
'maintainer_email': 'None',
|
77
|
+
'url': 'None',
|
78
|
+
'packages': packages,
|
79
|
+
'package_data': package_data,
|
80
|
+
'install_requires': install_requires,
|
81
|
+
'extras_require': extras_require,
|
82
|
+
'python_requires': '>=3.8.1,<3.12',
|
83
|
+
}
|
84
|
+
|
85
|
+
|
86
|
+
setup(**setup_kwargs)
|
langroid-0.1.24/setup.py
DELETED
@@ -1,86 +0,0 @@
|
|
1
|
-
# -*- coding: utf-8 -*-
|
2
|
-
from setuptools import setup
|
3
|
-
|
4
|
-
packages = \
|
5
|
-
['langroid',
|
6
|
-
'langroid.agent',
|
7
|
-
'langroid.agent.special',
|
8
|
-
'langroid.cachedb',
|
9
|
-
'langroid.embedding_models',
|
10
|
-
'langroid.language_models',
|
11
|
-
'langroid.parsing',
|
12
|
-
'langroid.prompts',
|
13
|
-
'langroid.scripts',
|
14
|
-
'langroid.utils',
|
15
|
-
'langroid.utils.llms',
|
16
|
-
'langroid.utils.output',
|
17
|
-
'langroid.utils.web',
|
18
|
-
'langroid.vector_store']
|
19
|
-
|
20
|
-
package_data = \
|
21
|
-
{'': ['*']}
|
22
|
-
|
23
|
-
install_requires = \
|
24
|
-
['autopep8>=2.0.2,<3.0.0',
|
25
|
-
'black[jupyter]>=23.3.0,<24.0.0',
|
26
|
-
'bs4>=0.0.1,<0.0.2',
|
27
|
-
'chromadb>=0.3.21,<0.4.0',
|
28
|
-
'colorlog>=6.7.0,<7.0.0',
|
29
|
-
'faker>=18.9.0,<19.0.0',
|
30
|
-
'fakeredis>=2.12.1,<3.0.0',
|
31
|
-
'fire>=0.5.0,<0.6.0',
|
32
|
-
'flake8>=6.0.0,<7.0.0',
|
33
|
-
'halo>=0.0.31,<0.0.32',
|
34
|
-
'mkdocs-awesome-pages-plugin>=2.8.0,<3.0.0',
|
35
|
-
'mkdocs-gen-files>=0.4.0,<0.5.0',
|
36
|
-
'mkdocs-jupyter>=0.24.1,<0.25.0',
|
37
|
-
'mkdocs-literate-nav>=0.6.0,<0.7.0',
|
38
|
-
'mkdocs-material>=9.1.5,<10.0.0',
|
39
|
-
'mkdocs-section-index>=0.3.5,<0.4.0',
|
40
|
-
'mkdocs>=1.4.2,<2.0.0',
|
41
|
-
'mkdocstrings[python]>=0.21.2,<0.22.0',
|
42
|
-
'mypy>=1.2.0,<2.0.0',
|
43
|
-
'nltk>=3.8.1,<4.0.0',
|
44
|
-
'openai>=0.27.5,<0.28.0',
|
45
|
-
'pre-commit>=3.3.2,<4.0.0',
|
46
|
-
'pydantic==1.10.11',
|
47
|
-
'pygithub>=1.58.1,<2.0.0',
|
48
|
-
'pygments>=2.15.1,<3.0.0',
|
49
|
-
'pyparsing>=3.0.9,<4.0.0',
|
50
|
-
'pypdf>=3.12.2,<4.0.0',
|
51
|
-
'python-dotenv>=1.0.0,<2.0.0',
|
52
|
-
'qdrant-client>=1.3.1,<2.0.0',
|
53
|
-
'redis>=4.5.5,<5.0.0',
|
54
|
-
'requests-oauthlib>=1.3.1,<2.0.0',
|
55
|
-
'requests>=2.31.0,<3.0.0',
|
56
|
-
'rich>=13.3.4,<14.0.0',
|
57
|
-
'ruff>=0.0.270,<0.0.271',
|
58
|
-
'tiktoken>=0.3.3,<0.4.0',
|
59
|
-
'trafilatura>=1.5.0,<2.0.0',
|
60
|
-
'typer>=0.7.0,<0.8.0',
|
61
|
-
'types-redis>=4.5.5.2,<5.0.0.0',
|
62
|
-
'types-requests>=2.31.0.1,<3.0.0.0',
|
63
|
-
'wget>=3.2,<4.0']
|
64
|
-
|
65
|
-
extras_require = \
|
66
|
-
{'hf-embeddings': ['sentence-transformers==2.2.2', 'torch==2.0.0']}
|
67
|
-
|
68
|
-
setup_kwargs = {
|
69
|
-
'name': 'langroid',
|
70
|
-
'version': '0.1.24',
|
71
|
-
'description': 'Harness LLMs with Multi-Agent Programming',
|
72
|
-
'long_description': '<div align="center">\n <img src="docs/assets/langroid-card-ossem-rust-1200x630.png" alt="Logo" \n width="400" align="center">\n</div>\n\n<div align="center">\n\n[](https://github.com/langroid/langroid/actions/workflows/pytest.yml)\n[](https://github.com/langroid/langroid/actions/workflows/validate.yml)\n[](https://github.com/langroid/langroid/actions/workflows/mkdocs-deploy.yml)\n[](https://langroid.github.io/langroid)\n[](https://discord.gg/g3nAXCbZ)\n\n</div>\n\n<h3 align="center">\n <a target="_blank" \n href="https://langroid.github.io/langroid/" rel="dofollow">\n <strong>Explore the docs</strong></a>\n ·\n <a target="_blank" href="https://github.com/langroid/langroid-examples" rel="dofollow">\n <strong>Examples Repo</strong></a>\n .\n <a target="_blank" href="https://discord.gg/g3nAXCbZ" rel="dofollow">\n <strong>Discord</strong></a>\n .\n <a target="_blank" href="./CONTRIBUTING.md" rel="dofollow">\n <strong>Contributing</strong></a>\n\n <br />\n</h3>\n\n`Langroid` is an intuitive, lightweight, transparent, extensible and principled\nPython framework to super-charge development of LLM-powered applications using Multi-Agent Programming.\nInspired by the [Actor Framework](https://en.wikipedia.org/wiki/Actor_model), \nit is the first LLM-application framework that was explicitly\ndesigned with Agents as first-class citizens, and Multi-Agent Programming\nas the core design principle.\n\n\n# :rocket: Demo\n\nA `LeaseExtractor` agent is tasked with extracting structured information\nfrom a commercial lease document. The Agent\'s LLM generates questions that are \nanswered by a `DocAgent` (its LLM) using Retrieval from a vector-database\n(into which the lease has been sharded + embedded).\nWhen it has all the information it needs, the `LeaseExtractor` agent\'s LLM\npresents the information in a structured format using a Function-call.\nYou can run this script from the \n[langroid-examples](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py) repo.\n\n\n\n\n# :zap: Highlights\n\n- **Agents as first-class citizens:** The `Agent` class encapsulates LLM conversation state,\n and optionally a vector-store and tools. Agents are a core abstraction in Langroid;\n Agents act as _message transformers_, and by default provide 3 _responder_ methods, one corresponding to each entity: LLM, Agent, User.\n- **Tasks:** A Task class wraps an Agent, and gives the agent instructions (or roles, or goals), \n manages iteration over an Agent\'s responder methods, \n and orchestrates multi-agent interactions via hierarchical, recursive\n task-delegation. The `Task.run()` method has the same \n type-signature as an Agent\'s responder\'s methods, and this is key to how \n a task of an agent can delegate to other sub-tasks: from the point of view of a Task,\n sub-tasks are simply additional responders, to be used in a round-robin fashion \n after the agent\'s own responders.\n- **Modularity, Reusabilily, Loose coupling:** The `Agent` and `Task` abstractions allow users to design\n Agents with specific skills, wrap them in Tasks, and combine tasks in a flexible way.\n- **LLM Support**: Langroid supports OpenAI LLMs including GPT-3.5-Turbo,\n GPT-4-0613\n- **Caching of LLM prompts, responses:** Langroid uses [Redis](https://redis.com/try-free/) for caching.\n- **Vector-stores**: [Qdrant](https://qdrant.tech/) and [Chroma](https://www.trychroma.com/) are currently supported.\n Vector stores allow for Retrieval-Augmented-Generation (RAG).\n- **Grounding and source-citation:** Access to external documents via vector-stores \n allows for grounding and source-citation.\n- **Observability, Logging, Lineage:** Langroid generates detailed logs of multi-agent interactions and\n maintains provenance/lineage of messages, so that you can trace back\n the origin of a message.\n- **Tools/Plugins/Function-calling**: Langroid supports OpenAI\'s recently\n released [function calling](https://platform.openai.com/docs/guides/gpt/function-calling)\n feature. In addition, Langroid has its own native equivalent, which we\n call **tools** (also known as "plugins" in other contexts). Function\n calling and tools have the same developer-facing interface, implemented\n using [Pydantic](https://docs.pydantic.dev/latest/),\n which makes it very easy to define tools/functions and enable agents\n to use them. Benefits of using Pydantic are that you never have to write\n complex JSON specs for function calling, and when the LLM\n hallucinates malformed JSON, the Pydantic error message is sent back to\n the LLM so it can fix it!\n\n--- \n\n# :gear: Installation and Setup\n\n### Install `langroid` \nUse `pip` to install `langroid` (from PyPi) to your virtual environment:\n```bash\npip install langroid\n```\nThe core Langroid package lets you use OpenAI Embeddings models via their API. \nIf you instead want to use the `all-MiniLM-L6-v2` embeddings model\nfrom from HuggingFace, install Langroid like this:\n```bash\npip install langroid[hf-embeddings]\n```\nNote that this will install `torch` and `sentence-transformers` libraries.\n\n### Set up environment variables (API keys, etc)\n\nCopy the `.env-template` file to a new file `.env` and \ninsert these secrets:\n- **OpenAI API** key (required): If you don\'t have one, see [this OpenAI Page](https://help.openai.com/en/collections/3675940-getting-started-with-openai-api).\n- **Qdrant** Vector Store API Key (required for apps that need retrieval from\n documents): Sign up for a free 1GB account at [Qdrant cloud](https://cloud.qdrant.io).\n Alternatively [Chroma](https://docs.trychroma.com/) is also currently supported. \n We use the local-storage version of Chroma, so there is no need for an API key.\n- **GitHub** Personal Access Token (required for apps that need to analyze git\n repos; token-based API calls are less rate-limited). See this\n [GitHub page](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens).\n- **Redis** Password (optional, only needed to cache LLM API responses):\n Redis [offers](https://redis.com/try-free/) a free 30MB Redis account\n which is more than sufficient to try out Langroid and even beyond.\n \n```bash\ncp .env-template .env\n# now edit the .env file, insert your secrets as above\n``` \nYour `.env` file should look like this:\n```bash\nOPENAI_API_KEY=<your key>\nGITHUB_ACCESS_TOKEN=<your token>\nREDIS_PASSWORD=<your password>\nQDRANT_API_KEY=<your key>\n```\n\nCurrently only OpenAI models are supported. Others will be added later\n(Pull Requests welcome!).\n\n---\n\n# :tada: Usage Examples\n\nThese are quick teasers to give a glimpse of what you can do with Langroid\nand how your code would look. \n\n:warning: The code snippets below are intended to give a flavor of the code\nand they are **not** complete runnable examples! For that we encourage you to \nconsult the [`langroid-examples`](https://github.com/langroid/langroid-examples) \nrepository.\n\n:information_source: The examples below will only work with OpenAI GPT4 model,\nwhich is the default in Langroid. Switching to GPT3.5-Turbo is easy via a config \nflag, but results may be inferior.\n\n:book: Also see the\n[`Getting Started Guide`](https://langroid.github.io/langroid/quick-start/)\nfor a detailed tutorial. \n\n- [Direct chat with LLM](#direct-llm)\n- [Simple Agent and Task](#agent-task)\n- [Three Communicating Agents](#three-agents)\n- [Agent with Tool/Function-calling](#agent-tool)\n- [Extract Structured Info with Tool/Function-calling](#agent-tool-structured)\n- [Retrieval-Augmented-Generation: Chat with Docs](#agent-rag)\n\n---\n\n## Direct interaction with OpenAI LLM <a name="direct-llm"></a>\n\n```python\nfrom langroid.language_models.openai_gpt import ( \n OpenAIGPTConfig, OpenAIChatModel, OpenAIGPT,\n)\nfrom langroid.language_models.base import LLMMessage, Role\n\ncfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)\n\nmdl = OpenAIGPT(cfg)\n\nmessages = [\n LLMMessage(content="You are a helpful assistant", role=Role.SYSTEM), \n LLMMessage(content="What is the capital of Ontario?", role=Role.USER),\n]\nresponse = mdl.chat(messages, max_tokens=200)\nprint(response.message)\n```\n\n---\n\n## Define an agent, set up a task, and run it <a name="agent-task"></a>\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\n\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None, # no vector store\n)\nagent = ChatAgent(config)\n# get response from agent\'s LLM, and put this in an interactive loop...\n# answer = agent.llm_response("What is the capital of Ontario?")\n # ... OR instead, set up a task (which has a built-in loop) and run it\ntask = Task(agent, name="Bot") \ntask.run() # ... a loop seeking response from LLM or User at each turn\n```\n\n---\n\n## Three communicating agents <a name="three-agents"></a>\n\nA toy numbers game, where when given a number `n`:\n- `repeater_agent`\'s LLM simply returns `n`,\n- `even_agent`\'s LLM returns `n/2` if `n` is even, else says "DO-NOT-KNOW"\n- `odd_agent`\'s LLM returns `3*n+1` if `n` is odd, else says "DO-NOT-KNOW"\n\nFirst define the 3 agents, and set up their tasks with instructions:\n\n```python\nfrom langroid.utils.constants import NO_ANSWER\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nfrom langroid.agent.task import Task\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nconfig = ChatAgentConfig(\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb = None,\n)\nrepeater_agent = ChatAgent(config)\nrepeater_task = Task(\n repeater_agent,\n name = "Repeater",\n system_message="""\n Your job is to repeat whatever number you receive.\n """,\n llm_delegate=True, # LLM takes charge of task\n single_round=False, \n)\neven_agent = ChatAgent(config)\neven_task = Task(\n even_agent,\n name = "EvenHandler",\n system_message=f"""\n You will be given a number. \n If it is even, divide by 2 and say the result, nothing else.\n If it is odd, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n\nodd_agent = ChatAgent(config)\nodd_task = Task(\n odd_agent,\n name = "OddHandler",\n system_message=f"""\n You will be given a number n. \n If it is odd, return (n*3+1), say nothing else. \n If it is even, say {NO_ANSWER}\n """,\n single_round=True, # task done after 1 step() with valid response\n)\n```\nThen add the `even_task` and `odd_task` as sub-tasks of `repeater_task`, \nand run the `repeater_task`, kicking it off with a number as input:\n```python\nrepeater_task.add_sub_task([even_task, odd_task])\nrepeater_task.run("3")\n```\n---\n\n## Simple Tool/Function-calling example <a name="agent-tool"></a>\n\nLangroid leverages Pydantic to support OpenAI\'s\n[Function-calling API](https://platform.openai.com/docs/guides/gpt/function-calling)\nas well as its own native tools. The benefits are that you don\'t have to write\nany JSON to specify the schema, and also if the LLM hallucinates a malformed\ntool syntax, Langroid sends the Pydantic validation error (suitiably sanitized) \nto the LLM so it can fix it!\n\nSimple example: Say the agent has a secret list of numbers, \nand we want the LLM to find the smallest number in the list. \nWe want to give the LLM a `probe` tool/function which takes a\nsingle number `n` as argument. The tool handler method in the agent\nreturns how many numbers in its list are at most `n`.\n\nFirst define the tool using Langroid\'s `ToolMessage` class:\n\n\n```python\nfrom langroid.agent.tool_message import ToolMessage\nclass ProbeTool(ToolMessage):\n request: str = "probe" # specifies which agent method handles this tool\n purpose: str = """\n To find how many numbers in my list are less than or equal to \n the <number> you specify.\n """ # description used to instruct the LLM on when/how to use the tool\n number: int # required argument to the tool\n```\n\nThen define a `SpyGameAgent` as a subclass of `ChatAgent`, \nwith a method `probe` that handles this tool:\n\n```python\nfrom langroid.agent.chat_agent import ChatAgent, ChatAgentConfig\nclass SpyGameAgent(ChatAgent):\n def __init__(self, config: ChatAgentConfig):\n super().__init__(config)\n self.numbers = [3, 4, 8, 11, 15, 25, 40, 80, 90]\n\n def probe(self, msg: ProbeTool) -> str:\n # return how many numbers in self.numbers are less or equal to msg.number\n return str(len([n for n in self.numbers if n <= msg.number]))\n```\n\nWe then instantiate the agent and enable it to use and respond to the tool:\n\n```python\nfrom langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig\nspy_game_agent = SpyGameAgent(\n ChatAgentConfig(\n name="Spy",\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=None,\n use_tools=False, # don\'t use Langroid native tool\n use_functions_api=True, # use OpenAI function-call API\n )\n)\nspy_game_agent.enable_message(ProbeTool)\n```\n\nFor a full working example see the\n[chat-agent-tool.py](https://github.com/langroid/langroid-examples/blob/main/examples/quick-start/chat-agent-tool.py)\nscript in the `langroid-examples` repo.\n\n---\n\n## Tool/Function-calling to extract structured information from text <a name="agent-tool-structured"></a>\n\nSuppose you want an agent to extract \nthe key terms of a lease, from a lease document, as a nested JSON structure.\nFirst define the desired structure via Pydantic models:\n\n```python\nfrom pydantic import BaseModel\nclass LeasePeriod(BaseModel):\n start_date: str\n end_date: str\n\n\nclass LeaseFinancials(BaseModel):\n monthly_rent: str\n deposit: str\n\nclass Lease(BaseModel):\n period: LeasePeriod\n financials: LeaseFinancials\n address: str\n```\n\nThen define the `LeaseMessage` tool as a subclass of Langroid\'s `ToolMessage`.\nNote the tool has a required argument `terms` of type `Lease`:\n\n```python\nclass LeaseMessage(ToolMessage):\n request: str = "lease_info"\n purpose: str = """\n Collect information about a Commercial Lease.\n """\n terms: Lease\n```\n\nThen define a `LeaseExtractorAgent` with a method `lease_info` that handles this tool,\ninstantiate the agent, and enable it to use and respond to this tool:\n\n```python\nclass LeaseExtractorAgent(ChatAgent):\n def lease_info(self, message: LeaseMessage) -> str:\n print(\n f"""\n DONE! Successfully extracted Lease Info:\n {message.terms}\n """\n )\n return json.dumps(message.terms.dict())\n \nlease_extractor_agent = LeaseExtractorAgent(\n ChatAgentConfig(\n llm=OpenAIGPTConfig(),\n use_functions_api=False,\n use_tools=True,\n )\n)\nlease_extractor_agent.enable_message(LeaseMessage)\n```\n\nSee the [`chat_multi_extract.py`](https://github.com/langroid/langroid-examples/blob/main/examples/docqa/chat_multi_extract.py)\nscript in the `langroid-examples` repo for a full working example.\n\n---\n\n## Chat with documents (file paths, URLs, etc) <a name="agent-docs"></a>\n\nLangroid provides a specialized agent class `DocChatAgent` for this purpose.\nIt incorporates document sharding, embedding, storage in a vector-DB, \nand retrieval-augmented query-answer generation.\nUsing this class to chat with a collection of documents is easy.\nFirst create a `DocChatAgentConfig` instance, with a \n`doc_paths` field that specifies the documents to chat with.\n\n```python\nfrom langroid.agent.doc_chat_agent import DocChatAgentConfig\nconfig = DocChatAgentConfig(\n doc_paths = [\n "https://en.wikipedia.org/wiki/Language_model",\n "https://en.wikipedia.org/wiki/N-gram_language_model",\n "/path/to/my/notes-on-language-models.txt",\n ]\n llm = OpenAIGPTConfig(\n chat_model=OpenAIChatModel.GPT4,\n ),\n vecdb=VectorStoreConfig(\n type="qdrant",\n ),\n)\n```\n\nThen instantiate the `DocChatAgent`, ingest the docs into the vector-store:\n\n```python\nagent = DocChatAgent(config)\nagent.ingest()\n```\nThen we can either ask the agent one-off questions,\n```python\nagent.chat("What is a language model?")\n```\nor wrap it in a `Task` and run an interactive loop with the user:\n```python\nfrom langroid.task import Task\ntask = Task(agent)\ntask.run()\n```\n\nSee full working scripts in the \n[`docqa`](https://github.com/langroid/langroid-examples/tree/main/examples/docqa)\nfolder of the `langroid-examples` repo.\n\n---\n\n# Contributors\n\n- Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)\n- Somesh Jha (IIT BTech/CS, CMU PhD/CS; Professor of CS, U Wisc at Madison)\n- Mohannad Alhanahnah (Research Associate, U Wisc at Madison)\n- Ashish Hooda (IIT BTech/CS; PhD Candidate, U Wisc at Madison)\n\n',
|
73
|
-
'author': 'Prasad Chalasani',
|
74
|
-
'author_email': 'pchalasani@gmail.com',
|
75
|
-
'maintainer': 'None',
|
76
|
-
'maintainer_email': 'None',
|
77
|
-
'url': 'None',
|
78
|
-
'packages': packages,
|
79
|
-
'package_data': package_data,
|
80
|
-
'install_requires': install_requires,
|
81
|
-
'extras_require': extras_require,
|
82
|
-
'python_requires': '>=3.8.1,<3.12',
|
83
|
-
}
|
84
|
-
|
85
|
-
|
86
|
-
setup(**setup_kwargs)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|