langchain-postgres 0.0.11__tar.gz → 0.0.12__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: langchain-postgres
3
- Version: 0.0.11
3
+ Version: 0.0.12
4
4
  Summary: An integration package connecting Postgres and LangChain
5
5
  Home-page: https://github.com/langchain-ai/langchain-postgres
6
6
  License: MIT
@@ -939,7 +939,7 @@ class PGVector(VectorStore):
939
939
  List of Documents most similar to the query.
940
940
  """
941
941
  assert not self._async_engine, "This method must be called without async_mode"
942
- embedding = self.embedding_function.embed_query(text=query)
942
+ embedding = self.embeddings.embed_query(query)
943
943
  return self.similarity_search_by_vector(
944
944
  embedding=embedding,
945
945
  k=k,
@@ -964,7 +964,7 @@ class PGVector(VectorStore):
964
964
  List of Documents most similar to the query.
965
965
  """
966
966
  await self.__apost_init__() # Lazy async init
967
- embedding = self.embedding_function.embed_query(text=query)
967
+ embedding = await self.embeddings.aembed_query(query)
968
968
  return await self.asimilarity_search_by_vector(
969
969
  embedding=embedding,
970
970
  k=k,
@@ -988,7 +988,7 @@ class PGVector(VectorStore):
988
988
  List of Documents most similar to the query and score for each.
989
989
  """
990
990
  assert not self._async_engine, "This method must be called without async_mode"
991
- embedding = self.embedding_function.embed_query(query)
991
+ embedding = self.embeddings.embed_query(query)
992
992
  docs = self.similarity_search_with_score_by_vector(
993
993
  embedding=embedding, k=k, filter=filter
994
994
  )
@@ -1011,7 +1011,7 @@ class PGVector(VectorStore):
1011
1011
  List of Documents most similar to the query and score for each.
1012
1012
  """
1013
1013
  await self.__apost_init__() # Lazy async init
1014
- embedding = self.embedding_function.embed_query(query)
1014
+ embedding = await self.embeddings.aembed_query(query)
1015
1015
  docs = await self.asimilarity_search_with_score_by_vector(
1016
1016
  embedding=embedding, k=k, filter=filter
1017
1017
  )
@@ -1065,7 +1065,7 @@ class PGVector(VectorStore):
1065
1065
  page_content=result.EmbeddingStore.document,
1066
1066
  metadata=result.EmbeddingStore.cmetadata,
1067
1067
  ),
1068
- result.distance if self.embedding_function is not None else None,
1068
+ result.distance if self.embeddings is not None else None,
1069
1069
  )
1070
1070
  for result in results
1071
1071
  ]
@@ -1569,7 +1569,7 @@ class PGVector(VectorStore):
1569
1569
  **kwargs: Any,
1570
1570
  ) -> PGVector:
1571
1571
  """Return VectorStore initialized from documents and embeddings."""
1572
- embeddings = embedding.embed_documents(list(texts))
1572
+ embeddings = await embedding.aembed_documents(list(texts))
1573
1573
  return await cls.__afrom(
1574
1574
  texts,
1575
1575
  embeddings,
@@ -1992,7 +1992,7 @@ class PGVector(VectorStore):
1992
1992
  Returns:
1993
1993
  List[Document]: List of Documents selected by maximal marginal relevance.
1994
1994
  """
1995
- embedding = self.embedding_function.embed_query(query)
1995
+ embedding = self.embeddings.embed_query(query)
1996
1996
  return self.max_marginal_relevance_search_by_vector(
1997
1997
  embedding,
1998
1998
  k=k,
@@ -2031,7 +2031,7 @@ class PGVector(VectorStore):
2031
2031
  List[Document]: List of Documents selected by maximal marginal relevance.
2032
2032
  """
2033
2033
  await self.__apost_init__() # Lazy async init
2034
- embedding = self.embedding_function.embed_query(query)
2034
+ embedding = await self.embeddings.aembed_query(query)
2035
2035
  return await self.amax_marginal_relevance_search_by_vector(
2036
2036
  embedding,
2037
2037
  k=k,
@@ -2070,7 +2070,7 @@ class PGVector(VectorStore):
2070
2070
  List[Tuple[Document, float]]: List of Documents selected by maximal marginal
2071
2071
  relevance to the query and score for each.
2072
2072
  """
2073
- embedding = self.embedding_function.embed_query(query)
2073
+ embedding = self.embeddings.embed_query(query)
2074
2074
  docs = self.max_marginal_relevance_search_with_score_by_vector(
2075
2075
  embedding=embedding,
2076
2076
  k=k,
@@ -2111,7 +2111,7 @@ class PGVector(VectorStore):
2111
2111
  relevance to the query and score for each.
2112
2112
  """
2113
2113
  await self.__apost_init__() # Lazy async init
2114
- embedding = self.embedding_function.embed_query(query)
2114
+ embedding = await self.embeddings.aembed_query(query)
2115
2115
  docs = await self.amax_marginal_relevance_search_with_score_by_vector(
2116
2116
  embedding=embedding,
2117
2117
  k=k,
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "langchain-postgres"
3
- version = "0.0.11"
3
+ version = "0.0.12"
4
4
  description = "An integration package connecting Postgres and LangChain"
5
5
  authors = []
6
6
  readme = "README.md"