langchain-google-genai 2.1.6__tar.gz → 2.1.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of langchain-google-genai might be problematic. Click here for more details.
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/PKG-INFO +2 -2
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/__init__.py +26 -24
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/_common.py +8 -8
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/_genai_extension.py +5 -5
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/_image_utils.py +3 -3
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/chat_models.py +46 -60
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/embeddings.py +124 -20
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/llms.py +12 -0
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/pyproject.toml +5 -5
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/LICENSE +0 -0
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/README.md +0 -0
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/_enums.py +0 -0
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/_function_utils.py +0 -0
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/genai_aqa.py +0 -0
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/google_vector_store.py +0 -0
- {langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/py.typed +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: langchain-google-genai
|
|
3
|
-
Version: 2.1.
|
|
3
|
+
Version: 2.1.8
|
|
4
4
|
Summary: An integration package connecting Google's genai package and LangChain
|
|
5
5
|
Home-page: https://github.com/langchain-ai/langchain-google
|
|
6
6
|
License: MIT
|
|
@@ -13,7 +13,7 @@ Classifier: Programming Language :: Python :: 3.11
|
|
|
13
13
|
Classifier: Programming Language :: Python :: 3.12
|
|
14
14
|
Requires-Dist: filetype (>=1.2.0,<2.0.0)
|
|
15
15
|
Requires-Dist: google-ai-generativelanguage (>=0.6.18,<0.7.0)
|
|
16
|
-
Requires-Dist: langchain-core (>=0.3.
|
|
16
|
+
Requires-Dist: langchain-core (>=0.3.68,<0.4.0)
|
|
17
17
|
Requires-Dist: pydantic (>=2,<3)
|
|
18
18
|
Project-URL: Repository, https://github.com/langchain-ai/langchain-google
|
|
19
19
|
Project-URL: Source Code, https://github.com/langchain-ai/langchain-google/tree/main/libs/genai
|
{langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/__init__.py
RENAMED
|
@@ -4,55 +4,57 @@ This module integrates Google's Generative AI models, specifically the Gemini se
|
|
|
4
4
|
|
|
5
5
|
**Chat Models**
|
|
6
6
|
|
|
7
|
-
The
|
|
7
|
+
The ``ChatGoogleGenerativeAI`` class is the primary interface for interacting with Google's Gemini chat models. It allows users to send and receive messages using a specified Gemini model, suitable for various conversational AI applications.
|
|
8
8
|
|
|
9
9
|
**LLMs**
|
|
10
10
|
|
|
11
|
-
The
|
|
11
|
+
The ``GoogleGenerativeAI`` class is the primary interface for interacting with Google's Gemini LLMs. It allows users to generate text using a specified Gemini model.
|
|
12
12
|
|
|
13
13
|
**Embeddings**
|
|
14
14
|
|
|
15
|
-
The
|
|
15
|
+
The ``GoogleGenerativeAIEmbeddings`` class provides functionalities to generate embeddings using Google's models.
|
|
16
16
|
These embeddings can be used for a range of NLP tasks, including semantic analysis, similarity comparisons, and more.
|
|
17
|
+
|
|
17
18
|
**Installation**
|
|
18
19
|
|
|
19
20
|
To install the package, use pip:
|
|
20
21
|
|
|
21
|
-
|
|
22
|
-
pip install -U langchain-google-genai
|
|
23
|
-
|
|
24
|
-
|
|
22
|
+
.. code-block:: python
|
|
23
|
+
pip install -U langchain-google-genai
|
|
24
|
+
|
|
25
|
+
**Using Chat Models**
|
|
25
26
|
|
|
26
27
|
After setting up your environment with the required API key, you can interact with the Google Gemini models.
|
|
27
28
|
|
|
28
|
-
|
|
29
|
-
|
|
29
|
+
.. code-block:: python
|
|
30
|
+
|
|
31
|
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
30
32
|
|
|
31
|
-
llm = ChatGoogleGenerativeAI(model="gemini-pro")
|
|
32
|
-
llm.invoke("Sing a ballad of LangChain.")
|
|
33
|
-
```
|
|
33
|
+
llm = ChatGoogleGenerativeAI(model="gemini-pro")
|
|
34
|
+
llm.invoke("Sing a ballad of LangChain.")
|
|
34
35
|
|
|
35
|
-
|
|
36
|
+
**Using LLMs**
|
|
36
37
|
|
|
37
38
|
The package also supports generating text with Google's models.
|
|
38
39
|
|
|
39
|
-
|
|
40
|
-
from langchain_google_genai import GoogleGenerativeAI
|
|
40
|
+
.. code-block:: python
|
|
41
41
|
|
|
42
|
-
|
|
43
|
-
llm.invoke("Once upon a time, a library called LangChain")
|
|
44
|
-
```
|
|
42
|
+
from langchain_google_genai import GoogleGenerativeAI
|
|
45
43
|
|
|
46
|
-
|
|
44
|
+
llm = GoogleGenerativeAI(model="gemini-pro")
|
|
45
|
+
llm.invoke("Once upon a time, a library called LangChain")
|
|
46
|
+
|
|
47
|
+
**Embedding Generation**
|
|
47
48
|
|
|
48
49
|
The package also supports creating embeddings with Google's models, useful for textual similarity and other NLP applications.
|
|
49
50
|
|
|
50
|
-
|
|
51
|
-
|
|
51
|
+
.. code-block:: python
|
|
52
|
+
|
|
53
|
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
54
|
+
|
|
55
|
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
56
|
+
embeddings.embed_query("hello, world!")
|
|
52
57
|
|
|
53
|
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
54
|
-
embeddings.embed_query("hello, world!")
|
|
55
|
-
```
|
|
56
58
|
""" # noqa: E501
|
|
57
59
|
|
|
58
60
|
from langchain_google_genai._enums import HarmBlockThreshold, HarmCategory, Modality
|
{langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/_common.py
RENAMED
|
@@ -39,20 +39,19 @@ Supported examples:
|
|
|
39
39
|
"when making API calls. If not provided, credentials will be ascertained from "
|
|
40
40
|
"the GOOGLE_API_KEY envvar"
|
|
41
41
|
temperature: float = 0.7
|
|
42
|
-
"""Run inference with this temperature. Must
|
|
43
|
-
[0.0, 2.0]."""
|
|
42
|
+
"""Run inference with this temperature. Must be within ``[0.0, 2.0]``."""
|
|
44
43
|
top_p: Optional[float] = None
|
|
45
44
|
"""Decode using nucleus sampling: consider the smallest set of tokens whose
|
|
46
|
-
probability sum is at least top_p
|
|
45
|
+
probability sum is at least ``top_p``. Must be within ``[0.0, 1.0]``."""
|
|
47
46
|
top_k: Optional[int] = None
|
|
48
|
-
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
|
|
47
|
+
"""Decode using top-k sampling: consider the set of ``top_k`` most probable tokens.
|
|
49
48
|
Must be positive."""
|
|
50
49
|
max_output_tokens: Optional[int] = Field(default=None, alias="max_tokens")
|
|
51
50
|
"""Maximum number of tokens to include in a candidate. Must be greater than zero.
|
|
52
|
-
If unset, will default to 64
|
|
51
|
+
If unset, will default to ``64``."""
|
|
53
52
|
n: int = 1
|
|
54
53
|
"""Number of chat completions to generate for each prompt. Note that the API may
|
|
55
|
-
not return the full n completions if duplicates are generated."""
|
|
54
|
+
not return the full ``n`` completions if duplicates are generated."""
|
|
56
55
|
max_retries: int = 6
|
|
57
56
|
"""The maximum number of retries to make when generating."""
|
|
58
57
|
|
|
@@ -94,6 +93,7 @@ Supported examples:
|
|
|
94
93
|
|
|
95
94
|
For example:
|
|
96
95
|
|
|
96
|
+
.. code-block:: python
|
|
97
97
|
from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory
|
|
98
98
|
|
|
99
99
|
safety_settings = {
|
|
@@ -102,7 +102,7 @@ Supported examples:
|
|
|
102
102
|
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
|
|
103
103
|
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
|
104
104
|
}
|
|
105
|
-
|
|
105
|
+
""" # noqa: E501
|
|
106
106
|
|
|
107
107
|
@property
|
|
108
108
|
def lc_secrets(self) -> Dict[str, str]:
|
|
@@ -149,7 +149,7 @@ def get_client_info(module: Optional[str] = None) -> "ClientInfo":
|
|
|
149
149
|
module (Optional[str]):
|
|
150
150
|
Optional. The module for a custom user agent header.
|
|
151
151
|
Returns:
|
|
152
|
-
google.api_core.gapic_v1.client_info.ClientInfo
|
|
152
|
+
``google.api_core.gapic_v1.client_info.ClientInfo``
|
|
153
153
|
"""
|
|
154
154
|
client_library_version, user_agent = get_user_agent(module)
|
|
155
155
|
return ClientInfo(
|
|
@@ -174,12 +174,12 @@ class TestCredentials(credentials.Credentials):
|
|
|
174
174
|
|
|
175
175
|
@property
|
|
176
176
|
def expired(self) -> bool:
|
|
177
|
-
"""Returns
|
|
177
|
+
"""Returns ``False``, test credentials never expire."""
|
|
178
178
|
return False
|
|
179
179
|
|
|
180
180
|
@property
|
|
181
181
|
def valid(self) -> bool:
|
|
182
|
-
"""Returns
|
|
182
|
+
"""Returns ``True``, test credentials are always valid."""
|
|
183
183
|
return True
|
|
184
184
|
|
|
185
185
|
def refresh(self, request: Any) -> None:
|
|
@@ -206,11 +206,11 @@ class TestCredentials(credentials.Credentials):
|
|
|
206
206
|
def _get_credentials() -> Optional[credentials.Credentials]:
|
|
207
207
|
"""Returns credential from config if set or fake credentials for unit testing.
|
|
208
208
|
|
|
209
|
-
If _config.testing is True
|
|
209
|
+
If ``_config.testing`` is ``True``, a fake credential is returned.
|
|
210
210
|
Otherwise, we are in a real environment and will use credentials if provided
|
|
211
|
-
or None is returned.
|
|
211
|
+
or ``None`` is returned.
|
|
212
212
|
|
|
213
|
-
If None is passed to the clients later on, the actual credentials will be
|
|
213
|
+
If ``None`` is passed to the clients later on, the actual credentials will be
|
|
214
214
|
inferred by the rules specified in google.auth package.
|
|
215
215
|
"""
|
|
216
216
|
if _config.testing:
|
{langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/_image_utils.py
RENAMED
|
@@ -30,7 +30,7 @@ class ImageBytesLoader:
|
|
|
30
30
|
"""
|
|
31
31
|
|
|
32
32
|
def load_bytes(self, image_string: str) -> bytes:
|
|
33
|
-
"""Routes to the correct loader based on the image_string
|
|
33
|
+
"""Routes to the correct loader based on the ``'image_string'``.
|
|
34
34
|
|
|
35
35
|
Args:
|
|
36
36
|
image_string: Can be either:
|
|
@@ -178,8 +178,8 @@ def image_bytes_to_b64_string(
|
|
|
178
178
|
|
|
179
179
|
Args:
|
|
180
180
|
image_bytes: Bytes of the image.
|
|
181
|
-
encoding: Type of encoding in the string. 'ascii' by default.
|
|
182
|
-
image_format: Format of the image. 'png' by default.
|
|
181
|
+
encoding: Type of encoding in the string. ``'ascii'`` by default.
|
|
182
|
+
image_format: Format of the image. ``'png'`` by default.
|
|
183
183
|
|
|
184
184
|
Returns:
|
|
185
185
|
B64 image encoded string.
|
{langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/chat_models.py
RENAMED
|
@@ -31,7 +31,7 @@ from typing import (
|
|
|
31
31
|
import filetype # type: ignore[import]
|
|
32
32
|
import google.api_core
|
|
33
33
|
|
|
34
|
-
# TODO: remove ignore once the
|
|
34
|
+
# TODO: remove ignore once the Google package is published with types
|
|
35
35
|
import proto # type: ignore[import]
|
|
36
36
|
from google.ai.generativelanguage_v1beta import (
|
|
37
37
|
GenerativeServiceAsyncClient as v1betaGenerativeServiceAsyncClient,
|
|
@@ -72,7 +72,7 @@ from langchain_core.messages import (
|
|
|
72
72
|
ToolMessage,
|
|
73
73
|
is_data_content_block,
|
|
74
74
|
)
|
|
75
|
-
from langchain_core.messages.ai import UsageMetadata
|
|
75
|
+
from langchain_core.messages.ai import UsageMetadata, add_usage, subtract_usage
|
|
76
76
|
from langchain_core.messages.tool import invalid_tool_call, tool_call, tool_call_chunk
|
|
77
77
|
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
|
|
78
78
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
@@ -295,7 +295,7 @@ def _is_openai_image_block(block: dict) -> bool:
|
|
|
295
295
|
def _convert_to_parts(
|
|
296
296
|
raw_content: Union[str, Sequence[Union[str, dict]]],
|
|
297
297
|
) -> List[Part]:
|
|
298
|
-
"""Converts a list of LangChain messages into a
|
|
298
|
+
"""Converts a list of LangChain messages into a Google parts."""
|
|
299
299
|
parts = []
|
|
300
300
|
content = [raw_content] if isinstance(raw_content, str) else raw_content
|
|
301
301
|
image_loader = ImageBytesLoader()
|
|
@@ -413,7 +413,7 @@ def _convert_to_parts(
|
|
|
413
413
|
def _convert_tool_message_to_parts(
|
|
414
414
|
message: ToolMessage | FunctionMessage, name: Optional[str] = None
|
|
415
415
|
) -> list[Part]:
|
|
416
|
-
"""Converts a tool or function message to a
|
|
416
|
+
"""Converts a tool or function message to a Google part."""
|
|
417
417
|
# Legacy agent stores tool name in message.additional_kwargs instead of message.name
|
|
418
418
|
name = message.name or name or message.additional_kwargs.get("name")
|
|
419
419
|
response: Any
|
|
@@ -716,35 +716,43 @@ def _response_to_result(
|
|
|
716
716
|
"""Converts a PaLM API response into a LangChain ChatResult."""
|
|
717
717
|
llm_output = {"prompt_feedback": proto.Message.to_dict(response.prompt_feedback)}
|
|
718
718
|
|
|
719
|
-
# previous usage metadata needs to be subtracted because gemini api returns
|
|
720
|
-
# already-accumulated token counts with each chunk
|
|
721
|
-
prev_input_tokens = prev_usage["input_tokens"] if prev_usage else 0
|
|
722
|
-
prev_output_tokens = prev_usage["output_tokens"] if prev_usage else 0
|
|
723
|
-
prev_total_tokens = prev_usage["total_tokens"] if prev_usage else 0
|
|
724
|
-
|
|
725
719
|
# Get usage metadata
|
|
726
720
|
try:
|
|
727
721
|
input_tokens = response.usage_metadata.prompt_token_count
|
|
728
|
-
output_tokens = response.usage_metadata.candidates_token_count
|
|
729
|
-
total_tokens = response.usage_metadata.total_token_count
|
|
730
722
|
thought_tokens = response.usage_metadata.thoughts_token_count
|
|
723
|
+
output_tokens = response.usage_metadata.candidates_token_count + thought_tokens
|
|
724
|
+
total_tokens = response.usage_metadata.total_token_count
|
|
731
725
|
cache_read_tokens = response.usage_metadata.cached_content_token_count
|
|
732
726
|
if input_tokens + output_tokens + cache_read_tokens + total_tokens > 0:
|
|
733
727
|
if thought_tokens > 0:
|
|
734
|
-
|
|
735
|
-
input_tokens=input_tokens
|
|
736
|
-
output_tokens=output_tokens
|
|
737
|
-
total_tokens=total_tokens
|
|
728
|
+
cumulative_usage = UsageMetadata(
|
|
729
|
+
input_tokens=input_tokens,
|
|
730
|
+
output_tokens=output_tokens,
|
|
731
|
+
total_tokens=total_tokens,
|
|
738
732
|
input_token_details={"cache_read": cache_read_tokens},
|
|
739
733
|
output_token_details={"reasoning": thought_tokens},
|
|
740
734
|
)
|
|
741
735
|
else:
|
|
742
|
-
|
|
743
|
-
input_tokens=input_tokens
|
|
744
|
-
output_tokens=output_tokens
|
|
745
|
-
total_tokens=total_tokens
|
|
736
|
+
cumulative_usage = UsageMetadata(
|
|
737
|
+
input_tokens=input_tokens,
|
|
738
|
+
output_tokens=output_tokens,
|
|
739
|
+
total_tokens=total_tokens,
|
|
746
740
|
input_token_details={"cache_read": cache_read_tokens},
|
|
747
741
|
)
|
|
742
|
+
# previous usage metadata needs to be subtracted because gemini api returns
|
|
743
|
+
# already-accumulated token counts with each chunk
|
|
744
|
+
lc_usage = subtract_usage(cumulative_usage, prev_usage)
|
|
745
|
+
if prev_usage and cumulative_usage["input_tokens"] < prev_usage.get(
|
|
746
|
+
"input_tokens", 0
|
|
747
|
+
):
|
|
748
|
+
# Gemini 1.5 and 2.0 return a lower cumulative count of prompt tokens
|
|
749
|
+
# in the final chunk. We take this count to be ground truth because
|
|
750
|
+
# it's consistent with the reported total tokens. So we need to
|
|
751
|
+
# ensure this chunk compensates (the subtract_usage funcction floors
|
|
752
|
+
# at zero).
|
|
753
|
+
lc_usage["input_tokens"] = cumulative_usage[
|
|
754
|
+
"input_tokens"
|
|
755
|
+
] - prev_usage.get("input_tokens", 0)
|
|
748
756
|
else:
|
|
749
757
|
lc_usage = None
|
|
750
758
|
except AttributeError:
|
|
@@ -816,8 +824,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
816
824
|
To use, you must have either:
|
|
817
825
|
|
|
818
826
|
1. The ``GOOGLE_API_KEY`` environment variable set with your API key, or
|
|
819
|
-
2. Pass your API key using the google_api_key kwarg
|
|
820
|
-
to the ChatGoogleGenerativeAI constructor.
|
|
827
|
+
2. Pass your API key using the ``google_api_key`` kwarg to the ChatGoogleGenerativeAI constructor.
|
|
821
828
|
|
|
822
829
|
.. code-block:: python
|
|
823
830
|
|
|
@@ -885,8 +892,8 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
885
892
|
|
|
886
893
|
Context Caching:
|
|
887
894
|
Context caching allows you to store and reuse content (e.g., PDFs, images) for faster processing.
|
|
888
|
-
The
|
|
889
|
-
Below are two examples: caching a single file directly and caching multiple files using
|
|
895
|
+
The ``cached_content`` parameter accepts a cache name created via the Google Generative AI API.
|
|
896
|
+
Below are two examples: caching a single file directly and caching multiple files using ``Part``.
|
|
890
897
|
|
|
891
898
|
Single File Example:
|
|
892
899
|
This caches a single file and queries it.
|
|
@@ -1132,12 +1139,15 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1132
1139
|
|
|
1133
1140
|
response_mime_type: Optional[str] = None
|
|
1134
1141
|
"""Optional. Output response mimetype of the generated candidate text. Only
|
|
1135
|
-
|
|
1136
|
-
|
|
1137
|
-
|
|
1138
|
-
|
|
1139
|
-
|
|
1140
|
-
|
|
1142
|
+
supported in Gemini 1.5 and later models.
|
|
1143
|
+
|
|
1144
|
+
Supported mimetype:
|
|
1145
|
+
* ``'text/plain'``: (default) Text output.
|
|
1146
|
+
* ``'application/json'``: JSON response in the candidates.
|
|
1147
|
+
* ``'text/x.enum'``: Enum in plain text.
|
|
1148
|
+
|
|
1149
|
+
The model also needs to be prompted to output the appropriate response
|
|
1150
|
+
type, otherwise the behavior is undefined. This is a preview feature.
|
|
1141
1151
|
"""
|
|
1142
1152
|
|
|
1143
1153
|
response_schema: Optional[Dict[str, Any]] = None
|
|
@@ -1222,9 +1232,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1222
1232
|
if self.top_k is not None and self.top_k <= 0:
|
|
1223
1233
|
raise ValueError("top_k must be positive")
|
|
1224
1234
|
|
|
1225
|
-
if not any(
|
|
1226
|
-
self.model.startswith(prefix) for prefix in ("models/", "tunedModels/")
|
|
1227
|
-
):
|
|
1235
|
+
if not any(self.model.startswith(prefix) for prefix in ("models/",)):
|
|
1228
1236
|
self.model = f"models/{self.model}"
|
|
1229
1237
|
|
|
1230
1238
|
additional_headers = self.additional_headers or {}
|
|
@@ -1320,7 +1328,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1320
1328
|
|
|
1321
1329
|
else:
|
|
1322
1330
|
raise ValueError(
|
|
1323
|
-
"Tools are already defined.
|
|
1331
|
+
"Tools are already defined.code_execution tool can't be defined"
|
|
1324
1332
|
)
|
|
1325
1333
|
|
|
1326
1334
|
return super().invoke(input, config, stop=stop, **kwargs)
|
|
@@ -1522,7 +1530,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1522
1530
|
metadata=self.default_metadata,
|
|
1523
1531
|
)
|
|
1524
1532
|
|
|
1525
|
-
prev_usage_metadata: UsageMetadata | None = None
|
|
1533
|
+
prev_usage_metadata: UsageMetadata | None = None # cumulative usage
|
|
1526
1534
|
for chunk in response:
|
|
1527
1535
|
_chat_result = _response_to_result(
|
|
1528
1536
|
chunk, stream=True, prev_usage=prev_usage_metadata
|
|
@@ -1530,21 +1538,10 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1530
1538
|
gen = cast(ChatGenerationChunk, _chat_result.generations[0])
|
|
1531
1539
|
message = cast(AIMessageChunk, gen.message)
|
|
1532
1540
|
|
|
1533
|
-
curr_usage_metadata: UsageMetadata | dict[str, int] = (
|
|
1534
|
-
message.usage_metadata or {}
|
|
1535
|
-
)
|
|
1536
|
-
|
|
1537
1541
|
prev_usage_metadata = (
|
|
1538
1542
|
message.usage_metadata
|
|
1539
1543
|
if prev_usage_metadata is None
|
|
1540
|
-
else
|
|
1541
|
-
input_tokens=prev_usage_metadata.get("input_tokens", 0)
|
|
1542
|
-
+ curr_usage_metadata.get("input_tokens", 0),
|
|
1543
|
-
output_tokens=prev_usage_metadata.get("output_tokens", 0)
|
|
1544
|
-
+ curr_usage_metadata.get("output_tokens", 0),
|
|
1545
|
-
total_tokens=prev_usage_metadata.get("total_tokens", 0)
|
|
1546
|
-
+ curr_usage_metadata.get("total_tokens", 0),
|
|
1547
|
-
)
|
|
1544
|
+
else add_usage(prev_usage_metadata, message.usage_metadata)
|
|
1548
1545
|
)
|
|
1549
1546
|
|
|
1550
1547
|
if run_manager:
|
|
@@ -1594,7 +1591,7 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1594
1591
|
tool_choice=tool_choice,
|
|
1595
1592
|
**kwargs,
|
|
1596
1593
|
)
|
|
1597
|
-
prev_usage_metadata: UsageMetadata | None = None
|
|
1594
|
+
prev_usage_metadata: UsageMetadata | None = None # cumulative usage
|
|
1598
1595
|
async for chunk in await _achat_with_retry(
|
|
1599
1596
|
request=request,
|
|
1600
1597
|
generation_method=self.async_client.stream_generate_content,
|
|
@@ -1607,21 +1604,10 @@ class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
|
1607
1604
|
gen = cast(ChatGenerationChunk, _chat_result.generations[0])
|
|
1608
1605
|
message = cast(AIMessageChunk, gen.message)
|
|
1609
1606
|
|
|
1610
|
-
curr_usage_metadata: UsageMetadata | dict[str, int] = (
|
|
1611
|
-
message.usage_metadata or {}
|
|
1612
|
-
)
|
|
1613
|
-
|
|
1614
1607
|
prev_usage_metadata = (
|
|
1615
1608
|
message.usage_metadata
|
|
1616
1609
|
if prev_usage_metadata is None
|
|
1617
|
-
else
|
|
1618
|
-
input_tokens=prev_usage_metadata.get("input_tokens", 0)
|
|
1619
|
-
+ curr_usage_metadata.get("input_tokens", 0),
|
|
1620
|
-
output_tokens=prev_usage_metadata.get("output_tokens", 0)
|
|
1621
|
-
+ curr_usage_metadata.get("output_tokens", 0),
|
|
1622
|
-
total_tokens=prev_usage_metadata.get("total_tokens", 0)
|
|
1623
|
-
+ curr_usage_metadata.get("total_tokens", 0),
|
|
1624
|
-
)
|
|
1610
|
+
else add_usage(prev_usage_metadata, message.usage_metadata)
|
|
1625
1611
|
)
|
|
1626
1612
|
|
|
1627
1613
|
if run_manager:
|
{langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/embeddings.py
RENAMED
|
@@ -17,7 +17,10 @@ from langchain_google_genai._common import (
|
|
|
17
17
|
GoogleGenerativeAIError,
|
|
18
18
|
get_client_info,
|
|
19
19
|
)
|
|
20
|
-
from langchain_google_genai._genai_extension import
|
|
20
|
+
from langchain_google_genai._genai_extension import (
|
|
21
|
+
build_generative_async_service,
|
|
22
|
+
build_generative_service,
|
|
23
|
+
)
|
|
21
24
|
|
|
22
25
|
_MAX_TOKENS_PER_BATCH = 20000
|
|
23
26
|
_DEFAULT_BATCH_SIZE = 100
|
|
@@ -29,8 +32,8 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
29
32
|
To use, you must have either:
|
|
30
33
|
|
|
31
34
|
1. The ``GOOGLE_API_KEY`` environment variable set with your API key, or
|
|
32
|
-
2. Pass your API key using the google_api_key kwarg
|
|
33
|
-
|
|
35
|
+
2. Pass your API key using the google_api_key kwarg to the
|
|
36
|
+
GoogleGenerativeAIEmbeddings constructor.
|
|
34
37
|
|
|
35
38
|
Example:
|
|
36
39
|
.. code-block:: python
|
|
@@ -42,16 +45,17 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
42
45
|
"""
|
|
43
46
|
|
|
44
47
|
client: Any = None #: :meta private:
|
|
48
|
+
async_client: Any = None #: :meta private:
|
|
45
49
|
model: str = Field(
|
|
46
50
|
...,
|
|
47
51
|
description="The name of the embedding model to use. "
|
|
48
|
-
"Example: models/embedding-001",
|
|
52
|
+
"Example: ``'models/embedding-001'``",
|
|
49
53
|
)
|
|
50
54
|
task_type: Optional[str] = Field(
|
|
51
55
|
default=None,
|
|
52
56
|
description="The task type. Valid options include: "
|
|
53
|
-
"task_type_unspecified
|
|
54
|
-
"semantic_similarity
|
|
57
|
+
"``'task_type_unspecified'``, ``'retrieval_query'``, ``'retrieval_document'``, "
|
|
58
|
+
"``'semantic_similarity'``, ``'classification'``, and ``'clustering'``",
|
|
55
59
|
)
|
|
56
60
|
google_api_key: Optional[SecretStr] = Field(
|
|
57
61
|
default_factory=secret_from_env("GOOGLE_API_KEY", default=None),
|
|
@@ -76,7 +80,7 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
76
80
|
)
|
|
77
81
|
transport: Optional[str] = Field(
|
|
78
82
|
default=None,
|
|
79
|
-
description="A string, one of: [
|
|
83
|
+
description="A string, one of: [``'rest'``, ``'grpc'``, ``'grpc_asyncio'``].",
|
|
80
84
|
)
|
|
81
85
|
request_options: Optional[Dict] = Field(
|
|
82
86
|
default=None,
|
|
@@ -93,6 +97,9 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
93
97
|
google_api_key = self.google_api_key
|
|
94
98
|
client_info = get_client_info("GoogleGenerativeAIEmbeddings")
|
|
95
99
|
|
|
100
|
+
if not any(self.model.startswith(prefix) for prefix in ("models/",)):
|
|
101
|
+
self.model = f"models/{self.model}"
|
|
102
|
+
|
|
96
103
|
self.client = build_generative_service(
|
|
97
104
|
credentials=self.credentials,
|
|
98
105
|
api_key=google_api_key,
|
|
@@ -100,6 +107,13 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
100
107
|
client_options=self.client_options,
|
|
101
108
|
transport=self.transport,
|
|
102
109
|
)
|
|
110
|
+
self.async_client = build_generative_async_service(
|
|
111
|
+
credentials=self.credentials,
|
|
112
|
+
api_key=google_api_key,
|
|
113
|
+
client_info=client_info,
|
|
114
|
+
client_options=self.client_options,
|
|
115
|
+
transport=self.transport,
|
|
116
|
+
)
|
|
103
117
|
return self
|
|
104
118
|
|
|
105
119
|
@staticmethod
|
|
@@ -166,12 +180,12 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
166
180
|
def _prepare_request(
|
|
167
181
|
self,
|
|
168
182
|
text: str,
|
|
183
|
+
*,
|
|
169
184
|
task_type: Optional[str] = None,
|
|
170
185
|
title: Optional[str] = None,
|
|
171
186
|
output_dimensionality: Optional[int] = None,
|
|
172
187
|
) -> EmbedContentRequest:
|
|
173
188
|
task_type = self.task_type or task_type or "RETRIEVAL_DOCUMENT"
|
|
174
|
-
# https://ai.google.dev/api/rest/v1/models/batchEmbedContents#EmbedContentRequest
|
|
175
189
|
request = EmbedContentRequest(
|
|
176
190
|
content={"parts": [{"text": text}]},
|
|
177
191
|
model=self.model,
|
|
@@ -190,17 +204,17 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
190
204
|
titles: Optional[List[str]] = None,
|
|
191
205
|
output_dimensionality: Optional[int] = None,
|
|
192
206
|
) -> List[List[float]]:
|
|
193
|
-
"""Embed a list of strings
|
|
194
|
-
|
|
207
|
+
"""Embed a list of strings using the `batch endpoint <https://ai.google.dev/api/embeddings#method:-models.batchembedcontents>`__.
|
|
208
|
+
|
|
209
|
+
Google Generative AI currently sets a max batch size of 100 strings.
|
|
195
210
|
|
|
196
211
|
Args:
|
|
197
212
|
texts: List[str] The list of strings to embed.
|
|
198
213
|
batch_size: [int] The batch size of embeddings to send to the model
|
|
199
|
-
task_type: task_type
|
|
214
|
+
task_type: `task_type <https://ai.google.dev/api/embeddings#tasktype>`__
|
|
200
215
|
titles: An optional list of titles for texts provided.
|
|
201
|
-
|
|
202
|
-
output_dimensionality: Optional reduced dimension for the output embedding.
|
|
203
|
-
https://ai.google.dev/api/rest/v1/models/batchEmbedContents#EmbedContentRequest
|
|
216
|
+
Only applicable when TaskType is ``'RETRIEVAL_DOCUMENT'``.
|
|
217
|
+
output_dimensionality: Optional `reduced dimension for the output embedding <https://ai.google.dev/api/embeddings#EmbedContentRequest>`__.
|
|
204
218
|
Returns:
|
|
205
219
|
List of embeddings, one for each text.
|
|
206
220
|
"""
|
|
@@ -237,26 +251,26 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
237
251
|
def embed_query(
|
|
238
252
|
self,
|
|
239
253
|
text: str,
|
|
254
|
+
*,
|
|
240
255
|
task_type: Optional[str] = None,
|
|
241
256
|
title: Optional[str] = None,
|
|
242
257
|
output_dimensionality: Optional[int] = None,
|
|
243
258
|
) -> List[float]:
|
|
244
|
-
"""Embed a text, using the non-batch endpoint
|
|
245
|
-
https://ai.google.dev/api/rest/v1/models/embedContent#EmbedContentRequest
|
|
259
|
+
"""Embed a text, using the `non-batch endpoint <https://ai.google.dev/api/embeddings#method:-models.embedcontent>`__.
|
|
246
260
|
|
|
247
261
|
Args:
|
|
248
262
|
text: The text to embed.
|
|
249
|
-
task_type: task_type
|
|
263
|
+
task_type: `task_type <https://ai.google.dev/api/embeddings#tasktype>`__
|
|
250
264
|
title: An optional title for the text.
|
|
251
|
-
|
|
252
|
-
output_dimensionality: Optional reduced dimension for the output embedding.
|
|
265
|
+
Only applicable when TaskType is ``'RETRIEVAL_DOCUMENT'``.
|
|
266
|
+
output_dimensionality: Optional `reduced dimension for the output embedding <https://ai.google.dev/api/embeddings#EmbedContentRequest>`__.
|
|
253
267
|
|
|
254
268
|
Returns:
|
|
255
269
|
Embedding for the text.
|
|
256
270
|
"""
|
|
257
271
|
task_type_to_use = task_type if task_type else self.task_type
|
|
258
272
|
if task_type_to_use is None:
|
|
259
|
-
task_type_to_use = "RETRIEVAL_QUERY"
|
|
273
|
+
task_type_to_use = "RETRIEVAL_QUERY"
|
|
260
274
|
try:
|
|
261
275
|
request: EmbedContentRequest = self._prepare_request(
|
|
262
276
|
text=text,
|
|
@@ -268,3 +282,93 @@ class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
|
268
282
|
except Exception as e:
|
|
269
283
|
raise GoogleGenerativeAIError(f"Error embedding content: {e}") from e
|
|
270
284
|
return list(result.embedding.values)
|
|
285
|
+
|
|
286
|
+
async def aembed_documents(
|
|
287
|
+
self,
|
|
288
|
+
texts: List[str],
|
|
289
|
+
*,
|
|
290
|
+
batch_size: int = _DEFAULT_BATCH_SIZE,
|
|
291
|
+
task_type: Optional[str] = None,
|
|
292
|
+
titles: Optional[List[str]] = None,
|
|
293
|
+
output_dimensionality: Optional[int] = None,
|
|
294
|
+
) -> List[List[float]]:
|
|
295
|
+
"""Embed a list of strings using the `batch endpoint <https://ai.google.dev/api/embeddings#method:-models.batchembedcontents>`__.
|
|
296
|
+
|
|
297
|
+
Google Generative AI currently sets a max batch size of 100 strings.
|
|
298
|
+
|
|
299
|
+
Args:
|
|
300
|
+
texts: List[str] The list of strings to embed.
|
|
301
|
+
batch_size: [int] The batch size of embeddings to send to the model
|
|
302
|
+
task_type: `task_type <https://ai.google.dev/api/embeddings#tasktype>`__
|
|
303
|
+
titles: An optional list of titles for texts provided.
|
|
304
|
+
Only applicable when TaskType is ``'RETRIEVAL_DOCUMENT'``.
|
|
305
|
+
output_dimensionality: Optional `reduced dimension for the output embedding <https://ai.google.dev/api/embeddings#EmbedContentRequest>`__.
|
|
306
|
+
Returns:
|
|
307
|
+
List of embeddings, one for each text.
|
|
308
|
+
"""
|
|
309
|
+
embeddings: List[List[float]] = []
|
|
310
|
+
batch_start_index = 0
|
|
311
|
+
for batch in GoogleGenerativeAIEmbeddings._prepare_batches(texts, batch_size):
|
|
312
|
+
if titles:
|
|
313
|
+
titles_batch = titles[
|
|
314
|
+
batch_start_index : batch_start_index + len(batch)
|
|
315
|
+
]
|
|
316
|
+
batch_start_index += len(batch)
|
|
317
|
+
else:
|
|
318
|
+
titles_batch = [None] * len(batch) # type: ignore[list-item]
|
|
319
|
+
|
|
320
|
+
requests = [
|
|
321
|
+
self._prepare_request(
|
|
322
|
+
text=text,
|
|
323
|
+
task_type=task_type,
|
|
324
|
+
title=title,
|
|
325
|
+
output_dimensionality=output_dimensionality,
|
|
326
|
+
)
|
|
327
|
+
for text, title in zip(batch, titles_batch)
|
|
328
|
+
]
|
|
329
|
+
|
|
330
|
+
try:
|
|
331
|
+
result = await self.async_client.batch_embed_contents(
|
|
332
|
+
BatchEmbedContentsRequest(requests=requests, model=self.model)
|
|
333
|
+
)
|
|
334
|
+
except Exception as e:
|
|
335
|
+
raise GoogleGenerativeAIError(f"Error embedding content: {e}") from e
|
|
336
|
+
embeddings.extend([list(e.values) for e in result.embeddings])
|
|
337
|
+
return embeddings
|
|
338
|
+
|
|
339
|
+
async def aembed_query(
|
|
340
|
+
self,
|
|
341
|
+
text: str,
|
|
342
|
+
*,
|
|
343
|
+
task_type: Optional[str] = None,
|
|
344
|
+
title: Optional[str] = None,
|
|
345
|
+
output_dimensionality: Optional[int] = None,
|
|
346
|
+
) -> List[float]:
|
|
347
|
+
"""Embed a text, using the `non-batch endpoint <https://ai.google.dev/api/embeddings#method:-models.embedcontent>`__.
|
|
348
|
+
|
|
349
|
+
Args:
|
|
350
|
+
text: The text to embed.
|
|
351
|
+
task_type: `task_type <https://ai.google.dev/api/embeddings#tasktype>`__
|
|
352
|
+
title: An optional title for the text.
|
|
353
|
+
Only applicable when TaskType is ``'RETRIEVAL_DOCUMENT'``.
|
|
354
|
+
output_dimensionality: Optional `reduced dimension for the output embedding <https://ai.google.dev/api/embeddings#EmbedContentRequest>`__.
|
|
355
|
+
|
|
356
|
+
Returns:
|
|
357
|
+
Embedding for the text.
|
|
358
|
+
"""
|
|
359
|
+
task_type_to_use = task_type if task_type else self.task_type
|
|
360
|
+
if task_type_to_use is None:
|
|
361
|
+
task_type_to_use = "RETRIEVAL_QUERY"
|
|
362
|
+
try:
|
|
363
|
+
request: EmbedContentRequest = self._prepare_request(
|
|
364
|
+
text=text,
|
|
365
|
+
task_type=task_type,
|
|
366
|
+
title=title,
|
|
367
|
+
output_dimensionality=output_dimensionality,
|
|
368
|
+
)
|
|
369
|
+
result: EmbedContentResponse = await self.async_client.embed_content(
|
|
370
|
+
request
|
|
371
|
+
)
|
|
372
|
+
except Exception as e:
|
|
373
|
+
raise GoogleGenerativeAIError(f"Error embedding content: {e}") from e
|
|
374
|
+
return list(result.embedding.values)
|
{langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/llms.py
RENAMED
|
@@ -63,6 +63,9 @@ class GoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseLLM):
|
|
|
63
63
|
def validate_environment(self) -> Self:
|
|
64
64
|
"""Validates params and passes them to google-generativeai package."""
|
|
65
65
|
|
|
66
|
+
if not any(self.model.startswith(prefix) for prefix in ("models/",)):
|
|
67
|
+
self.model = f"models/{self.model}"
|
|
68
|
+
|
|
66
69
|
self.client = ChatGoogleGenerativeAI(
|
|
67
70
|
api_key=self.google_api_key,
|
|
68
71
|
credentials=self.credentials,
|
|
@@ -86,6 +89,15 @@ class GoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseLLM):
|
|
|
86
89
|
"""Get standard params for tracing."""
|
|
87
90
|
ls_params = super()._get_ls_params(stop=stop, **kwargs)
|
|
88
91
|
ls_params["ls_provider"] = "google_genai"
|
|
92
|
+
|
|
93
|
+
models_prefix = "models/"
|
|
94
|
+
ls_model_name = (
|
|
95
|
+
self.model[len(models_prefix) :]
|
|
96
|
+
if self.model and self.model.startswith(models_prefix)
|
|
97
|
+
else self.model
|
|
98
|
+
)
|
|
99
|
+
ls_params["ls_model_name"] = ls_model_name
|
|
100
|
+
|
|
89
101
|
if ls_max_tokens := kwargs.get("max_output_tokens", self.max_output_tokens):
|
|
90
102
|
ls_params["ls_max_tokens"] = ls_max_tokens
|
|
91
103
|
return ls_params
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[tool.poetry]
|
|
2
2
|
name = "langchain-google-genai"
|
|
3
|
-
version = "2.1.
|
|
3
|
+
version = "2.1.8"
|
|
4
4
|
description = "An integration package connecting Google's genai package and LangChain"
|
|
5
5
|
authors = []
|
|
6
6
|
readme = "README.md"
|
|
@@ -12,7 +12,7 @@ license = "MIT"
|
|
|
12
12
|
|
|
13
13
|
[tool.poetry.dependencies]
|
|
14
14
|
python = ">=3.9,<4.0"
|
|
15
|
-
langchain-core = "^0.3.
|
|
15
|
+
langchain-core = "^0.3.68"
|
|
16
16
|
google-ai-generativelanguage = "^0.6.18"
|
|
17
17
|
pydantic = ">=2,<3"
|
|
18
18
|
filetype = "^1.2.0"
|
|
@@ -29,7 +29,7 @@ pytest-watcher = "^0.3.4"
|
|
|
29
29
|
pytest-asyncio = "^0.21.1"
|
|
30
30
|
pytest-retry = "^1.7.0"
|
|
31
31
|
numpy = ">=1.26.2"
|
|
32
|
-
langchain-tests = "0.3.
|
|
32
|
+
langchain-tests = "0.3.20"
|
|
33
33
|
|
|
34
34
|
[tool.codespell]
|
|
35
35
|
ignore-words-list = "rouge"
|
|
@@ -58,7 +58,7 @@ ruff = "^0.1.5"
|
|
|
58
58
|
|
|
59
59
|
[tool.poetry.group.typing.dependencies]
|
|
60
60
|
mypy = "^1.10"
|
|
61
|
-
types-requests = "^2.
|
|
61
|
+
types-requests = "^2.31.0"
|
|
62
62
|
types-google-cloud-ndb = "^2.2.0.1"
|
|
63
63
|
types-protobuf = "^4.24.0.20240302"
|
|
64
64
|
numpy = ">=1.26.2"
|
|
@@ -68,7 +68,7 @@ numpy = ">=1.26.2"
|
|
|
68
68
|
optional = true
|
|
69
69
|
|
|
70
70
|
[tool.poetry.group.dev.dependencies]
|
|
71
|
-
types-requests = "^2.31.0
|
|
71
|
+
types-requests = "^2.31.0"
|
|
72
72
|
types-google-cloud-ndb = "^2.2.0.1"
|
|
73
73
|
|
|
74
74
|
[tool.ruff.lint]
|
|
File without changes
|
|
File without changes
|
{langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/_enums.py
RENAMED
|
File without changes
|
|
File without changes
|
{langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/genai_aqa.py
RENAMED
|
File without changes
|
|
File without changes
|
{langchain_google_genai-2.1.6 → langchain_google_genai-2.1.8}/langchain_google_genai/py.typed
RENAMED
|
File without changes
|