langchain-google-genai 0.0.2__tar.gz → 0.0.4__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of langchain-google-genai might be problematic. Click here for more details.
- {langchain_google_genai-0.0.2 → langchain_google_genai-0.0.4}/PKG-INFO +25 -2
- {langchain_google_genai-0.0.2 → langchain_google_genai-0.0.4}/README.md +21 -1
- langchain_google_genai-0.0.4/langchain_google_genai/__init__.py +46 -0
- langchain_google_genai-0.0.4/langchain_google_genai/_common.py +4 -0
- {langchain_google_genai-0.0.2 → langchain_google_genai-0.0.4}/langchain_google_genai/chat_models.py +18 -29
- langchain_google_genai-0.0.4/langchain_google_genai/embeddings.py +99 -0
- langchain_google_genai-0.0.4/langchain_google_genai/py.typed +0 -0
- {langchain_google_genai-0.0.2 → langchain_google_genai-0.0.4}/pyproject.toml +17 -12
- langchain_google_genai-0.0.2/langchain_google_genai/__init__.py +0 -3
- {langchain_google_genai-0.0.2 → langchain_google_genai-0.0.4}/LICENSE +0 -0
|
@@ -1,14 +1,18 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: langchain-google-genai
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.4
|
|
4
4
|
Summary: An integration package connecting Google's genai package and LangChain
|
|
5
|
+
Home-page: https://github.com/langchain-ai/langchain/blob/master/libs/partners/google-genai
|
|
5
6
|
Requires-Python: >=3.9,<4.0
|
|
6
7
|
Classifier: Programming Language :: Python :: 3
|
|
7
8
|
Classifier: Programming Language :: Python :: 3.9
|
|
8
9
|
Classifier: Programming Language :: Python :: 3.10
|
|
9
10
|
Classifier: Programming Language :: Python :: 3.11
|
|
11
|
+
Provides-Extra: images
|
|
10
12
|
Requires-Dist: google-generativeai (>=0.3.1,<0.4.0)
|
|
11
13
|
Requires-Dist: langchain-core (>=0.1,<0.2)
|
|
14
|
+
Requires-Dist: pillow (>=10.1.0,<11.0.0) ; extra == "images"
|
|
15
|
+
Project-URL: Repository, https://github.com/langchain-ai/langchain/blob/master/libs/partners/google-genai
|
|
12
16
|
Description-Content-Type: text/markdown
|
|
13
17
|
|
|
14
18
|
# langchain-google-genai
|
|
@@ -17,10 +21,17 @@ This package contains the LangChain integrations for Gemini through their genera
|
|
|
17
21
|
|
|
18
22
|
## Installation
|
|
19
23
|
|
|
20
|
-
```
|
|
24
|
+
```bash
|
|
21
25
|
pip install -U langchain-google-genai
|
|
22
26
|
```
|
|
23
27
|
|
|
28
|
+
### Image utilities
|
|
29
|
+
To use image utility methods, like loading images from GCS urls, install with extras group 'images':
|
|
30
|
+
|
|
31
|
+
```bash
|
|
32
|
+
pip install -e "langchain-google-genai[images]"
|
|
33
|
+
```
|
|
34
|
+
|
|
24
35
|
## Chat Models
|
|
25
36
|
|
|
26
37
|
This package contains the `ChatGoogleGenerativeAI` class, which is the recommended way to interface with the Google Gemini series of models.
|
|
@@ -70,3 +81,15 @@ The value of `image_url` can be any of the following:
|
|
|
70
81
|
- A base64 encoded image (e.g., ``)
|
|
71
82
|
- A PIL image
|
|
72
83
|
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
## Embeddings
|
|
87
|
+
|
|
88
|
+
This package also adds support for google's embeddings models.
|
|
89
|
+
|
|
90
|
+
```
|
|
91
|
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
92
|
+
|
|
93
|
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
94
|
+
embeddings.embed_query("hello, world!")
|
|
95
|
+
```
|
|
@@ -4,10 +4,17 @@ This package contains the LangChain integrations for Gemini through their genera
|
|
|
4
4
|
|
|
5
5
|
## Installation
|
|
6
6
|
|
|
7
|
-
```
|
|
7
|
+
```bash
|
|
8
8
|
pip install -U langchain-google-genai
|
|
9
9
|
```
|
|
10
10
|
|
|
11
|
+
### Image utilities
|
|
12
|
+
To use image utility methods, like loading images from GCS urls, install with extras group 'images':
|
|
13
|
+
|
|
14
|
+
```bash
|
|
15
|
+
pip install -e "langchain-google-genai[images]"
|
|
16
|
+
```
|
|
17
|
+
|
|
11
18
|
## Chat Models
|
|
12
19
|
|
|
13
20
|
This package contains the `ChatGoogleGenerativeAI` class, which is the recommended way to interface with the Google Gemini series of models.
|
|
@@ -56,3 +63,16 @@ The value of `image_url` can be any of the following:
|
|
|
56
63
|
- A local file path
|
|
57
64
|
- A base64 encoded image (e.g., ``)
|
|
58
65
|
- A PIL image
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
## Embeddings
|
|
70
|
+
|
|
71
|
+
This package also adds support for google's embeddings models.
|
|
72
|
+
|
|
73
|
+
```
|
|
74
|
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
75
|
+
|
|
76
|
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
77
|
+
embeddings.embed_query("hello, world!")
|
|
78
|
+
```
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
"""**LangChain Google Generative AI Integration**
|
|
2
|
+
|
|
3
|
+
This module integrates Google's Generative AI models, specifically the Gemini series, with the LangChain framework. It provides classes for interacting with chat models and generating embeddings, leveraging Google's advanced AI capabilities.
|
|
4
|
+
|
|
5
|
+
**Chat Models**
|
|
6
|
+
|
|
7
|
+
The `ChatGoogleGenerativeAI` class is the primary interface for interacting with Google's Gemini chat models. It allows users to send and receive messages using a specified Gemini model, suitable for various conversational AI applications.
|
|
8
|
+
|
|
9
|
+
**Embeddings**
|
|
10
|
+
|
|
11
|
+
The `GoogleGenerativeAIEmbeddings` class provides functionalities to generate embeddings using Google's models.
|
|
12
|
+
These embeddings can be used for a range of NLP tasks, including semantic analysis, similarity comparisons, and more.
|
|
13
|
+
|
|
14
|
+
**Installation**
|
|
15
|
+
|
|
16
|
+
To install the package, use pip:
|
|
17
|
+
|
|
18
|
+
```python
|
|
19
|
+
pip install -U langchain-google-genai
|
|
20
|
+
```
|
|
21
|
+
## Using Chat Models
|
|
22
|
+
|
|
23
|
+
After setting up your environment with the required API key, you can interact with the Google Gemini models.
|
|
24
|
+
|
|
25
|
+
```python
|
|
26
|
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
27
|
+
|
|
28
|
+
llm = ChatGoogleGenerativeAI(model="gemini-pro")
|
|
29
|
+
llm.invoke("Sing a ballad of LangChain.")
|
|
30
|
+
```
|
|
31
|
+
|
|
32
|
+
## Embedding Generation
|
|
33
|
+
|
|
34
|
+
The package also supports creating embeddings with Google's models, useful for textual similarity and other NLP applications.
|
|
35
|
+
|
|
36
|
+
```python
|
|
37
|
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
38
|
+
|
|
39
|
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
40
|
+
embeddings.embed_query("hello, world!")
|
|
41
|
+
```
|
|
42
|
+
""" # noqa: E501
|
|
43
|
+
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
|
|
44
|
+
from langchain_google_genai.embeddings import GoogleGenerativeAIEmbeddings
|
|
45
|
+
|
|
46
|
+
__all__ = ["ChatGoogleGenerativeAI", "GoogleGenerativeAIEmbeddings"]
|
{langchain_google_genai-0.0.2 → langchain_google_genai-0.0.4}/langchain_google_genai/chat_models.py
RENAMED
|
@@ -5,7 +5,6 @@ import logging
|
|
|
5
5
|
import os
|
|
6
6
|
from io import BytesIO
|
|
7
7
|
from typing import (
|
|
8
|
-
TYPE_CHECKING,
|
|
9
8
|
Any,
|
|
10
9
|
AsyncIterator,
|
|
11
10
|
Callable,
|
|
@@ -22,6 +21,8 @@ from typing import (
|
|
|
22
21
|
)
|
|
23
22
|
from urllib.parse import urlparse
|
|
24
23
|
|
|
24
|
+
# TODO: remove ignore once the google package is published with types
|
|
25
|
+
import google.generativeai as genai # type: ignore[import]
|
|
25
26
|
import requests
|
|
26
27
|
from langchain_core.callbacks.manager import (
|
|
27
28
|
AsyncCallbackManagerForLLMRun,
|
|
@@ -38,7 +39,7 @@ from langchain_core.messages import (
|
|
|
38
39
|
HumanMessageChunk,
|
|
39
40
|
)
|
|
40
41
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
41
|
-
from langchain_core.pydantic_v1 import Field, root_validator
|
|
42
|
+
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
42
43
|
from langchain_core.utils import get_from_dict_or_env
|
|
43
44
|
from tenacity import (
|
|
44
45
|
before_sleep_log,
|
|
@@ -48,11 +49,8 @@ from tenacity import (
|
|
|
48
49
|
wait_exponential,
|
|
49
50
|
)
|
|
50
51
|
|
|
51
|
-
|
|
52
|
+
from langchain_google_genai._common import GoogleGenerativeAIError
|
|
52
53
|
|
|
53
|
-
if TYPE_CHECKING:
|
|
54
|
-
# TODO: remove ignore once the google package is published with types
|
|
55
|
-
import google.generativeai as genai # type: ignore[import]
|
|
56
54
|
IMAGE_TYPES: Tuple = ()
|
|
57
55
|
try:
|
|
58
56
|
import PIL
|
|
@@ -63,8 +61,10 @@ except ImportError:
|
|
|
63
61
|
PIL = None # type: ignore
|
|
64
62
|
Image = None # type: ignore
|
|
65
63
|
|
|
64
|
+
logger = logging.getLogger(__name__)
|
|
65
|
+
|
|
66
66
|
|
|
67
|
-
class ChatGoogleGenerativeAIError(
|
|
67
|
+
class ChatGoogleGenerativeAIError(GoogleGenerativeAIError):
|
|
68
68
|
"""
|
|
69
69
|
Custom exception class for errors associated with the `Google GenAI` API.
|
|
70
70
|
|
|
@@ -106,7 +106,7 @@ def _create_retry_decorator() -> Callable[[Any], Any]:
|
|
|
106
106
|
)
|
|
107
107
|
|
|
108
108
|
|
|
109
|
-
def
|
|
109
|
+
def _chat_with_retry(*, generation_method: Callable, **kwargs: Any) -> Any:
|
|
110
110
|
"""
|
|
111
111
|
Executes a chat generation method with retry logic using tenacity.
|
|
112
112
|
|
|
@@ -139,7 +139,7 @@ def chat_with_retry(*, generation_method: Callable, **kwargs: Any) -> Any:
|
|
|
139
139
|
return _chat_with_retry(**kwargs)
|
|
140
140
|
|
|
141
141
|
|
|
142
|
-
async def
|
|
142
|
+
async def _achat_with_retry(*, generation_method: Callable, **kwargs: Any) -> Any:
|
|
143
143
|
"""
|
|
144
144
|
Executes a chat generation method with retry logic using tenacity.
|
|
145
145
|
|
|
@@ -269,8 +269,6 @@ def _convert_to_parts(
|
|
|
269
269
|
content: Sequence[Union[str, dict]],
|
|
270
270
|
) -> List[genai.types.PartType]:
|
|
271
271
|
"""Converts a list of LangChain messages into a google parts."""
|
|
272
|
-
import google.generativeai as genai
|
|
273
|
-
|
|
274
272
|
parts = []
|
|
275
273
|
for part in content:
|
|
276
274
|
if isinstance(part, str):
|
|
@@ -410,8 +408,7 @@ def _response_to_result(
|
|
|
410
408
|
class ChatGoogleGenerativeAI(BaseChatModel):
|
|
411
409
|
"""`Google Generative AI` Chat models API.
|
|
412
410
|
|
|
413
|
-
To use you must have
|
|
414
|
-
either:
|
|
411
|
+
To use, you must have either:
|
|
415
412
|
|
|
416
413
|
1. The ``GOOGLE_API_KEY``` environment variable set with your API key, or
|
|
417
414
|
2. Pass your API key using the google_api_key kwarg to the ChatGoogle
|
|
@@ -435,7 +432,7 @@ Supported examples:
|
|
|
435
432
|
max_output_tokens: int = Field(default=None, description="Max output tokens")
|
|
436
433
|
|
|
437
434
|
client: Any #: :meta private:
|
|
438
|
-
google_api_key: Optional[
|
|
435
|
+
google_api_key: Optional[SecretStr] = None
|
|
439
436
|
temperature: Optional[float] = None
|
|
440
437
|
"""Run inference with this temperature. Must by in the closed
|
|
441
438
|
interval [0.0, 1.0]."""
|
|
@@ -487,17 +484,9 @@ Supported examples:
|
|
|
487
484
|
google_api_key = get_from_dict_or_env(
|
|
488
485
|
values, "google_api_key", "GOOGLE_API_KEY"
|
|
489
486
|
)
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
genai.configure(api_key=google_api_key)
|
|
494
|
-
except ImportError:
|
|
495
|
-
raise ChatGoogleGenerativeAIError(
|
|
496
|
-
"Could not import google.generativeai python package. "
|
|
497
|
-
"Please install it with `pip install google-generativeai`"
|
|
498
|
-
)
|
|
499
|
-
|
|
500
|
-
values["client"] = genai
|
|
487
|
+
if isinstance(google_api_key, SecretStr):
|
|
488
|
+
google_api_key = google_api_key.get_secret_value()
|
|
489
|
+
genai.configure(api_key=google_api_key)
|
|
501
490
|
if (
|
|
502
491
|
values.get("temperature") is not None
|
|
503
492
|
and not 0 <= values["temperature"] <= 1
|
|
@@ -560,7 +549,7 @@ Supported examples:
|
|
|
560
549
|
**kwargs: Any,
|
|
561
550
|
) -> ChatResult:
|
|
562
551
|
params = self._prepare_params(messages, stop, **kwargs)
|
|
563
|
-
response: genai.types.GenerateContentResponse =
|
|
552
|
+
response: genai.types.GenerateContentResponse = _chat_with_retry(
|
|
564
553
|
**params,
|
|
565
554
|
generation_method=self._generation_method,
|
|
566
555
|
)
|
|
@@ -574,7 +563,7 @@ Supported examples:
|
|
|
574
563
|
**kwargs: Any,
|
|
575
564
|
) -> ChatResult:
|
|
576
565
|
params = self._prepare_params(messages, stop, **kwargs)
|
|
577
|
-
response: genai.types.GenerateContentResponse = await
|
|
566
|
+
response: genai.types.GenerateContentResponse = await _achat_with_retry(
|
|
578
567
|
**params,
|
|
579
568
|
generation_method=self._async_generation_method,
|
|
580
569
|
)
|
|
@@ -588,7 +577,7 @@ Supported examples:
|
|
|
588
577
|
**kwargs: Any,
|
|
589
578
|
) -> Iterator[ChatGenerationChunk]:
|
|
590
579
|
params = self._prepare_params(messages, stop, **kwargs)
|
|
591
|
-
response: genai.types.GenerateContentResponse =
|
|
580
|
+
response: genai.types.GenerateContentResponse = _chat_with_retry(
|
|
592
581
|
**params,
|
|
593
582
|
generation_method=self._generation_method,
|
|
594
583
|
stream=True,
|
|
@@ -614,7 +603,7 @@ Supported examples:
|
|
|
614
603
|
**kwargs: Any,
|
|
615
604
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
616
605
|
params = self._prepare_params(messages, stop, **kwargs)
|
|
617
|
-
async for chunk in await
|
|
606
|
+
async for chunk in await _achat_with_retry(
|
|
618
607
|
**params,
|
|
619
608
|
generation_method=self._async_generation_method,
|
|
620
609
|
stream=True,
|
|
@@ -0,0 +1,99 @@
|
|
|
1
|
+
from typing import Dict, List, Optional
|
|
2
|
+
|
|
3
|
+
# TODO: remove ignore once the google package is published with types
|
|
4
|
+
import google.generativeai as genai # type: ignore[import]
|
|
5
|
+
from langchain_core.embeddings import Embeddings
|
|
6
|
+
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
|
7
|
+
from langchain_core.utils import get_from_dict_or_env
|
|
8
|
+
|
|
9
|
+
from langchain_google_genai._common import GoogleGenerativeAIError
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
|
|
13
|
+
"""`Google Generative AI Embeddings`.
|
|
14
|
+
|
|
15
|
+
To use, you must have either:
|
|
16
|
+
|
|
17
|
+
1. The ``GOOGLE_API_KEY``` environment variable set with your API key, or
|
|
18
|
+
2. Pass your API key using the google_api_key kwarg to the ChatGoogle
|
|
19
|
+
constructor.
|
|
20
|
+
|
|
21
|
+
Example:
|
|
22
|
+
.. code-block:: python
|
|
23
|
+
|
|
24
|
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
25
|
+
|
|
26
|
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
27
|
+
embeddings.embed_query("What's our Q1 revenue?")
|
|
28
|
+
"""
|
|
29
|
+
|
|
30
|
+
model: str = Field(
|
|
31
|
+
...,
|
|
32
|
+
description="The name of the embedding model to use. "
|
|
33
|
+
"Example: models/embedding-001",
|
|
34
|
+
)
|
|
35
|
+
task_type: Optional[str] = Field(
|
|
36
|
+
None,
|
|
37
|
+
description="The task type. Valid options include: "
|
|
38
|
+
"task_type_unspecified, retrieval_query, retrieval_document, "
|
|
39
|
+
"semantic_similarity, classification, and clustering",
|
|
40
|
+
)
|
|
41
|
+
google_api_key: Optional[SecretStr] = Field(
|
|
42
|
+
None,
|
|
43
|
+
description="The Google API key to use. If not provided, "
|
|
44
|
+
"the GOOGLE_API_KEY environment variable will be used.",
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
@root_validator()
|
|
48
|
+
def validate_environment(cls, values: Dict) -> Dict:
|
|
49
|
+
"""Validates that the python package exists in environment."""
|
|
50
|
+
google_api_key = get_from_dict_or_env(
|
|
51
|
+
values, "google_api_key", "GOOGLE_API_KEY"
|
|
52
|
+
)
|
|
53
|
+
if isinstance(google_api_key, SecretStr):
|
|
54
|
+
google_api_key = google_api_key.get_secret_value()
|
|
55
|
+
genai.configure(api_key=google_api_key)
|
|
56
|
+
return values
|
|
57
|
+
|
|
58
|
+
def _embed(
|
|
59
|
+
self, texts: List[str], task_type: str, title: Optional[str] = None
|
|
60
|
+
) -> List[List[float]]:
|
|
61
|
+
task_type = self.task_type or "retrieval_document"
|
|
62
|
+
try:
|
|
63
|
+
result = genai.embed_content(
|
|
64
|
+
model=self.model,
|
|
65
|
+
content=texts,
|
|
66
|
+
task_type=task_type,
|
|
67
|
+
title=title,
|
|
68
|
+
)
|
|
69
|
+
except Exception as e:
|
|
70
|
+
raise GoogleGenerativeAIError(f"Error embedding content: {e}") from e
|
|
71
|
+
return result["embedding"]
|
|
72
|
+
|
|
73
|
+
def embed_documents(
|
|
74
|
+
self, texts: List[str], batch_size: int = 5
|
|
75
|
+
) -> List[List[float]]:
|
|
76
|
+
"""Embed a list of strings. Vertex AI currently
|
|
77
|
+
sets a max batch size of 5 strings.
|
|
78
|
+
|
|
79
|
+
Args:
|
|
80
|
+
texts: List[str] The list of strings to embed.
|
|
81
|
+
batch_size: [int] The batch size of embeddings to send to the model
|
|
82
|
+
|
|
83
|
+
Returns:
|
|
84
|
+
List of embeddings, one for each text.
|
|
85
|
+
"""
|
|
86
|
+
task_type = self.task_type or "retrieval_document"
|
|
87
|
+
return self._embed(texts, task_type=task_type)
|
|
88
|
+
|
|
89
|
+
def embed_query(self, text: str) -> List[float]:
|
|
90
|
+
"""Embed a text.
|
|
91
|
+
|
|
92
|
+
Args:
|
|
93
|
+
text: The text to embed.
|
|
94
|
+
|
|
95
|
+
Returns:
|
|
96
|
+
Embedding for the text.
|
|
97
|
+
"""
|
|
98
|
+
task_type = self.task_type or "retrieval_query"
|
|
99
|
+
return self._embed([text], task_type=task_type)[0]
|
|
File without changes
|
|
@@ -1,14 +1,19 @@
|
|
|
1
1
|
[tool.poetry]
|
|
2
2
|
name = "langchain-google-genai"
|
|
3
|
-
version = "0.0.
|
|
3
|
+
version = "0.0.4"
|
|
4
4
|
description = "An integration package connecting Google's genai package and LangChain"
|
|
5
5
|
authors = []
|
|
6
6
|
readme = "README.md"
|
|
7
|
+
repository = "https://github.com/langchain-ai/langchain/blob/master/libs/partners/google-genai"
|
|
7
8
|
|
|
8
9
|
[tool.poetry.dependencies]
|
|
9
10
|
python = ">=3.9,<4.0"
|
|
10
11
|
langchain-core = "^0.1"
|
|
11
12
|
google-generativeai = "^0.3.1"
|
|
13
|
+
pillow = { version = "^10.1.0", optional = true }
|
|
14
|
+
|
|
15
|
+
[tool.poetry.extras]
|
|
16
|
+
images = ["pillow"]
|
|
12
17
|
|
|
13
18
|
[tool.poetry.group.test]
|
|
14
19
|
optional = true
|
|
@@ -16,11 +21,12 @@ optional = true
|
|
|
16
21
|
[tool.poetry.group.test.dependencies]
|
|
17
22
|
pytest = "^7.3.0"
|
|
18
23
|
freezegun = "^1.2.2"
|
|
19
|
-
pytest-mock
|
|
24
|
+
pytest-mock = "^3.10.0"
|
|
20
25
|
syrupy = "^4.0.2"
|
|
21
26
|
pytest-watcher = "^0.3.4"
|
|
22
27
|
pytest-asyncio = "^0.21.1"
|
|
23
|
-
langchain-core = {path = "../../core", develop = true}
|
|
28
|
+
langchain-core = { path = "../../core", develop = true }
|
|
29
|
+
numpy = "^1.26.2"
|
|
24
30
|
|
|
25
31
|
[tool.poetry.group.codespell]
|
|
26
32
|
optional = true
|
|
@@ -32,6 +38,8 @@ codespell = "^2.2.0"
|
|
|
32
38
|
optional = true
|
|
33
39
|
|
|
34
40
|
[tool.poetry.group.test_integration.dependencies]
|
|
41
|
+
pillow = "^10.1.0"
|
|
42
|
+
|
|
35
43
|
|
|
36
44
|
[tool.poetry.group.lint]
|
|
37
45
|
optional = true
|
|
@@ -41,7 +49,7 @@ ruff = "^0.1.5"
|
|
|
41
49
|
|
|
42
50
|
[tool.poetry.group.typing.dependencies]
|
|
43
51
|
mypy = "^0.991"
|
|
44
|
-
langchain-core = {path = "../../core", develop = true}
|
|
52
|
+
langchain-core = { path = "../../core", develop = true }
|
|
45
53
|
types-requests = "^2.28.11.5"
|
|
46
54
|
types-google-cloud-ndb = "^2.2.0.1"
|
|
47
55
|
types-pillow = "^10.1.0.2"
|
|
@@ -50,7 +58,7 @@ types-pillow = "^10.1.0.2"
|
|
|
50
58
|
optional = true
|
|
51
59
|
|
|
52
60
|
[tool.poetry.group.dev.dependencies]
|
|
53
|
-
langchain-core = {path = "../../core", develop = true}
|
|
61
|
+
langchain-core = { path = "../../core", develop = true }
|
|
54
62
|
pillow = "^10.1.0"
|
|
55
63
|
types-requests = "^2.31.0.10"
|
|
56
64
|
types-pillow = "^10.1.0.2"
|
|
@@ -58,19 +66,16 @@ types-google-cloud-ndb = "^2.2.0.1"
|
|
|
58
66
|
|
|
59
67
|
[tool.ruff]
|
|
60
68
|
select = [
|
|
61
|
-
"E",
|
|
62
|
-
"F",
|
|
63
|
-
"I",
|
|
69
|
+
"E", # pycodestyle
|
|
70
|
+
"F", # pyflakes
|
|
71
|
+
"I", # isort
|
|
64
72
|
]
|
|
65
73
|
|
|
66
74
|
[tool.mypy]
|
|
67
75
|
disallow_untyped_defs = "True"
|
|
68
|
-
exclude = ["notebooks", "examples", "example_data", "langchain_core/pydantic"]
|
|
69
76
|
|
|
70
77
|
[tool.coverage.run]
|
|
71
|
-
omit = [
|
|
72
|
-
"tests/*",
|
|
73
|
-
]
|
|
78
|
+
omit = ["tests/*"]
|
|
74
79
|
|
|
75
80
|
[build-system]
|
|
76
81
|
requires = ["poetry-core>=1.0.0"]
|
|
File without changes
|