langchain-google-genai 0.0.10rc0__tar.gz → 1.0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of langchain-google-genai might be problematic. Click here for more details.
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/PKG-INFO +32 -2
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/README.md +30 -1
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/langchain_google_genai/__init__.py +15 -0
- langchain_google_genai-1.0.1/langchain_google_genai/_genai_extension.py +618 -0
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/langchain_google_genai/chat_models.py +17 -10
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/langchain_google_genai/embeddings.py +26 -12
- langchain_google_genai-1.0.1/langchain_google_genai/genai_aqa.py +134 -0
- langchain_google_genai-1.0.1/langchain_google_genai/google_vector_store.py +493 -0
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/langchain_google_genai/llms.py +22 -12
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/pyproject.toml +3 -2
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/LICENSE +0 -0
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/langchain_google_genai/_common.py +0 -0
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/langchain_google_genai/_enums.py +0 -0
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/langchain_google_genai/_function_utils.py +0 -0
- {langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/langchain_google_genai/py.typed +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: langchain-google-genai
|
|
3
|
-
Version:
|
|
3
|
+
Version: 1.0.1
|
|
4
4
|
Summary: An integration package connecting Google's genai package and LangChain
|
|
5
5
|
Home-page: https://github.com/langchain-ai/langchain-google
|
|
6
6
|
License: MIT
|
|
@@ -12,7 +12,7 @@ Classifier: Programming Language :: Python :: 3.10
|
|
|
12
12
|
Classifier: Programming Language :: Python :: 3.11
|
|
13
13
|
Classifier: Programming Language :: Python :: 3.12
|
|
14
14
|
Provides-Extra: images
|
|
15
|
-
Requires-Dist: google-generativeai (>=0.
|
|
15
|
+
Requires-Dist: google-generativeai (>=0.4.1,<0.5.0)
|
|
16
16
|
Requires-Dist: langchain-core (>=0.1,<0.2)
|
|
17
17
|
Requires-Dist: pillow (>=10.1.0,<11.0.0) ; extra == "images"
|
|
18
18
|
Project-URL: Repository, https://github.com/langchain-ai/langchain-google
|
|
@@ -97,3 +97,33 @@ from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
|
97
97
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
98
98
|
embeddings.embed_query("hello, world!")
|
|
99
99
|
```
|
|
100
|
+
|
|
101
|
+
## Semantic Retrieval
|
|
102
|
+
|
|
103
|
+
Enables retrieval augmented generation (RAG) in your application.
|
|
104
|
+
|
|
105
|
+
```
|
|
106
|
+
# Create a new store for housing your documents.
|
|
107
|
+
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")
|
|
108
|
+
|
|
109
|
+
# Create a new document under the above corpus.
|
|
110
|
+
document_store = GoogleVectorStore.create_document(
|
|
111
|
+
corpus_id=corpus_store.corpus_id, display_name="My Document"
|
|
112
|
+
)
|
|
113
|
+
|
|
114
|
+
# Upload some texts to the document.
|
|
115
|
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
|
116
|
+
for file in DirectoryLoader(path="data/").load():
|
|
117
|
+
documents = text_splitter.split_documents([file])
|
|
118
|
+
document_store.add_documents(documents)
|
|
119
|
+
|
|
120
|
+
# Talk to your entire corpus with possibly many documents.
|
|
121
|
+
aqa = corpus_store.as_aqa()
|
|
122
|
+
answer = aqa.invoke("What is the meaning of life?")
|
|
123
|
+
|
|
124
|
+
# Read the response along with the attributed passages and answerability.
|
|
125
|
+
print(response.answer)
|
|
126
|
+
print(response.attributed_passages)
|
|
127
|
+
print(response.answerable_probability)
|
|
128
|
+
```
|
|
129
|
+
|
|
@@ -75,4 +75,33 @@ from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
|
75
75
|
|
|
76
76
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
77
77
|
embeddings.embed_query("hello, world!")
|
|
78
|
-
```
|
|
78
|
+
```
|
|
79
|
+
|
|
80
|
+
## Semantic Retrieval
|
|
81
|
+
|
|
82
|
+
Enables retrieval augmented generation (RAG) in your application.
|
|
83
|
+
|
|
84
|
+
```
|
|
85
|
+
# Create a new store for housing your documents.
|
|
86
|
+
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")
|
|
87
|
+
|
|
88
|
+
# Create a new document under the above corpus.
|
|
89
|
+
document_store = GoogleVectorStore.create_document(
|
|
90
|
+
corpus_id=corpus_store.corpus_id, display_name="My Document"
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
# Upload some texts to the document.
|
|
94
|
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
|
95
|
+
for file in DirectoryLoader(path="data/").load():
|
|
96
|
+
documents = text_splitter.split_documents([file])
|
|
97
|
+
document_store.add_documents(documents)
|
|
98
|
+
|
|
99
|
+
# Talk to your entire corpus with possibly many documents.
|
|
100
|
+
aqa = corpus_store.as_aqa()
|
|
101
|
+
answer = aqa.invoke("What is the meaning of life?")
|
|
102
|
+
|
|
103
|
+
# Read the response along with the attributed passages and answerability.
|
|
104
|
+
print(response.answer)
|
|
105
|
+
print(response.attributed_passages)
|
|
106
|
+
print(response.answerable_probability)
|
|
107
|
+
```
|
{langchain_google_genai-0.0.10rc0 → langchain_google_genai-1.0.1}/langchain_google_genai/__init__.py
RENAMED
|
@@ -58,12 +58,27 @@ embeddings.embed_query("hello, world!")
|
|
|
58
58
|
from langchain_google_genai._enums import HarmBlockThreshold, HarmCategory
|
|
59
59
|
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
|
|
60
60
|
from langchain_google_genai.embeddings import GoogleGenerativeAIEmbeddings
|
|
61
|
+
from langchain_google_genai.genai_aqa import (
|
|
62
|
+
AqaInput,
|
|
63
|
+
AqaOutput,
|
|
64
|
+
GenAIAqa,
|
|
65
|
+
)
|
|
66
|
+
from langchain_google_genai.google_vector_store import (
|
|
67
|
+
DoesNotExistsException,
|
|
68
|
+
GoogleVectorStore,
|
|
69
|
+
)
|
|
61
70
|
from langchain_google_genai.llms import GoogleGenerativeAI
|
|
62
71
|
|
|
63
72
|
__all__ = [
|
|
73
|
+
"AqaInput",
|
|
74
|
+
"AqaOutput",
|
|
64
75
|
"ChatGoogleGenerativeAI",
|
|
76
|
+
"DoesNotExistsException",
|
|
77
|
+
"GenAIAqa",
|
|
65
78
|
"GoogleGenerativeAIEmbeddings",
|
|
66
79
|
"GoogleGenerativeAI",
|
|
80
|
+
"GoogleVectorStore",
|
|
67
81
|
"HarmBlockThreshold",
|
|
68
82
|
"HarmCategory",
|
|
83
|
+
"DoesNotExistsException",
|
|
69
84
|
]
|