langchain-b12 0.1.8__tar.gz → 0.1.10__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,10 +1,12 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langchain-b12
3
- Version: 0.1.8
3
+ Version: 0.1.10
4
4
  Summary: A reusable collection of tools and implementations for Langchain
5
5
  Author-email: Vincent Min <vincent.min@b12-consulting.com>
6
6
  Requires-Python: >=3.11
7
7
  Requires-Dist: langchain-core>=0.3.60
8
+ Requires-Dist: pytest-anyio>=0.0.0
9
+ Requires-Dist: tenacity>=9.1.2
8
10
  Description-Content-Type: text/markdown
9
11
 
10
12
  # Langchain B12
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "langchain-b12"
3
- version = "0.1.8"
3
+ version = "0.1.10"
4
4
  description = "A reusable collection of tools and implementations for Langchain"
5
5
  readme = "README.md"
6
6
  authors = [
@@ -9,6 +9,8 @@ authors = [
9
9
  requires-python = ">=3.11"
10
10
  dependencies = [
11
11
  "langchain-core>=0.3.60",
12
+ "pytest-anyio>=0.0.0",
13
+ "tenacity>=9.1.2",
12
14
  ]
13
15
 
14
16
  [dependency-groups]
@@ -7,10 +7,6 @@ from typing import Any, Literal, cast
7
7
  from google import genai
8
8
  from google.genai import types
9
9
  from google.oauth2 import service_account
10
- from langchain_b12.genai.genai_utils import (
11
- convert_messages_to_contents,
12
- parse_response_candidate,
13
- )
14
10
  from langchain_core.callbacks import (
15
11
  AsyncCallbackManagerForLLMRun,
16
12
  CallbackManagerForLLMRun,
@@ -40,6 +36,18 @@ from langchain_core.utils.function_calling import (
40
36
  convert_to_openai_tool,
41
37
  )
42
38
  from pydantic import BaseModel, ConfigDict, Field
39
+ from tenacity import (
40
+ retry,
41
+ retry_if_exception_type,
42
+ stop_after_attempt,
43
+ stop_never,
44
+ wait_exponential_jitter,
45
+ )
46
+
47
+ from langchain_b12.genai.genai_utils import (
48
+ convert_messages_to_contents,
49
+ parse_response_candidate,
50
+ )
43
51
 
44
52
  logger = logging.getLogger(__name__)
45
53
 
@@ -76,7 +84,7 @@ class ChatGenAI(BaseChatModel):
76
84
  seed: int | None = None
77
85
  """Random seed for the generation."""
78
86
  max_retries: int | None = Field(default=3)
79
- """Maximum number of retries when generation fails. None disables retries."""
87
+ """Maximum number of retries when generation fails. None retries indefinitely."""
80
88
  safety_settings: list[types.SafetySetting] | None = None
81
89
  """The default safety settings to use for all generations.
82
90
 
@@ -175,24 +183,10 @@ class ChatGenAI(BaseChatModel):
175
183
  run_manager: CallbackManagerForLLMRun | None = None,
176
184
  **kwargs: Any,
177
185
  ) -> ChatResult:
178
- attempts = 0
179
- while True:
180
- try:
181
- stream_iter = self._stream(
182
- messages, stop=stop, run_manager=run_manager, **kwargs
183
- )
184
- return generate_from_stream(stream_iter)
185
- except Exception as e: # noqa: BLE001
186
- if self.max_retries is None or attempts >= self.max_retries:
187
- raise
188
- attempts += 1
189
- logger.warning(
190
- "ChatGenAI._generate failed (attempt %d/%d). "
191
- "Retrying... Error: %s",
192
- attempts,
193
- self.max_retries,
194
- e,
195
- )
186
+ stream_iter = self._stream(
187
+ messages, stop=stop, run_manager=run_manager, **kwargs
188
+ )
189
+ return generate_from_stream(stream_iter)
196
190
 
197
191
  async def _agenerate(
198
192
  self,
@@ -201,24 +195,10 @@ class ChatGenAI(BaseChatModel):
201
195
  run_manager: AsyncCallbackManagerForLLMRun | None = None,
202
196
  **kwargs: Any,
203
197
  ) -> ChatResult:
204
- attempts = 0
205
- while True:
206
- try:
207
- stream_iter = self._astream(
208
- messages, stop=stop, run_manager=run_manager, **kwargs
209
- )
210
- return await agenerate_from_stream(stream_iter)
211
- except Exception as e: # noqa: BLE001
212
- if self.max_retries is None or attempts >= self.max_retries:
213
- raise
214
- attempts += 1
215
- logger.warning(
216
- "ChatGenAI._agenerate failed (attempt %d/%d). "
217
- "Retrying... Error: %s",
218
- attempts,
219
- self.max_retries,
220
- e,
221
- )
198
+ stream_iter = self._astream(
199
+ messages, stop=stop, run_manager=run_manager, **kwargs
200
+ )
201
+ return await agenerate_from_stream(stream_iter)
222
202
 
223
203
  def _stream(
224
204
  self,
@@ -228,26 +208,64 @@ class ChatGenAI(BaseChatModel):
228
208
  **kwargs: Any,
229
209
  ) -> Iterator[ChatGenerationChunk]:
230
210
  system_message, contents = self._prepare_request(messages=messages)
231
- response_iter = self.client.models.generate_content_stream(
232
- model=self.model_name,
233
- contents=contents,
234
- config=types.GenerateContentConfig(
235
- system_instruction=system_message,
236
- temperature=self.temperature,
237
- top_k=self.top_k,
238
- top_p=self.top_p,
239
- max_output_tokens=self.max_output_tokens,
240
- candidate_count=self.n,
241
- stop_sequences=stop or self.stop,
242
- safety_settings=self.safety_settings,
243
- thinking_config=self.thinking_config,
244
- automatic_function_calling=types.AutomaticFunctionCallingConfig(
245
- disable=True,
246
- ),
247
- **kwargs,
211
+
212
+ @retry(
213
+ reraise=True,
214
+ stop=stop_after_attempt(self.max_retries + 1)
215
+ if self.max_retries is not None
216
+ else stop_never,
217
+ wait=wait_exponential_jitter(initial=1, max=60),
218
+ retry=retry_if_exception_type(Exception),
219
+ before_sleep=lambda retry_state: logger.warning(
220
+ "ChatGenAI._stream failed to start (attempt %d/%s). "
221
+ "Retrying in %.2fs... Error: %s",
222
+ retry_state.attempt_number,
223
+ self.max_retries + 1 if self.max_retries is not None else "∞",
224
+ retry_state.next_action.sleep,
225
+ retry_state.outcome.exception(),
248
226
  ),
249
227
  )
250
- total_lc_usage = None
228
+ def _initiate_stream() -> tuple[
229
+ ChatGenerationChunk,
230
+ Iterator[types.GenerateContentResponse],
231
+ UsageMetadata | None,
232
+ ]:
233
+ """Initialize stream and fetch first chunk. Retries only apply here."""
234
+ response_iter = self.client.models.generate_content_stream(
235
+ model=self.model_name,
236
+ contents=contents,
237
+ config=types.GenerateContentConfig(
238
+ system_instruction=system_message,
239
+ temperature=self.temperature,
240
+ top_k=self.top_k,
241
+ top_p=self.top_p,
242
+ max_output_tokens=self.max_output_tokens,
243
+ candidate_count=self.n,
244
+ stop_sequences=stop or self.stop,
245
+ safety_settings=self.safety_settings,
246
+ thinking_config=self.thinking_config,
247
+ automatic_function_calling=types.AutomaticFunctionCallingConfig(
248
+ disable=True,
249
+ ),
250
+ **kwargs,
251
+ ),
252
+ )
253
+ # Fetch first chunk to ensure connection is established
254
+ first_response = next(iter(response_iter))
255
+ first_chunk, total_usage = self._gemini_chunk_to_generation_chunk(
256
+ first_response, prev_total_usage=None
257
+ )
258
+ return first_chunk, response_iter, total_usage
259
+
260
+ # Retry only covers stream initialization and first chunk
261
+ first_chunk, response_iter, total_lc_usage = _initiate_stream()
262
+
263
+ # Yield first chunk
264
+ if run_manager and isinstance(first_chunk.message.content, str):
265
+ run_manager.on_llm_new_token(first_chunk.message.content)
266
+ yield first_chunk
267
+
268
+ # Continue streaming without retry (retries during streaming are not well defined)
251
269
  for response_chunk in response_iter:
252
270
  chunk, total_lc_usage = self._gemini_chunk_to_generation_chunk(
253
271
  response_chunk, prev_total_usage=total_lc_usage
@@ -264,27 +282,65 @@ class ChatGenAI(BaseChatModel):
264
282
  **kwargs: Any,
265
283
  ) -> AsyncIterator[ChatGenerationChunk]:
266
284
  system_message, contents = self._prepare_request(messages=messages)
267
- response_iter = self.client.aio.models.generate_content_stream(
268
- model=self.model_name,
269
- contents=contents,
270
- config=types.GenerateContentConfig(
271
- system_instruction=system_message,
272
- temperature=self.temperature,
273
- top_k=self.top_k,
274
- top_p=self.top_p,
275
- max_output_tokens=self.max_output_tokens,
276
- candidate_count=self.n,
277
- stop_sequences=stop or self.stop,
278
- safety_settings=self.safety_settings,
279
- thinking_config=self.thinking_config,
280
- automatic_function_calling=types.AutomaticFunctionCallingConfig(
281
- disable=True,
282
- ),
283
- **kwargs,
285
+
286
+ @retry(
287
+ reraise=True,
288
+ stop=stop_after_attempt(self.max_retries + 1)
289
+ if self.max_retries is not None
290
+ else stop_never,
291
+ wait=wait_exponential_jitter(initial=1, max=60),
292
+ retry=retry_if_exception_type(Exception),
293
+ before_sleep=lambda retry_state: logger.warning(
294
+ "ChatGenAI._astream failed to start (attempt %d/%s). "
295
+ "Retrying in %.2fs... Error: %s",
296
+ retry_state.attempt_number,
297
+ self.max_retries + 1 if self.max_retries is not None else "∞",
298
+ retry_state.next_action.sleep,
299
+ retry_state.outcome.exception(),
284
300
  ),
285
301
  )
286
- total_lc_usage = None
287
- async for response_chunk in await response_iter:
302
+ async def _initiate_stream() -> tuple[
303
+ ChatGenerationChunk,
304
+ AsyncIterator[types.GenerateContentResponse],
305
+ UsageMetadata | None,
306
+ ]:
307
+ """Initialize stream and fetch first chunk. Retries only apply here."""
308
+ response_iter = await self.client.aio.models.generate_content_stream(
309
+ model=self.model_name,
310
+ contents=contents,
311
+ config=types.GenerateContentConfig(
312
+ system_instruction=system_message,
313
+ temperature=self.temperature,
314
+ top_k=self.top_k,
315
+ top_p=self.top_p,
316
+ max_output_tokens=self.max_output_tokens,
317
+ candidate_count=self.n,
318
+ stop_sequences=stop or self.stop,
319
+ safety_settings=self.safety_settings,
320
+ thinking_config=self.thinking_config,
321
+ automatic_function_calling=types.AutomaticFunctionCallingConfig(
322
+ disable=True,
323
+ ),
324
+ **kwargs,
325
+ ),
326
+ )
327
+ # Fetch first chunk to ensure connection is established
328
+ first_response = await response_iter.__anext__()
329
+ first_chunk, total_usage = self._gemini_chunk_to_generation_chunk(
330
+ first_response, prev_total_usage=None
331
+ )
332
+ return first_chunk, response_iter, total_usage
333
+
334
+ # Retry only covers stream initialization and first chunk
335
+ first_chunk, response_iter, total_lc_usage = await _initiate_stream()
336
+
337
+ # Yield first chunk
338
+ if run_manager and isinstance(first_chunk.message.content, str):
339
+ await run_manager.on_llm_new_token(first_chunk.message.content)
340
+ yield first_chunk
341
+
342
+ # Continue streaming without retry (retries during streaming are not well defined)
343
+ async for response_chunk in response_iter:
288
344
  chunk, total_lc_usage = self._gemini_chunk_to_generation_chunk(
289
345
  response_chunk, prev_total_usage=total_lc_usage
290
346
  )
@@ -0,0 +1,279 @@
1
+ from unittest.mock import AsyncMock, MagicMock, patch
2
+
3
+ import pytest
4
+ from google.genai import Client, types
5
+ from langchain_b12.genai.genai import ChatGenAI
6
+ from langchain_core.messages import HumanMessage
7
+
8
+
9
+ def _make_response_chunk(text: str) -> types.GenerateContentResponse:
10
+ """Helper to create a response chunk."""
11
+ return types.GenerateContentResponse(
12
+ candidates=[
13
+ types.Candidate(content=types.Content(parts=[types.Part(text=text)]))
14
+ ]
15
+ )
16
+
17
+
18
+ def test_chatgenai():
19
+ client = MagicMock(spec=Client)
20
+ model = ChatGenAI(client=client, model="foo", temperature=1)
21
+ assert model.model_name == "foo"
22
+ assert model.temperature == 1
23
+ assert model.client == client
24
+
25
+
26
+ def test_chatgenai_invocation():
27
+ client: Client = MagicMock(spec=Client)
28
+ client.models.generate_content_stream.return_value = iter(
29
+ (
30
+ _make_response_chunk("bar"),
31
+ _make_response_chunk("baz"),
32
+ )
33
+ )
34
+ model = ChatGenAI(client=client)
35
+ messages = [HumanMessage(content="foo")]
36
+ response = model.invoke(messages)
37
+ method: MagicMock = client.models.generate_content_stream
38
+ method.assert_called_once()
39
+ assert response.content == "barbaz"
40
+
41
+
42
+ def _make_success_iter():
43
+ """Helper to create a successful streaming iterator."""
44
+ return iter([_make_response_chunk("success")])
45
+
46
+
47
+ @patch("langchain_b12.genai.genai.wait_exponential_jitter", return_value=lambda _: 0)
48
+ def test_chatgenai_retry_succeeds_after_failure(mock_wait):
49
+ """Test that retry logic succeeds after transient failures."""
50
+ client: Client = MagicMock(spec=Client)
51
+
52
+ # First two calls fail, third succeeds
53
+ client.models.generate_content_stream.side_effect = [
54
+ Exception("Transient error 1"),
55
+ Exception("Transient error 2"),
56
+ _make_success_iter(),
57
+ ]
58
+
59
+ model = ChatGenAI(client=client, max_retries=3)
60
+ messages = [HumanMessage(content="foo")]
61
+ response = model.invoke(messages)
62
+
63
+ assert response.content == "success"
64
+ assert client.models.generate_content_stream.call_count == 3
65
+
66
+
67
+ @patch("langchain_b12.genai.genai.wait_exponential_jitter", return_value=lambda _: 0)
68
+ def test_chatgenai_retry_exhausted_raises(mock_wait):
69
+ """Test that exception is raised after all retries are exhausted."""
70
+ client: Client = MagicMock(spec=Client)
71
+
72
+ # All calls fail
73
+ client.models.generate_content_stream.side_effect = Exception("Persistent error")
74
+
75
+ model = ChatGenAI(client=client, max_retries=2)
76
+ messages = [HumanMessage(content="foo")]
77
+
78
+ with pytest.raises(Exception, match="Persistent error"):
79
+ model.invoke(messages)
80
+
81
+ # Initial attempt + 2 retries = 3 total calls
82
+ assert client.models.generate_content_stream.call_count == 3
83
+
84
+
85
+ @patch("langchain_b12.genai.genai.wait_exponential_jitter", return_value=lambda _: 0)
86
+ def test_chatgenai_no_retry_when_max_retries_zero(mock_wait):
87
+ """Test that no retries occur when max_retries=0."""
88
+ client: Client = MagicMock(spec=Client)
89
+ client.models.generate_content_stream.side_effect = Exception("Error")
90
+
91
+ model = ChatGenAI(client=client, max_retries=0)
92
+ messages = [HumanMessage(content="foo")]
93
+
94
+ with pytest.raises(Exception, match="Error"):
95
+ model.invoke(messages)
96
+
97
+ # Only 1 attempt, no retries
98
+ assert client.models.generate_content_stream.call_count == 1
99
+
100
+
101
+ def test_chatgenai_no_retry_on_success():
102
+ """Test that no retries occur when first attempt succeeds."""
103
+ client: Client = MagicMock(spec=Client)
104
+ client.models.generate_content_stream.return_value = _make_success_iter()
105
+
106
+ model = ChatGenAI(client=client, max_retries=3)
107
+ messages = [HumanMessage(content="foo")]
108
+ response = model.invoke(messages)
109
+
110
+ assert response.content == "success"
111
+ assert client.models.generate_content_stream.call_count == 1
112
+
113
+
114
+ # --- Streaming behavior tests ---
115
+
116
+
117
+ def test_stream_yields_chunks_immediately():
118
+ """Test that stream yields chunks as they arrive, not buffered."""
119
+ client: Client = MagicMock(spec=Client)
120
+ chunks_yielded: list[str] = []
121
+
122
+ def mock_stream():
123
+ for text in ["chunk1", "chunk2", "chunk3"]:
124
+ # Track when chunks are yielded from the source
125
+ chunks_yielded.append(f"source:{text}")
126
+ yield _make_response_chunk(text)
127
+
128
+ client.models.generate_content_stream.return_value = mock_stream()
129
+
130
+ model = ChatGenAI(client=client, max_retries=3)
131
+ messages = [HumanMessage(content="foo")]
132
+
133
+ received: list[str] = []
134
+ for chunk in model.stream(messages):
135
+ received.append(chunk.content)
136
+ # After receiving each chunk, check that source yielded it
137
+ assert len(received) == len([c for c in chunks_yielded if c.startswith("source:")])
138
+
139
+ assert received == ["chunk1", "chunk2", "chunk3"]
140
+
141
+
142
+ @patch("langchain_b12.genai.genai.wait_exponential_jitter", return_value=lambda _: 0)
143
+ def test_stream_no_retry_after_first_chunk(mock_wait):
144
+ """Test that errors after first chunk are NOT retried."""
145
+ client: Client = MagicMock(spec=Client)
146
+
147
+ def failing_after_first():
148
+ yield _make_response_chunk("first")
149
+ raise Exception("Mid-stream error")
150
+
151
+ client.models.generate_content_stream.return_value = failing_after_first()
152
+
153
+ model = ChatGenAI(client=client, max_retries=3)
154
+ messages = [HumanMessage(content="foo")]
155
+
156
+ chunks = []
157
+ with pytest.raises(Exception, match="Mid-stream error"):
158
+ for chunk in model.stream(messages):
159
+ chunks.append(chunk.content)
160
+
161
+ # First chunk was received
162
+ assert chunks == ["first"]
163
+ # Only one call - no retry after first chunk
164
+ assert client.models.generate_content_stream.call_count == 1
165
+
166
+
167
+ @patch("langchain_b12.genai.genai.wait_exponential_jitter", return_value=lambda _: 0)
168
+ def test_stream_retry_on_first_chunk_failure(mock_wait):
169
+ """Test that failure on first chunk triggers retry."""
170
+ client: Client = MagicMock(spec=Client)
171
+
172
+ def fail_on_first_next():
173
+ raise Exception("First chunk error")
174
+ yield # Make it a generator
175
+
176
+ def success_stream():
177
+ yield _make_response_chunk("success1")
178
+ yield _make_response_chunk("success2")
179
+
180
+ client.models.generate_content_stream.side_effect = [
181
+ fail_on_first_next(),
182
+ success_stream(),
183
+ ]
184
+
185
+ model = ChatGenAI(client=client, max_retries=3)
186
+ messages = [HumanMessage(content="foo")]
187
+
188
+ chunks = [chunk.content for chunk in model.stream(messages)]
189
+ assert chunks == ["success1", "success2"]
190
+ assert client.models.generate_content_stream.call_count == 2
191
+
192
+
193
+ # --- Async streaming tests ---
194
+
195
+
196
+ async def _async_iter(items):
197
+ """Helper to create an async iterator from items."""
198
+ for item in items:
199
+ yield item
200
+
201
+
202
+ @pytest.mark.anyio
203
+ async def test_astream_yields_chunks_immediately():
204
+ """Test that async stream yields chunks as they arrive."""
205
+ client: Client = MagicMock(spec=Client)
206
+
207
+ chunks = [
208
+ _make_response_chunk("async1"),
209
+ _make_response_chunk("async2"),
210
+ _make_response_chunk("async3"),
211
+ ]
212
+
213
+ # generate_content_stream returns a coroutine that resolves to async iterator
214
+ client.aio.models.generate_content_stream = AsyncMock(
215
+ return_value=_async_iter(chunks)
216
+ )
217
+
218
+ model = ChatGenAI(client=client, max_retries=3)
219
+ messages = [HumanMessage(content="foo")]
220
+
221
+ received: list[str] = []
222
+ async for chunk in model.astream(messages):
223
+ received.append(chunk.content)
224
+
225
+ assert received == ["async1", "async2", "async3"]
226
+
227
+
228
+ @pytest.mark.anyio
229
+ @patch("langchain_b12.genai.genai.wait_exponential_jitter", return_value=lambda _: 0)
230
+ async def test_astream_no_retry_after_first_chunk(mock_wait):
231
+ """Test that errors after first chunk are NOT retried in async."""
232
+ client: Client = MagicMock(spec=Client)
233
+
234
+ async def failing_after_first():
235
+ yield _make_response_chunk("first")
236
+ raise Exception("Async mid-stream error")
237
+
238
+ client.aio.models.generate_content_stream = AsyncMock(
239
+ return_value=failing_after_first()
240
+ )
241
+
242
+ model = ChatGenAI(client=client, max_retries=3)
243
+ messages = [HumanMessage(content="foo")]
244
+
245
+ chunks = []
246
+ with pytest.raises(Exception, match="Async mid-stream error"):
247
+ async for chunk in model.astream(messages):
248
+ chunks.append(chunk.content)
249
+
250
+ assert chunks == ["first"]
251
+ assert client.aio.models.generate_content_stream.call_count == 1
252
+
253
+
254
+ @pytest.mark.anyio
255
+ @patch("langchain_b12.genai.genai.wait_exponential_jitter", return_value=lambda _: 0)
256
+ async def test_astream_retry_succeeds_after_failure(mock_wait):
257
+ """Test that async retry logic works for initial failures."""
258
+ client: Client = MagicMock(spec=Client)
259
+
260
+ call_count = 0
261
+
262
+ async def side_effect_fn(*args, **kwargs):
263
+ nonlocal call_count
264
+ call_count += 1
265
+ if call_count == 1:
266
+ raise Exception("Async transient error")
267
+ return _async_iter([_make_response_chunk("async_success")])
268
+
269
+ client.aio.models.generate_content_stream = AsyncMock(side_effect=side_effect_fn)
270
+
271
+ model = ChatGenAI(client=client, max_retries=3)
272
+ messages = [HumanMessage(content="foo")]
273
+
274
+ chunks = []
275
+ async for chunk in model.astream(messages):
276
+ chunks.append(chunk.content)
277
+
278
+ assert chunks == ["async_success"]
279
+ assert client.aio.models.generate_content_stream.call_count == 2
@@ -252,10 +252,12 @@ wheels = [
252
252
 
253
253
  [[package]]
254
254
  name = "langchain-b12"
255
- version = "0.1.8"
255
+ version = "0.1.9"
256
256
  source = { editable = "." }
257
257
  dependencies = [
258
258
  { name = "langchain-core" },
259
+ { name = "pytest-anyio" },
260
+ { name = "tenacity" },
259
261
  ]
260
262
 
261
263
  [package.dev-dependencies]
@@ -272,7 +274,11 @@ google = [
272
274
  ]
273
275
 
274
276
  [package.metadata]
275
- requires-dist = [{ name = "langchain-core", specifier = ">=0.3.60" }]
277
+ requires-dist = [
278
+ { name = "langchain-core", specifier = ">=0.3.60" },
279
+ { name = "pytest-anyio", specifier = ">=0.0.0" },
280
+ { name = "tenacity", specifier = ">=9.1.2" },
281
+ ]
276
282
 
277
283
  [package.metadata.requires-dev]
278
284
  citations = [
@@ -617,6 +623,19 @@ wheels = [
617
623
  { url = "https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl", hash = "sha256:539c70ba6fcead8e78eebbf1115e8b589e7565830d7d006a8723f19ac8a0afb7", size = 365474 },
618
624
  ]
619
625
 
626
+ [[package]]
627
+ name = "pytest-anyio"
628
+ version = "0.0.0"
629
+ source = { registry = "https://pypi.org/simple" }
630
+ dependencies = [
631
+ { name = "anyio" },
632
+ { name = "pytest" },
633
+ ]
634
+ sdist = { url = "https://files.pythonhosted.org/packages/00/44/a02e5877a671b0940f21a7a0d9704c22097b123ed5cdbcca9cab39f17acc/pytest-anyio-0.0.0.tar.gz", hash = "sha256:b41234e9e9ad7ea1dbfefcc1d6891b23d5ef7c9f07ccf804c13a9cc338571fd3", size = 1560 }
635
+ wheels = [
636
+ { url = "https://files.pythonhosted.org/packages/c6/25/bd6493ae85d0a281b6a0f248d0fdb1d9aa2b31f18bcd4a8800cf397d8209/pytest_anyio-0.0.0-py2.py3-none-any.whl", hash = "sha256:dc8b5c4741cb16ff90be37fddd585ca943ed12bbeb563de7ace6cd94441d8746", size = 1999 },
637
+ ]
638
+
620
639
  [[package]]
621
640
  name = "pytest-asyncio"
622
641
  version = "1.1.0"
@@ -1,41 +0,0 @@
1
- from unittest.mock import MagicMock
2
-
3
- from google.genai import Client, types
4
- from langchain_b12.genai.genai import ChatGenAI
5
- from langchain_core.messages import HumanMessage
6
-
7
-
8
- def test_chatgenai():
9
- client = MagicMock(spec=Client)
10
- model = ChatGenAI(client=client, model="foo", temperature=1)
11
- assert model.model_name == "foo"
12
- assert model.temperature == 1
13
- assert model.client == client
14
-
15
-
16
- def test_chatgenai_invocation():
17
- client: Client = MagicMock(spec=Client)
18
- client.models.generate_content_stream.return_value = iter(
19
- (
20
- types.GenerateContentResponse(
21
- candidates=[
22
- types.Candidate(
23
- content=types.Content(parts=[types.Part(text="bar")])
24
- ),
25
- ]
26
- ),
27
- types.GenerateContentResponse(
28
- candidates=[
29
- types.Candidate(
30
- content=types.Content(parts=[types.Part(text="baz")])
31
- ),
32
- ]
33
- ),
34
- )
35
- )
36
- model = ChatGenAI(client=client)
37
- messages = [HumanMessage(content="foo")]
38
- response = model.invoke(messages)
39
- method: MagicMock = client.models.generate_content_stream
40
- method.assert_called_once()
41
- assert response.content == "barbaz"
File without changes
File without changes
File without changes