langchain-arcade 1.1.0__tar.gz → 1.2.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langchain_arcade-1.2.0/PKG-INFO +192 -0
- langchain_arcade-1.2.0/README.md +171 -0
- langchain_arcade-1.2.0/langchain_arcade/__init__.py +7 -0
- {langchain_arcade-1.1.0 → langchain_arcade-1.2.0}/langchain_arcade/_utilities.py +132 -17
- langchain_arcade-1.2.0/langchain_arcade/manager.py +832 -0
- {langchain_arcade-1.1.0 → langchain_arcade-1.2.0}/pyproject.toml +2 -2
- langchain_arcade-1.1.0/PKG-INFO +0 -57
- langchain_arcade-1.1.0/README.md +0 -37
- langchain_arcade-1.1.0/langchain_arcade/__init__.py +0 -3
- langchain_arcade-1.1.0/langchain_arcade/manager.py +0 -219
- {langchain_arcade-1.1.0 → langchain_arcade-1.2.0}/LICENSE +0 -0
- {langchain_arcade-1.1.0 → langchain_arcade-1.2.0}/langchain_arcade/py.typed +0 -0
|
@@ -0,0 +1,192 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: langchain-arcade
|
|
3
|
+
Version: 1.2.0
|
|
4
|
+
Summary: An integration package connecting Arcade and Langchain/LangGraph
|
|
5
|
+
Home-page: https://github.com/arcadeai/arcade-ai/tree/main/contrib/langchain
|
|
6
|
+
License: MIT
|
|
7
|
+
Author: Arcade
|
|
8
|
+
Author-email: dev@arcade.dev
|
|
9
|
+
Requires-Python: >=3.10,<4
|
|
10
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
16
|
+
Requires-Dist: arcadepy (==1.1.*)
|
|
17
|
+
Requires-Dist: langgraph (>=0.2.67,<0.3.0)
|
|
18
|
+
Project-URL: Repository, https://github.com/arcadeai/arcade-ai/tree/main/contrib/langchain
|
|
19
|
+
Description-Content-Type: text/markdown
|
|
20
|
+
|
|
21
|
+
<h3 align="center">
|
|
22
|
+
<a name="readme-top"></a>
|
|
23
|
+
<img
|
|
24
|
+
src="https://docs.arcade.dev/images/logo/arcade-logo.png"
|
|
25
|
+
>
|
|
26
|
+
</h3>
|
|
27
|
+
<div align="center">
|
|
28
|
+
<h3>Arcade Langchain Integration</h3>
|
|
29
|
+
<a href="https://github.com/arcadeai/langchain-arcade/blob/main/LICENSE">
|
|
30
|
+
<img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License">
|
|
31
|
+
</a>
|
|
32
|
+
<a href="https://pepy.tech/project/langchain-arcade">
|
|
33
|
+
<img src="https://static.pepy.tech/badge/langchain-arcade" alt="Downloads">
|
|
34
|
+
<a href="https://pypi.org/project/langchain-arcade/">
|
|
35
|
+
<img src="https://img.shields.io/pypi/v/langchain-arcade.svg" alt="PyPI">
|
|
36
|
+
</a>
|
|
37
|
+
</a>
|
|
38
|
+
|
|
39
|
+
</div>
|
|
40
|
+
|
|
41
|
+
<p align="center">
|
|
42
|
+
<a href="https://docs.arcade.dev" target="_blank">Arcade Documentation</a> •
|
|
43
|
+
<a href="https://docs.arcade.dev/toolkits" target="_blank">Toolkits</a> •
|
|
44
|
+
<a href="https://github.com/ArcadeAI/arcade-py" target="_blank">Python Client</a> •
|
|
45
|
+
<a href="https://github.com/ArcadeAI/arcade-js" target="_blank">JavaScript Client</a>
|
|
46
|
+
</p>
|
|
47
|
+
|
|
48
|
+
## Overview
|
|
49
|
+
|
|
50
|
+
`langchain-arcade` allows you to use Arcade tools in your LangChain and LangGraph applications. This integration provides a simple way to access Arcade's extensive toolkit ecosystem, including tools for search, email, document processing, and more.
|
|
51
|
+
|
|
52
|
+
## Installation
|
|
53
|
+
|
|
54
|
+
```bash
|
|
55
|
+
pip install langchain-arcade
|
|
56
|
+
```
|
|
57
|
+
|
|
58
|
+
## Basic Usage
|
|
59
|
+
|
|
60
|
+
### 1. Initialize the Tool Manager
|
|
61
|
+
|
|
62
|
+
The `ToolManager` is the main entry point for working with Arcade tools in LangChain:
|
|
63
|
+
|
|
64
|
+
```python
|
|
65
|
+
import os
|
|
66
|
+
from langchain_arcade import ToolManager
|
|
67
|
+
|
|
68
|
+
# Initialize with your API key
|
|
69
|
+
manager = ToolManager(api_key=os.environ["ARCADE_API_KEY"])
|
|
70
|
+
|
|
71
|
+
# Initialize with specific tools or toolkits
|
|
72
|
+
tools = manager.init_tools(
|
|
73
|
+
tools=["Web.ScrapeUrl"], # Individual tools
|
|
74
|
+
toolkits=["Search"] # All tools from a toolkit
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
# Convert to LangChain tools
|
|
78
|
+
langchain_tools = manager.to_langchain()
|
|
79
|
+
```
|
|
80
|
+
|
|
81
|
+
### 2. Use with LangGraph
|
|
82
|
+
|
|
83
|
+
Here's a simple example of using Arcade tools with LangGraph:
|
|
84
|
+
|
|
85
|
+
```python
|
|
86
|
+
from langchain_openai import ChatOpenAI
|
|
87
|
+
from langgraph.checkpoint.memory import MemorySaver
|
|
88
|
+
from langgraph.prebuilt import create_react_agent
|
|
89
|
+
|
|
90
|
+
# Create a LangGraph agent
|
|
91
|
+
model = ChatOpenAI(model="gpt-4o")
|
|
92
|
+
memory = MemorySaver()
|
|
93
|
+
graph = create_react_agent(model, tools, checkpointer=memory)
|
|
94
|
+
|
|
95
|
+
config = {"configurable": {"thread_id": "1", "user_id": "user@example.com"}}
|
|
96
|
+
user_input = {"messages": [("user", "List my important emails")]}
|
|
97
|
+
|
|
98
|
+
for chunk in graph.stream(user_input, config, stream_mode="values"):
|
|
99
|
+
print(chunk["messages"][-1].content)
|
|
100
|
+
```
|
|
101
|
+
|
|
102
|
+
## Using Tools with Authorization in LangGraph
|
|
103
|
+
|
|
104
|
+
Many Arcade tools require user authorization. Here's how to handle it:
|
|
105
|
+
|
|
106
|
+
### 1. Using with prebuilt agents
|
|
107
|
+
|
|
108
|
+
```python
|
|
109
|
+
import os
|
|
110
|
+
|
|
111
|
+
from langchain_arcade import ToolManager
|
|
112
|
+
from langchain_openai import ChatOpenAI
|
|
113
|
+
from langgraph.prebuilt import create_react_agent
|
|
114
|
+
|
|
115
|
+
# Initialize tools
|
|
116
|
+
manager = ToolManager(api_key=os.environ["ARCADE_API_KEY"])
|
|
117
|
+
manager.init_tools(toolkits=["Github"])
|
|
118
|
+
tools = manager.to_langchain(use_interrupts=True)
|
|
119
|
+
|
|
120
|
+
# Create agent
|
|
121
|
+
model = ChatOpenAI(model="gpt-4o")
|
|
122
|
+
graph = create_react_agent(model, tools)
|
|
123
|
+
|
|
124
|
+
# Run the agent with the "user_id" field in the config
|
|
125
|
+
# IMPORTANT the "user_id" field is required for tools that require user authorization
|
|
126
|
+
config = {"configurable": {"user_id": "user@lgexample.com"}}
|
|
127
|
+
user_input = {"messages": [("user", "Star the arcadeai/arcade-ai repository on GitHub")]}
|
|
128
|
+
|
|
129
|
+
for chunk in graph.stream(user_input, config, debug=True):
|
|
130
|
+
if chunk.get("__interrupt__"):
|
|
131
|
+
# print the authorization url
|
|
132
|
+
print(chunk["__interrupt__"][0].value)
|
|
133
|
+
# visit the URL to authorize the tool
|
|
134
|
+
# once you have authorized the tool, you can run again and the agent will continue
|
|
135
|
+
elif chunk.get("agent"):
|
|
136
|
+
print(chunk["agent"]["messages"][-1].content)
|
|
137
|
+
|
|
138
|
+
# see the functional example for continuing the agent after authorization
|
|
139
|
+
# and for handling authorization errors gracefully
|
|
140
|
+
|
|
141
|
+
```
|
|
142
|
+
|
|
143
|
+
See the Functional examples in the [examples directory](https://github.com/ArcadeAI/arcade-ai/tree/main/examples/langchain) that continue the agent after authorization and handle authorization errors gracefully.
|
|
144
|
+
|
|
145
|
+
### Async Support
|
|
146
|
+
|
|
147
|
+
For asynchronous applications, use `AsyncToolManager`:
|
|
148
|
+
|
|
149
|
+
```python
|
|
150
|
+
import asyncio
|
|
151
|
+
from langchain_arcade import AsyncToolManager
|
|
152
|
+
|
|
153
|
+
async def main():
|
|
154
|
+
manager = AsyncToolManager(api_key=os.environ["ARCADE_API_KEY"])
|
|
155
|
+
await manager.init_tools(toolkits=["Google"])
|
|
156
|
+
tools = await manager.to_langchain()
|
|
157
|
+
|
|
158
|
+
# Use tools with async LangChain/LangGraph components
|
|
159
|
+
|
|
160
|
+
asyncio.run(main())
|
|
161
|
+
```
|
|
162
|
+
|
|
163
|
+
## Tool Authorization Flow
|
|
164
|
+
|
|
165
|
+
Many Arcade tools require user authorization. This can be handled in many ways but the `ToolManager` provides a simple flow that can be used with prebuilt agents and also the functional API. The typical flow is:
|
|
166
|
+
|
|
167
|
+
1. Attempt to use a tool that requires authorization
|
|
168
|
+
2. Check the state for interrupts from the `NodeInterrupt` exception (or Command)
|
|
169
|
+
3. Call `manager.authorize(tool_name, user_id)` to get an authorization URL
|
|
170
|
+
4. Present the URL to the user
|
|
171
|
+
5. Call `manager.wait_for_auth(auth_response.id)` to wait for completion
|
|
172
|
+
6. Resume the agent execution
|
|
173
|
+
|
|
174
|
+
## Available Toolkits
|
|
175
|
+
|
|
176
|
+
Arcade provides many toolkits including:
|
|
177
|
+
|
|
178
|
+
- `Search`: Google search, Bing search
|
|
179
|
+
- `Google`: Gmail, Google Drive, Google Calendar
|
|
180
|
+
- `Web`: Crawling, scraping, etc
|
|
181
|
+
- `Github`: Repository operations
|
|
182
|
+
- `Slack`: Sending messages to Slack
|
|
183
|
+
- `Linkedin`: Posting to Linkedin
|
|
184
|
+
- `X`: Posting and reading tweets on X
|
|
185
|
+
- And many more
|
|
186
|
+
|
|
187
|
+
For a complete list, see the [Arcade Toolkits documentation](https://docs.arcade.dev/toolkits).
|
|
188
|
+
|
|
189
|
+
## More Examples
|
|
190
|
+
|
|
191
|
+
For more examples, see the [examples directory](https://github.com/ArcadeAI/arcade-ai/tree/main/examples/langchain).
|
|
192
|
+
|
|
@@ -0,0 +1,171 @@
|
|
|
1
|
+
<h3 align="center">
|
|
2
|
+
<a name="readme-top"></a>
|
|
3
|
+
<img
|
|
4
|
+
src="https://docs.arcade.dev/images/logo/arcade-logo.png"
|
|
5
|
+
>
|
|
6
|
+
</h3>
|
|
7
|
+
<div align="center">
|
|
8
|
+
<h3>Arcade Langchain Integration</h3>
|
|
9
|
+
<a href="https://github.com/arcadeai/langchain-arcade/blob/main/LICENSE">
|
|
10
|
+
<img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License">
|
|
11
|
+
</a>
|
|
12
|
+
<a href="https://pepy.tech/project/langchain-arcade">
|
|
13
|
+
<img src="https://static.pepy.tech/badge/langchain-arcade" alt="Downloads">
|
|
14
|
+
<a href="https://pypi.org/project/langchain-arcade/">
|
|
15
|
+
<img src="https://img.shields.io/pypi/v/langchain-arcade.svg" alt="PyPI">
|
|
16
|
+
</a>
|
|
17
|
+
</a>
|
|
18
|
+
|
|
19
|
+
</div>
|
|
20
|
+
|
|
21
|
+
<p align="center">
|
|
22
|
+
<a href="https://docs.arcade.dev" target="_blank">Arcade Documentation</a> •
|
|
23
|
+
<a href="https://docs.arcade.dev/toolkits" target="_blank">Toolkits</a> •
|
|
24
|
+
<a href="https://github.com/ArcadeAI/arcade-py" target="_blank">Python Client</a> •
|
|
25
|
+
<a href="https://github.com/ArcadeAI/arcade-js" target="_blank">JavaScript Client</a>
|
|
26
|
+
</p>
|
|
27
|
+
|
|
28
|
+
## Overview
|
|
29
|
+
|
|
30
|
+
`langchain-arcade` allows you to use Arcade tools in your LangChain and LangGraph applications. This integration provides a simple way to access Arcade's extensive toolkit ecosystem, including tools for search, email, document processing, and more.
|
|
31
|
+
|
|
32
|
+
## Installation
|
|
33
|
+
|
|
34
|
+
```bash
|
|
35
|
+
pip install langchain-arcade
|
|
36
|
+
```
|
|
37
|
+
|
|
38
|
+
## Basic Usage
|
|
39
|
+
|
|
40
|
+
### 1. Initialize the Tool Manager
|
|
41
|
+
|
|
42
|
+
The `ToolManager` is the main entry point for working with Arcade tools in LangChain:
|
|
43
|
+
|
|
44
|
+
```python
|
|
45
|
+
import os
|
|
46
|
+
from langchain_arcade import ToolManager
|
|
47
|
+
|
|
48
|
+
# Initialize with your API key
|
|
49
|
+
manager = ToolManager(api_key=os.environ["ARCADE_API_KEY"])
|
|
50
|
+
|
|
51
|
+
# Initialize with specific tools or toolkits
|
|
52
|
+
tools = manager.init_tools(
|
|
53
|
+
tools=["Web.ScrapeUrl"], # Individual tools
|
|
54
|
+
toolkits=["Search"] # All tools from a toolkit
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
# Convert to LangChain tools
|
|
58
|
+
langchain_tools = manager.to_langchain()
|
|
59
|
+
```
|
|
60
|
+
|
|
61
|
+
### 2. Use with LangGraph
|
|
62
|
+
|
|
63
|
+
Here's a simple example of using Arcade tools with LangGraph:
|
|
64
|
+
|
|
65
|
+
```python
|
|
66
|
+
from langchain_openai import ChatOpenAI
|
|
67
|
+
from langgraph.checkpoint.memory import MemorySaver
|
|
68
|
+
from langgraph.prebuilt import create_react_agent
|
|
69
|
+
|
|
70
|
+
# Create a LangGraph agent
|
|
71
|
+
model = ChatOpenAI(model="gpt-4o")
|
|
72
|
+
memory = MemorySaver()
|
|
73
|
+
graph = create_react_agent(model, tools, checkpointer=memory)
|
|
74
|
+
|
|
75
|
+
config = {"configurable": {"thread_id": "1", "user_id": "user@example.com"}}
|
|
76
|
+
user_input = {"messages": [("user", "List my important emails")]}
|
|
77
|
+
|
|
78
|
+
for chunk in graph.stream(user_input, config, stream_mode="values"):
|
|
79
|
+
print(chunk["messages"][-1].content)
|
|
80
|
+
```
|
|
81
|
+
|
|
82
|
+
## Using Tools with Authorization in LangGraph
|
|
83
|
+
|
|
84
|
+
Many Arcade tools require user authorization. Here's how to handle it:
|
|
85
|
+
|
|
86
|
+
### 1. Using with prebuilt agents
|
|
87
|
+
|
|
88
|
+
```python
|
|
89
|
+
import os
|
|
90
|
+
|
|
91
|
+
from langchain_arcade import ToolManager
|
|
92
|
+
from langchain_openai import ChatOpenAI
|
|
93
|
+
from langgraph.prebuilt import create_react_agent
|
|
94
|
+
|
|
95
|
+
# Initialize tools
|
|
96
|
+
manager = ToolManager(api_key=os.environ["ARCADE_API_KEY"])
|
|
97
|
+
manager.init_tools(toolkits=["Github"])
|
|
98
|
+
tools = manager.to_langchain(use_interrupts=True)
|
|
99
|
+
|
|
100
|
+
# Create agent
|
|
101
|
+
model = ChatOpenAI(model="gpt-4o")
|
|
102
|
+
graph = create_react_agent(model, tools)
|
|
103
|
+
|
|
104
|
+
# Run the agent with the "user_id" field in the config
|
|
105
|
+
# IMPORTANT the "user_id" field is required for tools that require user authorization
|
|
106
|
+
config = {"configurable": {"user_id": "user@lgexample.com"}}
|
|
107
|
+
user_input = {"messages": [("user", "Star the arcadeai/arcade-ai repository on GitHub")]}
|
|
108
|
+
|
|
109
|
+
for chunk in graph.stream(user_input, config, debug=True):
|
|
110
|
+
if chunk.get("__interrupt__"):
|
|
111
|
+
# print the authorization url
|
|
112
|
+
print(chunk["__interrupt__"][0].value)
|
|
113
|
+
# visit the URL to authorize the tool
|
|
114
|
+
# once you have authorized the tool, you can run again and the agent will continue
|
|
115
|
+
elif chunk.get("agent"):
|
|
116
|
+
print(chunk["agent"]["messages"][-1].content)
|
|
117
|
+
|
|
118
|
+
# see the functional example for continuing the agent after authorization
|
|
119
|
+
# and for handling authorization errors gracefully
|
|
120
|
+
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
See the Functional examples in the [examples directory](https://github.com/ArcadeAI/arcade-ai/tree/main/examples/langchain) that continue the agent after authorization and handle authorization errors gracefully.
|
|
124
|
+
|
|
125
|
+
### Async Support
|
|
126
|
+
|
|
127
|
+
For asynchronous applications, use `AsyncToolManager`:
|
|
128
|
+
|
|
129
|
+
```python
|
|
130
|
+
import asyncio
|
|
131
|
+
from langchain_arcade import AsyncToolManager
|
|
132
|
+
|
|
133
|
+
async def main():
|
|
134
|
+
manager = AsyncToolManager(api_key=os.environ["ARCADE_API_KEY"])
|
|
135
|
+
await manager.init_tools(toolkits=["Google"])
|
|
136
|
+
tools = await manager.to_langchain()
|
|
137
|
+
|
|
138
|
+
# Use tools with async LangChain/LangGraph components
|
|
139
|
+
|
|
140
|
+
asyncio.run(main())
|
|
141
|
+
```
|
|
142
|
+
|
|
143
|
+
## Tool Authorization Flow
|
|
144
|
+
|
|
145
|
+
Many Arcade tools require user authorization. This can be handled in many ways but the `ToolManager` provides a simple flow that can be used with prebuilt agents and also the functional API. The typical flow is:
|
|
146
|
+
|
|
147
|
+
1. Attempt to use a tool that requires authorization
|
|
148
|
+
2. Check the state for interrupts from the `NodeInterrupt` exception (or Command)
|
|
149
|
+
3. Call `manager.authorize(tool_name, user_id)` to get an authorization URL
|
|
150
|
+
4. Present the URL to the user
|
|
151
|
+
5. Call `manager.wait_for_auth(auth_response.id)` to wait for completion
|
|
152
|
+
6. Resume the agent execution
|
|
153
|
+
|
|
154
|
+
## Available Toolkits
|
|
155
|
+
|
|
156
|
+
Arcade provides many toolkits including:
|
|
157
|
+
|
|
158
|
+
- `Search`: Google search, Bing search
|
|
159
|
+
- `Google`: Gmail, Google Drive, Google Calendar
|
|
160
|
+
- `Web`: Crawling, scraping, etc
|
|
161
|
+
- `Github`: Repository operations
|
|
162
|
+
- `Slack`: Sending messages to Slack
|
|
163
|
+
- `Linkedin`: Posting to Linkedin
|
|
164
|
+
- `X`: Posting and reading tweets on X
|
|
165
|
+
- And many more
|
|
166
|
+
|
|
167
|
+
For a complete list, see the [Arcade Toolkits documentation](https://docs.arcade.dev/toolkits).
|
|
168
|
+
|
|
169
|
+
## More Examples
|
|
170
|
+
|
|
171
|
+
For more examples, see the [examples directory](https://github.com/ArcadeAI/arcade-ai/tree/main/examples/langchain).
|
|
@@ -1,7 +1,7 @@
|
|
|
1
|
-
from typing import Any, Callable
|
|
1
|
+
from typing import Any, Callable, Union
|
|
2
2
|
|
|
3
|
-
from arcadepy import NOT_GIVEN, Arcade
|
|
4
|
-
from arcadepy.types import ToolDefinition
|
|
3
|
+
from arcadepy import NOT_GIVEN, Arcade, AsyncArcade
|
|
4
|
+
from arcadepy.types import ExecuteToolResponse, ToolDefinition
|
|
5
5
|
from langchain_core.runnables import RunnableConfig
|
|
6
6
|
from langchain_core.tools import StructuredTool
|
|
7
7
|
from pydantic import BaseModel, Field, create_model
|
|
@@ -68,6 +68,51 @@ def tool_definition_to_pydantic_model(tool_def: ToolDefinition) -> type[BaseMode
|
|
|
68
68
|
)
|
|
69
69
|
|
|
70
70
|
|
|
71
|
+
def process_tool_execution_response(
|
|
72
|
+
execute_response: ExecuteToolResponse, tool_name: str, langgraph: bool
|
|
73
|
+
) -> Any:
|
|
74
|
+
"""Process the response from tool execution and handle errors appropriately.
|
|
75
|
+
|
|
76
|
+
Args:
|
|
77
|
+
execute_response: The response from tool execution
|
|
78
|
+
tool_name: The name of the tool that was executed
|
|
79
|
+
langgraph: Whether LangGraph-specific behavior is enabled
|
|
80
|
+
|
|
81
|
+
Returns:
|
|
82
|
+
The output value on success, or error details on failure
|
|
83
|
+
"""
|
|
84
|
+
if execute_response.success and execute_response.output is not None:
|
|
85
|
+
return execute_response.output.value
|
|
86
|
+
|
|
87
|
+
# Extract detailed error information
|
|
88
|
+
error_details = {
|
|
89
|
+
"error": "Unknown error occurred",
|
|
90
|
+
"tool": tool_name,
|
|
91
|
+
}
|
|
92
|
+
|
|
93
|
+
if execute_response.output is not None and execute_response.output.error is not None:
|
|
94
|
+
error = execute_response.output.error
|
|
95
|
+
error_message = str(error.message) if hasattr(error, "message") else "Unknown error"
|
|
96
|
+
error_details["error"] = error_message
|
|
97
|
+
|
|
98
|
+
# Add all non-None optional error fields to the details
|
|
99
|
+
if (
|
|
100
|
+
hasattr(error, "additional_prompt_content")
|
|
101
|
+
and error.additional_prompt_content is not None
|
|
102
|
+
):
|
|
103
|
+
error_details["additional_prompt_content"] = error.additional_prompt_content
|
|
104
|
+
if hasattr(error, "can_retry") and error.can_retry is not None:
|
|
105
|
+
error_details["can_retry"] = str(error.can_retry)
|
|
106
|
+
if hasattr(error, "developer_message") and error.developer_message is not None:
|
|
107
|
+
error_details["developer_message"] = str(error.developer_message)
|
|
108
|
+
if hasattr(error, "retry_after_ms") and error.retry_after_ms is not None:
|
|
109
|
+
error_details["retry_after_ms"] = str(error.retry_after_ms)
|
|
110
|
+
|
|
111
|
+
if langgraph:
|
|
112
|
+
raise NodeInterrupt(error_details)
|
|
113
|
+
return error_details
|
|
114
|
+
|
|
115
|
+
|
|
71
116
|
def create_tool_function(
|
|
72
117
|
client: Arcade,
|
|
73
118
|
tool_name: str,
|
|
@@ -128,18 +173,13 @@ def create_tool_function(
|
|
|
128
173
|
user_id=user_id if user_id is not None else NOT_GIVEN,
|
|
129
174
|
)
|
|
130
175
|
|
|
131
|
-
|
|
132
|
-
return execute_response.output.value # type: ignore[union-attr]
|
|
133
|
-
error_message = str(execute_response.output.error) # type: ignore[union-attr]
|
|
134
|
-
if langgraph:
|
|
135
|
-
raise NodeInterrupt(error_message)
|
|
136
|
-
return {"error": error_message}
|
|
176
|
+
return process_tool_execution_response(execute_response, tool_name, langgraph)
|
|
137
177
|
|
|
138
178
|
return tool_function
|
|
139
179
|
|
|
140
180
|
|
|
141
181
|
def wrap_arcade_tool(
|
|
142
|
-
client: Arcade,
|
|
182
|
+
client: Union[Arcade, AsyncArcade],
|
|
143
183
|
tool_name: str,
|
|
144
184
|
tool_def: ToolDefinition,
|
|
145
185
|
langgraph: bool = False,
|
|
@@ -161,13 +201,23 @@ def wrap_arcade_tool(
|
|
|
161
201
|
args_schema = tool_definition_to_pydantic_model(tool_def)
|
|
162
202
|
|
|
163
203
|
# Create the action function
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
204
|
+
if isinstance(client, Arcade):
|
|
205
|
+
action_func = create_tool_function(
|
|
206
|
+
client=client,
|
|
207
|
+
tool_name=tool_name,
|
|
208
|
+
tool_def=tool_def,
|
|
209
|
+
args_schema=args_schema,
|
|
210
|
+
langgraph=langgraph,
|
|
211
|
+
)
|
|
212
|
+
else:
|
|
213
|
+
# Use async tool function for AsyncArcade client
|
|
214
|
+
action_func = create_async_tool_function(
|
|
215
|
+
client=client,
|
|
216
|
+
tool_name=tool_name,
|
|
217
|
+
tool_def=tool_def,
|
|
218
|
+
args_schema=args_schema,
|
|
219
|
+
langgraph=langgraph,
|
|
220
|
+
)
|
|
171
221
|
|
|
172
222
|
# Create the StructuredTool instance
|
|
173
223
|
return StructuredTool.from_function(
|
|
@@ -177,3 +227,68 @@ def wrap_arcade_tool(
|
|
|
177
227
|
args_schema=args_schema,
|
|
178
228
|
inject_kwargs={"user_id"},
|
|
179
229
|
)
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
def create_async_tool_function(
|
|
233
|
+
client: AsyncArcade,
|
|
234
|
+
tool_name: str,
|
|
235
|
+
tool_def: ToolDefinition,
|
|
236
|
+
args_schema: type[BaseModel],
|
|
237
|
+
langgraph: bool = False,
|
|
238
|
+
) -> Callable:
|
|
239
|
+
"""Create an async callable function to execute an Arcade tool.
|
|
240
|
+
|
|
241
|
+
Args:
|
|
242
|
+
client: The AsyncArcade client instance.
|
|
243
|
+
tool_name: The name of the tool to wrap.
|
|
244
|
+
tool_def: The ToolDefinition of the tool to wrap.
|
|
245
|
+
args_schema: The Pydantic model representing the tool's arguments.
|
|
246
|
+
langgraph: Whether to enable LangGraph-specific behavior.
|
|
247
|
+
|
|
248
|
+
Returns:
|
|
249
|
+
An async callable function that executes the tool.
|
|
250
|
+
"""
|
|
251
|
+
if langgraph and not LANGGRAPH_ENABLED:
|
|
252
|
+
raise ImportError("LangGraph is not installed. Please install it to use this feature.")
|
|
253
|
+
|
|
254
|
+
requires_authorization = (
|
|
255
|
+
tool_def.requirements is not None and tool_def.requirements.authorization is not None
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
async def tool_function(config: RunnableConfig, **kwargs: Any) -> Any:
|
|
259
|
+
"""Run the Arcade tool with the given parameters.
|
|
260
|
+
|
|
261
|
+
Args:
|
|
262
|
+
config: RunnableConfig containing execution context.
|
|
263
|
+
**kwargs: Tool input arguments.
|
|
264
|
+
|
|
265
|
+
Returns:
|
|
266
|
+
The output from the tool execution.
|
|
267
|
+
"""
|
|
268
|
+
user_id = config.get("configurable", {}).get("user_id") if config else None
|
|
269
|
+
|
|
270
|
+
if requires_authorization:
|
|
271
|
+
if user_id is None:
|
|
272
|
+
error_message = f"user_id is required to run {tool_name}"
|
|
273
|
+
if langgraph:
|
|
274
|
+
raise NodeInterrupt(error_message)
|
|
275
|
+
return {"error": error_message}
|
|
276
|
+
|
|
277
|
+
# Authorize the user for the tool
|
|
278
|
+
auth_response = await client.tools.authorize(tool_name=tool_name, user_id=user_id)
|
|
279
|
+
if auth_response.status != "completed":
|
|
280
|
+
auth_message = f"Please use the following link to authorize: {auth_response.url}"
|
|
281
|
+
if langgraph:
|
|
282
|
+
raise NodeInterrupt(auth_message)
|
|
283
|
+
return {"error": auth_message}
|
|
284
|
+
|
|
285
|
+
# Execute the tool with provided inputs
|
|
286
|
+
execute_response = await client.tools.execute(
|
|
287
|
+
tool_name=tool_name,
|
|
288
|
+
input=kwargs,
|
|
289
|
+
user_id=user_id if user_id is not None else NOT_GIVEN,
|
|
290
|
+
)
|
|
291
|
+
|
|
292
|
+
return process_tool_execution_response(execute_response, tool_name, langgraph)
|
|
293
|
+
|
|
294
|
+
return tool_function
|