kodit 0.1.10__tar.gz → 0.1.12__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of kodit might be problematic. Click here for more details.

Files changed (93) hide show
  1. {kodit-0.1.10 → kodit-0.1.12}/.gitignore +3 -1
  2. {kodit-0.1.10 → kodit-0.1.12}/PKG-INFO +3 -1
  3. {kodit-0.1.10 → kodit-0.1.12}/docs/_index.md +37 -0
  4. {kodit-0.1.10 → kodit-0.1.12}/pyproject.toml +3 -0
  5. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/_version.py +2 -2
  6. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/bm25/bm25.py +1 -1
  7. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/cli.py +22 -52
  8. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/config.py +43 -3
  9. kodit-0.1.12/src/kodit/embedding/embedding.py +203 -0
  10. kodit-0.1.10/src/kodit/indexing/models.py → kodit-0.1.12/src/kodit/indexing/indexing_models.py +2 -2
  11. kodit-0.1.10/src/kodit/indexing/repository.py → kodit-0.1.12/src/kodit/indexing/indexing_repository.py +5 -5
  12. kodit-0.1.10/src/kodit/indexing/service.py → kodit-0.1.12/src/kodit/indexing/indexing_service.py +17 -12
  13. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/log.py +1 -0
  14. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/mcp.py +27 -34
  15. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/migrations/env.py +3 -3
  16. kodit-0.1.12/src/kodit/search/__init__.py +1 -0
  17. kodit-0.1.12/src/kodit/search/search_repository.py +178 -0
  18. kodit-0.1.10/src/kodit/retreival/service.py → kodit-0.1.12/src/kodit/search/search_service.py +40 -17
  19. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/snippets/snippets.py +3 -1
  20. kodit-0.1.10/src/kodit/sources/repository.py → kodit-0.1.12/src/kodit/source/source_repository.py +2 -7
  21. kodit-0.1.10/src/kodit/sources/service.py → kodit-0.1.12/src/kodit/source/source_service.py +2 -2
  22. kodit-0.1.12/tests/kodit/cli_test.py +57 -0
  23. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/e2e.py +4 -4
  24. kodit-0.1.12/tests/kodit/embedding/embedding_test.py +13 -0
  25. kodit-0.1.10/tests/kodit/indexing/test_service.py → kodit-0.1.12/tests/kodit/indexing/indexing_service_test.py +7 -7
  26. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/mcp_test.py +2 -2
  27. kodit-0.1.12/tests/kodit/search/__init__.py +1 -0
  28. kodit-0.1.12/tests/kodit/search/search_repository_test.py +124 -0
  29. kodit-0.1.10/tests/kodit/retreival/test_service.py → kodit-0.1.12/tests/kodit/search/search_service_test.py +52 -44
  30. kodit-0.1.10/tests/kodit/sources/test_service.py → kodit-0.1.12/tests/kodit/source/source_service_test.py +2 -2
  31. kodit-0.1.12/tests/performance/similarity.py +139 -0
  32. {kodit-0.1.10 → kodit-0.1.12}/tests/smoke.sh +1 -1
  33. {kodit-0.1.10 → kodit-0.1.12}/uv.lock +109 -0
  34. kodit-0.1.10/src/kodit/embedding/embedding.py +0 -52
  35. kodit-0.1.10/src/kodit/retreival/__init__.py +0 -1
  36. kodit-0.1.10/src/kodit/retreival/repository.py +0 -183
  37. kodit-0.1.10/tests/kodit/cli_test.py +0 -71
  38. kodit-0.1.10/tests/kodit/embedding/embedding_test.py +0 -9
  39. kodit-0.1.10/tests/kodit/retreival/__init__.py +0 -1
  40. kodit-0.1.10/tests/kodit/retreival/repository_test.py +0 -57
  41. {kodit-0.1.10 → kodit-0.1.12}/.cursor/rules/kodit.mdc +0 -0
  42. {kodit-0.1.10 → kodit-0.1.12}/.github/CODE_OF_CONDUCT.md +0 -0
  43. {kodit-0.1.10 → kodit-0.1.12}/.github/CONTRIBUTING.md +0 -0
  44. {kodit-0.1.10 → kodit-0.1.12}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  45. {kodit-0.1.10 → kodit-0.1.12}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  46. {kodit-0.1.10 → kodit-0.1.12}/.github/PULL_REQUEST_TEMPLATE.md +0 -0
  47. {kodit-0.1.10 → kodit-0.1.12}/.github/workflows/docker.yaml +0 -0
  48. {kodit-0.1.10 → kodit-0.1.12}/.github/workflows/docs.yaml +0 -0
  49. {kodit-0.1.10 → kodit-0.1.12}/.github/workflows/pypi-test.yaml +0 -0
  50. {kodit-0.1.10 → kodit-0.1.12}/.github/workflows/pypi.yaml +0 -0
  51. {kodit-0.1.10 → kodit-0.1.12}/.github/workflows/test.yaml +0 -0
  52. {kodit-0.1.10 → kodit-0.1.12}/.python-version +0 -0
  53. {kodit-0.1.10 → kodit-0.1.12}/.vscode/launch.json +0 -0
  54. {kodit-0.1.10 → kodit-0.1.12}/.vscode/settings.json +0 -0
  55. {kodit-0.1.10 → kodit-0.1.12}/Dockerfile +0 -0
  56. {kodit-0.1.10 → kodit-0.1.12}/LICENSE +0 -0
  57. {kodit-0.1.10 → kodit-0.1.12}/README.md +0 -0
  58. {kodit-0.1.10 → kodit-0.1.12}/alembic.ini +0 -0
  59. {kodit-0.1.10 → kodit-0.1.12}/docs/developer/index.md +0 -0
  60. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/.gitignore +0 -0
  61. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/__init__.py +0 -0
  62. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/app.py +0 -0
  63. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/bm25/__init__.py +0 -0
  64. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/database.py +0 -0
  65. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/embedding/__init__.py +0 -0
  66. /kodit-0.1.10/src/kodit/embedding/models.py → /kodit-0.1.12/src/kodit/embedding/embedding_models.py +0 -0
  67. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/indexing/__init__.py +0 -0
  68. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/middleware.py +0 -0
  69. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/migrations/README +0 -0
  70. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/migrations/__init__.py +0 -0
  71. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/migrations/script.py.mako +0 -0
  72. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/migrations/versions/7c3bbc2ab32b_add_embeddings_table.py +0 -0
  73. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/migrations/versions/85155663351e_initial.py +0 -0
  74. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/migrations/versions/__init__.py +0 -0
  75. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/snippets/__init__.py +0 -0
  76. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/snippets/languages/__init__.py +0 -0
  77. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/snippets/languages/csharp.scm +0 -0
  78. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/snippets/languages/python.scm +0 -0
  79. {kodit-0.1.10 → kodit-0.1.12}/src/kodit/snippets/method_snippets.py +0 -0
  80. {kodit-0.1.10/src/kodit/sources → kodit-0.1.12/src/kodit/source}/__init__.py +0 -0
  81. /kodit-0.1.10/src/kodit/sources/models.py → /kodit-0.1.12/src/kodit/source/source_models.py +0 -0
  82. {kodit-0.1.10 → kodit-0.1.12}/tests/__init__.py +0 -0
  83. {kodit-0.1.10 → kodit-0.1.12}/tests/conftest.py +0 -0
  84. {kodit-0.1.10 → kodit-0.1.12}/tests/experiments/embedding.py +0 -0
  85. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/__init__.py +0 -0
  86. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/embedding/__init__.py +0 -0
  87. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/indexing/__init__.py +0 -0
  88. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/snippets/__init__.py +0 -0
  89. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/snippets/csharp.cs +0 -0
  90. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/snippets/detect_language_test.py +0 -0
  91. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/snippets/method_extraction_test.py +0 -0
  92. {kodit-0.1.10 → kodit-0.1.12}/tests/kodit/snippets/python.py +0 -0
  93. {kodit-0.1.10/tests/kodit/sources → kodit-0.1.12/tests/kodit/source}/__init__.py +0 -0
@@ -174,4 +174,6 @@ cython_debug/
174
174
  .pypirc
175
175
  .kodit/
176
176
  .DS_Store
177
- .kodit.db
177
+ .kodit.db
178
+ benchmark.db
179
+ profile.prof
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kodit
3
- Version: 0.1.10
3
+ Version: 0.1.12
4
4
  Summary: Code indexing for better AI code generation
5
5
  Project-URL: Homepage, https://docs.helixml.tech/kodit/
6
6
  Project-URL: Documentation, https://docs.helixml.tech/kodit/
@@ -32,6 +32,7 @@ Requires-Dist: gitpython>=3.1.44
32
32
  Requires-Dist: hf-xet>=1.1.2
33
33
  Requires-Dist: httpx-retries>=0.3.2
34
34
  Requires-Dist: httpx>=0.28.1
35
+ Requires-Dist: openai>=1.82.0
35
36
  Requires-Dist: posthog>=4.0.1
36
37
  Requires-Dist: pydantic-settings>=2.9.1
37
38
  Requires-Dist: pytable-formatter>=0.1.1
@@ -39,6 +40,7 @@ Requires-Dist: sentence-transformers>=4.1.0
39
40
  Requires-Dist: sqlalchemy[asyncio]>=2.0.40
40
41
  Requires-Dist: structlog>=25.3.0
41
42
  Requires-Dist: tdqm>=0.0.1
43
+ Requires-Dist: tiktoken>=0.9.0
42
44
  Requires-Dist: tree-sitter-language-pack>=0.7.3
43
45
  Requires-Dist: tree-sitter>=0.24.0
44
46
  Requires-Dist: uritools>=5.0.0
@@ -94,3 +94,40 @@ You MUST use the code-search MCP tool and always include any file context the us
94
94
  ```
95
95
 
96
96
  Alternatively, you can browse to the cursor settings and set this prompt globally.
97
+
98
+ ## Configuring Kodit
99
+
100
+ Configuration of Kodit is performed by setting environmental variables or adding
101
+ variables to a .env file.
102
+
103
+ {{< warn >}}
104
+ Note that updating a setting does not automatically update the data that uses that
105
+ setting. For example, if you change a provider, you will need to delete and
106
+ recreate all indexes.
107
+ {{< /warn >}}
108
+
109
+ ### Indexing
110
+
111
+ #### Default Provider
112
+
113
+ By default, Kodit will use small local models for semantic search and enrichment. If you
114
+ are using Kodit in a professional capacity, it is likely that the local model latency is
115
+ too high to provide a good developer experience.
116
+
117
+ Instead, you should use an external provider. The settings provided here will cause all
118
+ embedding and enrichments request to be sent to this provider by default. You can
119
+ override the provider used for each task if you wish. (Coming soon!)
120
+
121
+ ##### OpenAI
122
+
123
+ Add the following settings to your .env file, or export them as environmental variables:
124
+
125
+ ```bash
126
+ DEFAULT_ENDPOINT_BASE_URL=https://api.openai.com/v1
127
+ DEFAULT_ENDPOINT_API_KEY=sk-xxxxxx
128
+ ```
129
+
130
+ ## Managing Kodit
131
+
132
+ There is limited management functionality at this time. To delete indexes you must
133
+ delete the database and/or tables.
@@ -46,6 +46,8 @@ dependencies = [
46
46
  "gitpython>=3.1.44",
47
47
  "sentence-transformers>=4.1.0",
48
48
  "hf-xet>=1.1.2",
49
+ "openai>=1.82.0",
50
+ "tiktoken>=0.9.0",
49
51
  ]
50
52
 
51
53
  [dependency-groups]
@@ -56,6 +58,7 @@ dev = [
56
58
  "pytest>=8.3.5",
57
59
  "pytest-cov>=6.1.1",
58
60
  "ruff>=0.11.8",
61
+ "snakeviz>=2.2.2",
59
62
  ]
60
63
 
61
64
  [project.urls]
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.1.10'
21
- __version_tuple__ = version_tuple = (0, 1, 10)
20
+ __version__ = version = '0.1.12'
21
+ __version_tuple__ = version_tuple = (0, 1, 12)
@@ -52,7 +52,7 @@ class BM25Service:
52
52
  self.log.warning("No documents to retrieve from, returning empty list")
53
53
  return []
54
54
 
55
- top_k = min(top_k, len(doc_ids))
55
+ top_k = min(top_k, len(self.retriever.scores))
56
56
  self.log.debug(
57
57
  "Retrieving from index", query=query, top_k=top_k, num_docs=len(doc_ids)
58
58
  )
@@ -12,35 +12,21 @@ from pytable_formatter import Cell, Table
12
12
  from sqlalchemy.ext.asyncio import AsyncSession
13
13
 
14
14
  from kodit.config import (
15
- DEFAULT_BASE_DIR,
16
- DEFAULT_DB_URL,
17
- DEFAULT_DISABLE_TELEMETRY,
18
- DEFAULT_EMBEDDING_MODEL_NAME,
19
- DEFAULT_LOG_FORMAT,
20
- DEFAULT_LOG_LEVEL,
21
15
  AppContext,
22
16
  with_app_context,
23
17
  with_session,
24
18
  )
25
- from kodit.indexing.repository import IndexRepository
26
- from kodit.indexing.service import IndexService
19
+ from kodit.embedding.embedding import embedding_factory
20
+ from kodit.indexing.indexing_repository import IndexRepository
21
+ from kodit.indexing.indexing_service import IndexService
27
22
  from kodit.log import configure_logging, configure_telemetry, log_event
28
- from kodit.retreival.repository import RetrievalRepository
29
- from kodit.retreival.service import RetrievalRequest, RetrievalService
30
- from kodit.sources.repository import SourceRepository
31
- from kodit.sources.service import SourceService
23
+ from kodit.search.search_repository import SearchRepository
24
+ from kodit.search.search_service import SearchRequest, SearchService
25
+ from kodit.source.source_repository import SourceRepository
26
+ from kodit.source.source_service import SourceService
32
27
 
33
28
 
34
29
  @click.group(context_settings={"max_content_width": 100})
35
- @click.option("--log-level", help=f"Log level [default: {DEFAULT_LOG_LEVEL}]")
36
- @click.option("--log-format", help=f"Log format [default: {DEFAULT_LOG_FORMAT}]")
37
- @click.option(
38
- "--disable-telemetry",
39
- is_flag=True,
40
- help=f"Disable telemetry [default: {DEFAULT_DISABLE_TELEMETRY}]",
41
- )
42
- @click.option("--db-url", help=f"Database URL [default: {DEFAULT_DB_URL}]")
43
- @click.option("--data-dir", help=f"Data directory [default: {DEFAULT_BASE_DIR}]")
44
30
  @click.option(
45
31
  "--env-file",
46
32
  help="Path to a .env file [default: .env]",
@@ -52,13 +38,8 @@ from kodit.sources.service import SourceService
52
38
  ),
53
39
  )
54
40
  @click.pass_context
55
- def cli( # noqa: PLR0913
41
+ def cli(
56
42
  ctx: click.Context,
57
- log_level: str | None,
58
- log_format: str | None,
59
- disable_telemetry: bool | None,
60
- db_url: str | None,
61
- data_dir: str | None,
62
43
  env_file: Path | None,
63
44
  ) -> None:
64
45
  """kodit CLI - Code indexing for better AI code generation.""" # noqa: D403
@@ -67,17 +48,6 @@ def cli( # noqa: PLR0913
67
48
  if env_file:
68
49
  config = AppContext(_env_file=env_file) # type: ignore[reportCallIssue]
69
50
 
70
- # Now override with CLI arguments, if set
71
- if data_dir:
72
- config.data_dir = Path(data_dir)
73
- if db_url:
74
- config.db_url = db_url
75
- if log_level:
76
- config.log_level = log_level
77
- if log_format:
78
- config.log_format = log_format
79
- if disable_telemetry:
80
- config.disable_telemetry = disable_telemetry
81
51
  configure_logging(config)
82
52
  configure_telemetry(config)
83
53
 
@@ -102,7 +72,7 @@ async def index(
102
72
  repository,
103
73
  source_service,
104
74
  app_context.get_data_dir(),
105
- embedding_model_name=DEFAULT_EMBEDDING_MODEL_NAME,
75
+ embedding_service=embedding_factory(app_context.get_default_openai_client()),
106
76
  )
107
77
 
108
78
  if not sources:
@@ -159,14 +129,14 @@ async def code(
159
129
 
160
130
  This works best if your query is code.
161
131
  """
162
- repository = RetrievalRepository(session)
163
- service = RetrievalService(
132
+ repository = SearchRepository(session)
133
+ service = SearchService(
164
134
  repository,
165
135
  app_context.get_data_dir(),
166
- embedding_model_name=DEFAULT_EMBEDDING_MODEL_NAME,
136
+ embedding_service=embedding_factory(app_context.get_default_openai_client()),
167
137
  )
168
138
 
169
- snippets = await service.retrieve(RetrievalRequest(code_query=query, top_k=top_k))
139
+ snippets = await service.search(SearchRequest(code_query=query, top_k=top_k))
170
140
 
171
141
  if len(snippets) == 0:
172
142
  click.echo("No snippets found")
@@ -192,14 +162,14 @@ async def keyword(
192
162
  top_k: int,
193
163
  ) -> None:
194
164
  """Search for snippets using keyword search."""
195
- repository = RetrievalRepository(session)
196
- service = RetrievalService(
165
+ repository = SearchRepository(session)
166
+ service = SearchService(
197
167
  repository,
198
168
  app_context.get_data_dir(),
199
- embedding_model_name=DEFAULT_EMBEDDING_MODEL_NAME,
169
+ embedding_service=embedding_factory(app_context.get_default_openai_client()),
200
170
  )
201
171
 
202
- snippets = await service.retrieve(RetrievalRequest(keywords=keywords, top_k=top_k))
172
+ snippets = await service.search(SearchRequest(keywords=keywords, top_k=top_k))
203
173
 
204
174
  if len(snippets) == 0:
205
175
  click.echo("No snippets found")
@@ -227,18 +197,18 @@ async def hybrid(
227
197
  code: str,
228
198
  ) -> None:
229
199
  """Search for snippets using hybrid search."""
230
- repository = RetrievalRepository(session)
231
- service = RetrievalService(
200
+ repository = SearchRepository(session)
201
+ service = SearchService(
232
202
  repository,
233
203
  app_context.get_data_dir(),
234
- embedding_model_name=DEFAULT_EMBEDDING_MODEL_NAME,
204
+ embedding_service=embedding_factory(app_context.get_default_openai_client()),
235
205
  )
236
206
 
237
207
  # Parse keywords into a list of strings
238
208
  keywords_list = [k.strip().lower() for k in keywords.split(",")]
239
209
 
240
- snippets = await service.retrieve(
241
- RetrievalRequest(keywords=keywords_list, code_query=code, top_k=top_k)
210
+ snippets = await service.search(
211
+ SearchRequest(keywords=keywords_list, code_query=code, top_k=top_k)
242
212
  )
243
213
 
244
214
  if len(snippets) == 0:
@@ -4,10 +4,11 @@ import asyncio
4
4
  from collections.abc import Callable, Coroutine
5
5
  from functools import wraps
6
6
  from pathlib import Path
7
- from typing import Any, TypeVar
7
+ from typing import Any, Literal, TypeVar
8
8
 
9
9
  import click
10
- from pydantic import Field
10
+ from openai import AsyncOpenAI
11
+ from pydantic import BaseModel, Field
11
12
  from pydantic_settings import BaseSettings, SettingsConfigDict
12
13
 
13
14
  from kodit.database import Database
@@ -22,16 +23,40 @@ DEFAULT_EMBEDDING_MODEL_NAME = TINY
22
23
  T = TypeVar("T")
23
24
 
24
25
 
26
+ class Endpoint(BaseModel):
27
+ """Endpoint provides configuration for an AI service."""
28
+
29
+ type: Literal["openai"] = Field(default="openai")
30
+ api_key: str | None = None
31
+ base_url: str | None = None
32
+
33
+
25
34
  class AppContext(BaseSettings):
26
35
  """Global context for the kodit project. Provides a shared state for the app."""
27
36
 
28
- model_config = SettingsConfigDict(env_file=".env", env_file_encoding="utf-8")
37
+ model_config = SettingsConfigDict(
38
+ env_file=".env",
39
+ env_file_encoding="utf-8",
40
+ env_nested_delimiter="_",
41
+ nested_model_default_partial_update=True,
42
+ env_nested_max_split=1,
43
+ )
29
44
 
30
45
  data_dir: Path = Field(default=DEFAULT_BASE_DIR)
31
46
  db_url: str = Field(default=DEFAULT_DB_URL)
32
47
  log_level: str = Field(default=DEFAULT_LOG_LEVEL)
33
48
  log_format: str = Field(default=DEFAULT_LOG_FORMAT)
34
49
  disable_telemetry: bool = Field(default=DEFAULT_DISABLE_TELEMETRY)
50
+ default_endpoint: Endpoint | None = Field(
51
+ default=Endpoint(
52
+ type="openai",
53
+ base_url="https://api.openai.com/v1",
54
+ ),
55
+ description=(
56
+ "Default endpoint to use for all AI interactions "
57
+ "(can be overridden by task-specific configuration)."
58
+ ),
59
+ )
35
60
  _db: Database | None = None
36
61
 
37
62
  def model_post_init(self, _: Any) -> None:
@@ -58,6 +83,21 @@ class AppContext(BaseSettings):
58
83
  await self._db.run_migrations(self.db_url)
59
84
  return self._db
60
85
 
86
+ def get_default_openai_client(self) -> AsyncOpenAI | None:
87
+ """Get the default OpenAI client, if it is configured."""
88
+ endpoint = self.default_endpoint
89
+ if not (
90
+ endpoint
91
+ and endpoint.type == "openai"
92
+ and endpoint.api_key
93
+ and endpoint.base_url
94
+ ):
95
+ return None
96
+ return AsyncOpenAI(
97
+ api_key=endpoint.api_key,
98
+ base_url=endpoint.base_url,
99
+ )
100
+
61
101
 
62
102
  with_app_context = click.make_pass_decorator(AppContext)
63
103
 
@@ -0,0 +1,203 @@
1
+ """Embedding service."""
2
+
3
+ import asyncio
4
+ import os
5
+ from abc import ABC, abstractmethod
6
+ from collections.abc import AsyncGenerator
7
+ from typing import NamedTuple
8
+
9
+ import structlog
10
+ import tiktoken
11
+ from openai import AsyncOpenAI
12
+ from sentence_transformers import SentenceTransformer
13
+
14
+ TINY = "tiny"
15
+ CODE = "code"
16
+ TEST = "test"
17
+
18
+ COMMON_EMBEDDING_MODELS = {
19
+ TINY: "ibm-granite/granite-embedding-30m-english",
20
+ CODE: "flax-sentence-embeddings/st-codesearch-distilroberta-base",
21
+ TEST: "minishlab/potion-base-4M",
22
+ }
23
+
24
+
25
+ class EmbeddingInput(NamedTuple):
26
+ """Input for embedding."""
27
+
28
+ id: int
29
+ text: str
30
+
31
+
32
+ class EmbeddingOutput(NamedTuple):
33
+ """Output for embedding."""
34
+
35
+ id: int
36
+ embedding: list[float]
37
+
38
+
39
+ class Embedder(ABC):
40
+ """Embedder interface."""
41
+
42
+ @abstractmethod
43
+ def embed(
44
+ self, data: list[EmbeddingInput]
45
+ ) -> AsyncGenerator[EmbeddingOutput, None]:
46
+ """Embed a list of documents.
47
+
48
+ The embedding service accepts a massive list of id,strings to embed. Behind the
49
+ scenes it batches up requests and parallelizes them for performance according to
50
+ the specifics of the embedding service.
51
+
52
+ The id reference is required because the parallelization may return results out
53
+ of order.
54
+ """
55
+
56
+ @abstractmethod
57
+ def query(self, data: list[str]) -> AsyncGenerator[list[float], None]:
58
+ """Query the embedding model."""
59
+
60
+
61
+ def embedding_factory(openai_client: AsyncOpenAI | None = None) -> Embedder:
62
+ """Create an embedding service."""
63
+ if openai_client is not None:
64
+ return OpenAIEmbedder(openai_client)
65
+ return LocalEmbedder(model_name=TINY)
66
+
67
+
68
+ class LocalEmbedder(Embedder):
69
+ """Local embedder."""
70
+
71
+ def __init__(self, model_name: str) -> None:
72
+ """Initialize the local embedder."""
73
+ self.log = structlog.get_logger(__name__)
74
+ self.log.info("Creating local embedder", model_name=model_name)
75
+ self.model_name = COMMON_EMBEDDING_MODELS.get(model_name, model_name)
76
+ self.embedding_model = None
77
+ self.encoding = tiktoken.encoding_for_model("text-embedding-3-small")
78
+
79
+ def _model(self) -> SentenceTransformer:
80
+ """Get the embedding model."""
81
+ if self.embedding_model is None:
82
+ os.environ["TOKENIZERS_PARALLELISM"] = "false" # Avoid warnings
83
+ self.embedding_model = SentenceTransformer(
84
+ self.model_name,
85
+ trust_remote_code=True,
86
+ device="cpu", # Force CPU so we don't have to install accelerate, etc.
87
+ )
88
+ return self.embedding_model
89
+
90
+ async def embed(
91
+ self, data: list[EmbeddingInput]
92
+ ) -> AsyncGenerator[EmbeddingOutput, None]:
93
+ """Embed a list of documents."""
94
+ model = self._model()
95
+
96
+ batched_data = _split_sub_batches(self.encoding, data)
97
+
98
+ for batch in batched_data:
99
+ embeddings = model.encode(
100
+ [i.text for i in batch], show_progress_bar=False, batch_size=4
101
+ )
102
+ for i, x in zip(batch, embeddings, strict=False):
103
+ yield EmbeddingOutput(i.id, [float(y) for y in x])
104
+
105
+ async def query(self, data: list[str]) -> AsyncGenerator[list[float], None]:
106
+ """Query the embedding model."""
107
+ model = self._model()
108
+ embeddings = model.encode(data, show_progress_bar=False, batch_size=4)
109
+ for embedding in embeddings:
110
+ yield [float(x) for x in embedding]
111
+
112
+
113
+ OPENAI_MAX_EMBEDDING_SIZE = 8192
114
+ OPENAI_NUM_PARALLEL_TASKS = 10
115
+
116
+
117
+ def _split_sub_batches(
118
+ encoding: tiktoken.Encoding, data: list[EmbeddingInput]
119
+ ) -> list[list[EmbeddingInput]]:
120
+ """Split a list of strings into smaller sub-batches."""
121
+ log = structlog.get_logger(__name__)
122
+ result = []
123
+ data_to_process = [s for s in data if s.text.strip()] # Filter out empty strings
124
+
125
+ while data_to_process:
126
+ next_batch = []
127
+ current_tokens = 0
128
+
129
+ while data_to_process:
130
+ next_item = data_to_process[0]
131
+ item_tokens = len(encoding.encode(next_item.text))
132
+
133
+ if item_tokens > OPENAI_MAX_EMBEDDING_SIZE:
134
+ log.warning("Skipping too long snippet", snippet=data_to_process.pop(0))
135
+ continue
136
+
137
+ if current_tokens + item_tokens > OPENAI_MAX_EMBEDDING_SIZE:
138
+ break
139
+
140
+ next_batch.append(data_to_process.pop(0))
141
+ current_tokens += item_tokens
142
+
143
+ if next_batch:
144
+ result.append(next_batch)
145
+
146
+ return result
147
+
148
+
149
+ class OpenAIEmbedder(Embedder):
150
+ """OpenAI embedder."""
151
+
152
+ def __init__(
153
+ self, openai_client: AsyncOpenAI, model_name: str = "text-embedding-3-small"
154
+ ) -> None:
155
+ """Initialize the OpenAI embedder."""
156
+ self.log = structlog.get_logger(__name__)
157
+ self.log.info("Creating OpenAI embedder", model_name=model_name)
158
+ self.openai_client = openai_client
159
+ self.encoding = tiktoken.encoding_for_model(model_name)
160
+ self.log = structlog.get_logger(__name__)
161
+
162
+ async def embed(
163
+ self,
164
+ data: list[EmbeddingInput],
165
+ ) -> AsyncGenerator[EmbeddingOutput, None]:
166
+ """Embed a list of documents."""
167
+ # First split the list into a list of list where each sublist has fewer than
168
+ # max tokens.
169
+ batched_data = _split_sub_batches(self.encoding, data)
170
+
171
+ # Process batches in parallel with a semaphore to limit concurrent requests
172
+ sem = asyncio.Semaphore(OPENAI_NUM_PARALLEL_TASKS)
173
+
174
+ async def process_batch(batch: list[EmbeddingInput]) -> list[EmbeddingOutput]:
175
+ async with sem:
176
+ try:
177
+ response = await self.openai_client.embeddings.create(
178
+ model="text-embedding-3-small",
179
+ input=[i.text for i in batch],
180
+ )
181
+ return [
182
+ EmbeddingOutput(i.id, x.embedding)
183
+ for i, x in zip(batch, response.data, strict=False)
184
+ ]
185
+ except Exception as e:
186
+ self.log.exception("Error embedding batch", error=str(e))
187
+ return []
188
+
189
+ # Create tasks for all batches
190
+ tasks = [process_batch(batch) for batch in batched_data]
191
+
192
+ # Process all batches and yield results as they complete
193
+ for task in asyncio.as_completed(tasks):
194
+ embeddings = await task
195
+ for e in embeddings:
196
+ yield e
197
+
198
+ async def query(self, data: list[str]) -> AsyncGenerator[list[float], None]:
199
+ """Query the embedding model."""
200
+ async for e in self.embed(
201
+ [EmbeddingInput(i, text) for i, text in enumerate(data)]
202
+ ):
203
+ yield e.embedding
@@ -31,8 +31,8 @@ class Snippet(Base, CommonMixin):
31
31
 
32
32
  __tablename__ = "snippets"
33
33
 
34
- file_id: Mapped[int] = mapped_column(ForeignKey("files.id"))
35
- index_id: Mapped[int] = mapped_column(ForeignKey("indexes.id"))
34
+ file_id: Mapped[int] = mapped_column(ForeignKey("files.id"), index=True)
35
+ index_id: Mapped[int] = mapped_column(ForeignKey("indexes.id"), index=True)
36
36
  content: Mapped[str] = mapped_column(UnicodeText, default="")
37
37
 
38
38
  def __init__(self, file_id: int, index_id: int, content: str) -> None:
@@ -11,9 +11,9 @@ from typing import TypeVar
11
11
  from sqlalchemy import delete, func, select
12
12
  from sqlalchemy.ext.asyncio import AsyncSession
13
13
 
14
- from kodit.embedding.models import Embedding
15
- from kodit.indexing.models import Index, Snippet
16
- from kodit.sources.models import File, Source
14
+ from kodit.embedding.embedding_models import Embedding
15
+ from kodit.indexing.indexing_models import Index, Snippet
16
+ from kodit.source.source_models import File, Source
17
17
 
18
18
  T = TypeVar("T")
19
19
 
@@ -156,14 +156,14 @@ class IndexRepository:
156
156
  result = await self.session.execute(query)
157
157
  return list(result.scalars())
158
158
 
159
- async def get_all_snippets(self) -> list[Snippet]:
159
+ async def get_all_snippets(self, index_id: int) -> list[Snippet]:
160
160
  """Get all snippets.
161
161
 
162
162
  Returns:
163
163
  A list of all snippets.
164
164
 
165
165
  """
166
- query = select(Snippet).order_by(Snippet.id)
166
+ query = select(Snippet).where(Snippet.index_id == index_id).order_by(Snippet.id)
167
167
  result = await self.session.execute(query)
168
168
  return list(result.scalars())
169
169
 
@@ -14,12 +14,12 @@ import structlog
14
14
  from tqdm.asyncio import tqdm
15
15
 
16
16
  from kodit.bm25.bm25 import BM25Service
17
- from kodit.embedding.embedding import EmbeddingService
18
- from kodit.embedding.models import Embedding, EmbeddingType
19
- from kodit.indexing.models import Snippet
20
- from kodit.indexing.repository import IndexRepository
17
+ from kodit.embedding.embedding import Embedder, EmbeddingInput
18
+ from kodit.embedding.embedding_models import Embedding, EmbeddingType
19
+ from kodit.indexing.indexing_models import Snippet
20
+ from kodit.indexing.indexing_repository import IndexRepository
21
21
  from kodit.snippets.snippets import SnippetService
22
- from kodit.sources.service import SourceService
22
+ from kodit.source.source_service import SourceService
23
23
 
24
24
  # List of MIME types that are blacklisted from being indexed
25
25
  MIME_BLACKLIST = ["unknown/unknown"]
@@ -52,7 +52,7 @@ class IndexService:
52
52
  repository: IndexRepository,
53
53
  source_service: SourceService,
54
54
  data_dir: Path,
55
- embedding_model_name: str,
55
+ embedding_service: Embedder,
56
56
  ) -> None:
57
57
  """Initialize the index service.
58
58
 
@@ -66,7 +66,7 @@ class IndexService:
66
66
  self.snippet_service = SnippetService()
67
67
  self.log = structlog.get_logger(__name__)
68
68
  self.bm25 = BM25Service(data_dir)
69
- self.code_embedding_service = EmbeddingService(model_name=embedding_model_name)
69
+ self.code_embedding_service = embedding_service
70
70
 
71
71
  async def create(self, source_id: int) -> IndexView:
72
72
  """Create a new index for a source.
@@ -132,7 +132,7 @@ class IndexService:
132
132
  # Create snippets for supported file types
133
133
  await self._create_snippets(index_id)
134
134
 
135
- snippets = await self.repository.get_all_snippets()
135
+ snippets = await self.repository.get_all_snippets(index_id)
136
136
 
137
137
  self.log.info("Creating keyword index")
138
138
  self.bm25.index(
@@ -143,12 +143,17 @@ class IndexService:
143
143
  )
144
144
 
145
145
  self.log.info("Creating semantic code index")
146
- for snippet in tqdm(snippets, total=len(snippets), leave=False):
147
- embedding = next(self.code_embedding_service.embed([snippet.content]))
146
+ async for e in tqdm(
147
+ self.code_embedding_service.embed(
148
+ [EmbeddingInput(snippet.id, snippet.content) for snippet in snippets]
149
+ ),
150
+ total=len(snippets),
151
+ leave=False,
152
+ ):
148
153
  await self.repository.add_embedding(
149
154
  Embedding(
150
- snippet_id=snippet.id,
151
- embedding=embedding,
155
+ snippet_id=e.id,
156
+ embedding=e.embedding,
152
157
  type=EmbeddingType.CODE,
153
158
  )
154
159
  )
@@ -93,6 +93,7 @@ def configure_logging(app_context: AppContext) -> None:
93
93
  "uvicorn.access",
94
94
  "bm25s",
95
95
  "sentence_transformers.SentenceTransformer",
96
+ "httpx",
96
97
  ]:
97
98
  if root_logger.getEffectiveLevel() == logging.DEBUG:
98
99
  logging.getLogger(_log).handlers.clear()