kinemotion 0.17.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kinemotion might be problematic. Click here for more details.
- kinemotion/__init__.py +31 -0
- kinemotion/api.py +946 -0
- kinemotion/cli.py +22 -0
- kinemotion/cmj/__init__.py +5 -0
- kinemotion/cmj/analysis.py +528 -0
- kinemotion/cmj/cli.py +543 -0
- kinemotion/cmj/debug_overlay.py +463 -0
- kinemotion/cmj/joint_angles.py +290 -0
- kinemotion/cmj/kinematics.py +191 -0
- kinemotion/core/__init__.py +40 -0
- kinemotion/core/auto_tuning.py +325 -0
- kinemotion/core/cli_utils.py +212 -0
- kinemotion/core/debug_overlay_utils.py +143 -0
- kinemotion/core/filtering.py +345 -0
- kinemotion/core/pose.py +259 -0
- kinemotion/core/smoothing.py +412 -0
- kinemotion/core/video_io.py +186 -0
- kinemotion/dropjump/__init__.py +29 -0
- kinemotion/dropjump/analysis.py +790 -0
- kinemotion/dropjump/cli.py +704 -0
- kinemotion/dropjump/debug_overlay.py +179 -0
- kinemotion/dropjump/kinematics.py +446 -0
- kinemotion/py.typed +0 -0
- kinemotion-0.17.0.dist-info/METADATA +529 -0
- kinemotion-0.17.0.dist-info/RECORD +28 -0
- kinemotion-0.17.0.dist-info/WHEEL +4 -0
- kinemotion-0.17.0.dist-info/entry_points.txt +2 -0
- kinemotion-0.17.0.dist-info/licenses/LICENSE +21 -0
|
@@ -0,0 +1,790 @@
|
|
|
1
|
+
"""Ground contact detection logic for drop-jump analysis."""
|
|
2
|
+
|
|
3
|
+
from enum import Enum
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from ..core.smoothing import (
|
|
8
|
+
compute_acceleration_from_derivative,
|
|
9
|
+
compute_velocity_from_derivative,
|
|
10
|
+
)
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class ContactState(Enum):
|
|
14
|
+
"""States for foot-ground contact."""
|
|
15
|
+
|
|
16
|
+
IN_AIR = "in_air"
|
|
17
|
+
ON_GROUND = "on_ground"
|
|
18
|
+
UNKNOWN = "unknown"
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def calculate_adaptive_threshold(
|
|
22
|
+
positions: np.ndarray,
|
|
23
|
+
fps: float,
|
|
24
|
+
baseline_duration: float = 3.0,
|
|
25
|
+
multiplier: float = 1.5,
|
|
26
|
+
smoothing_window: int = 5,
|
|
27
|
+
polyorder: int = 2,
|
|
28
|
+
) -> float:
|
|
29
|
+
"""
|
|
30
|
+
Calculate adaptive velocity threshold based on baseline motion characteristics.
|
|
31
|
+
|
|
32
|
+
Analyzes the first few seconds of video (assumed to be relatively stationary,
|
|
33
|
+
e.g., athlete standing on box) to determine the noise floor, then sets threshold
|
|
34
|
+
as a multiple of this baseline noise.
|
|
35
|
+
|
|
36
|
+
This adapts to:
|
|
37
|
+
- Different camera distances (closer = more pixel movement)
|
|
38
|
+
- Different lighting conditions (affects tracking quality)
|
|
39
|
+
- Different frame rates (higher fps = smoother motion)
|
|
40
|
+
- Video compression artifacts
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
positions: Array of vertical positions (0-1 normalized)
|
|
44
|
+
fps: Video frame rate
|
|
45
|
+
baseline_duration: Duration in seconds to analyze for baseline (default: 3.0s)
|
|
46
|
+
multiplier: Factor above baseline noise to set threshold (default: 1.5x)
|
|
47
|
+
smoothing_window: Window size for velocity computation
|
|
48
|
+
polyorder: Polynomial order for Savitzky-Golay filter (default: 2)
|
|
49
|
+
|
|
50
|
+
Returns:
|
|
51
|
+
Adaptive velocity threshold value
|
|
52
|
+
|
|
53
|
+
Example:
|
|
54
|
+
At 30fps with 3s baseline:
|
|
55
|
+
- Analyzes first 90 frames
|
|
56
|
+
- Computes velocity for this "stationary" period
|
|
57
|
+
- 95th percentile velocity = 0.012 (noise level)
|
|
58
|
+
- Threshold = 0.012 × 1.5 = 0.018
|
|
59
|
+
"""
|
|
60
|
+
if len(positions) < 2:
|
|
61
|
+
return 0.02 # Fallback to default
|
|
62
|
+
|
|
63
|
+
# Calculate number of frames for baseline analysis
|
|
64
|
+
baseline_frames = int(fps * baseline_duration)
|
|
65
|
+
baseline_frames = min(baseline_frames, len(positions))
|
|
66
|
+
|
|
67
|
+
if baseline_frames < smoothing_window:
|
|
68
|
+
return 0.02 # Not enough data, use default
|
|
69
|
+
|
|
70
|
+
# Extract baseline period (assumed relatively stationary)
|
|
71
|
+
baseline_positions = positions[:baseline_frames]
|
|
72
|
+
|
|
73
|
+
# Compute velocity for baseline period using derivative
|
|
74
|
+
baseline_velocities = compute_velocity_from_derivative(
|
|
75
|
+
baseline_positions, window_length=smoothing_window, polyorder=polyorder
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
# Calculate noise floor as 95th percentile of baseline velocities
|
|
79
|
+
# Using 95th percentile instead of max to be robust against outliers
|
|
80
|
+
noise_floor = float(np.percentile(np.abs(baseline_velocities), 95))
|
|
81
|
+
|
|
82
|
+
# Set threshold as multiplier of noise floor
|
|
83
|
+
# Minimum threshold to avoid being too sensitive
|
|
84
|
+
adaptive_threshold = max(noise_floor * multiplier, 0.005)
|
|
85
|
+
|
|
86
|
+
# Maximum threshold to ensure we still detect contact
|
|
87
|
+
adaptive_threshold = min(adaptive_threshold, 0.05)
|
|
88
|
+
|
|
89
|
+
return adaptive_threshold
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def _find_stable_baseline(
|
|
93
|
+
positions: np.ndarray,
|
|
94
|
+
min_stable_frames: int,
|
|
95
|
+
stability_threshold: float = 0.01,
|
|
96
|
+
debug: bool = False,
|
|
97
|
+
) -> tuple[int, float]:
|
|
98
|
+
"""Find first stable period and return baseline position.
|
|
99
|
+
|
|
100
|
+
Returns:
|
|
101
|
+
Tuple of (baseline_start_frame, baseline_position). Returns (-1, 0.0) if not found.
|
|
102
|
+
"""
|
|
103
|
+
stable_window = min_stable_frames
|
|
104
|
+
|
|
105
|
+
for start_idx in range(0, len(positions) - stable_window, 5):
|
|
106
|
+
window = positions[start_idx : start_idx + stable_window]
|
|
107
|
+
window_std = float(np.std(window))
|
|
108
|
+
|
|
109
|
+
if window_std < stability_threshold:
|
|
110
|
+
baseline_start = start_idx
|
|
111
|
+
baseline_position = float(np.median(window))
|
|
112
|
+
|
|
113
|
+
if debug:
|
|
114
|
+
end_frame = baseline_start + stable_window - 1
|
|
115
|
+
print("[detect_drop_start] Found stable period:")
|
|
116
|
+
print(f" frames {baseline_start}-{end_frame}")
|
|
117
|
+
print(f" baseline_position: {baseline_position:.4f}")
|
|
118
|
+
print(f" baseline_std: {window_std:.4f} < {stability_threshold:.4f}")
|
|
119
|
+
|
|
120
|
+
return baseline_start, baseline_position
|
|
121
|
+
|
|
122
|
+
if debug:
|
|
123
|
+
print(
|
|
124
|
+
f"[detect_drop_start] No stable period found "
|
|
125
|
+
f"(variance always > {stability_threshold:.4f})"
|
|
126
|
+
)
|
|
127
|
+
return -1, 0.0
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def _find_drop_from_baseline(
|
|
131
|
+
positions: np.ndarray,
|
|
132
|
+
baseline_start: int,
|
|
133
|
+
baseline_position: float,
|
|
134
|
+
stable_window: int,
|
|
135
|
+
position_change_threshold: float,
|
|
136
|
+
smoothing_window: int,
|
|
137
|
+
debug: bool = False,
|
|
138
|
+
) -> int:
|
|
139
|
+
"""Find drop start after stable baseline period.
|
|
140
|
+
|
|
141
|
+
Returns:
|
|
142
|
+
Drop frame index, or 0 if not found.
|
|
143
|
+
"""
|
|
144
|
+
search_start = baseline_start + stable_window
|
|
145
|
+
window_size = max(3, smoothing_window)
|
|
146
|
+
|
|
147
|
+
for i in range(search_start, len(positions) - window_size):
|
|
148
|
+
window_positions = positions[i : i + window_size]
|
|
149
|
+
avg_position = float(np.mean(window_positions))
|
|
150
|
+
position_change = avg_position - baseline_position
|
|
151
|
+
|
|
152
|
+
if position_change > position_change_threshold:
|
|
153
|
+
drop_frame = max(baseline_start, i - window_size)
|
|
154
|
+
|
|
155
|
+
if debug:
|
|
156
|
+
print(f"[detect_drop_start] Drop detected at frame {drop_frame}")
|
|
157
|
+
print(
|
|
158
|
+
f" position_change: {position_change:.4f} > "
|
|
159
|
+
f"{position_change_threshold:.4f}"
|
|
160
|
+
)
|
|
161
|
+
print(
|
|
162
|
+
f" avg_position: {avg_position:.4f} vs "
|
|
163
|
+
f"baseline: {baseline_position:.4f}"
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
return drop_frame
|
|
167
|
+
|
|
168
|
+
if debug:
|
|
169
|
+
print("[detect_drop_start] No drop detected after stable period")
|
|
170
|
+
return 0
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
def detect_drop_start(
|
|
174
|
+
positions: np.ndarray,
|
|
175
|
+
fps: float,
|
|
176
|
+
min_stationary_duration: float = 1.0,
|
|
177
|
+
position_change_threshold: float = 0.02,
|
|
178
|
+
smoothing_window: int = 5,
|
|
179
|
+
debug: bool = False,
|
|
180
|
+
) -> int:
|
|
181
|
+
"""
|
|
182
|
+
Detect when the drop jump actually starts by finding stable period then detecting drop.
|
|
183
|
+
|
|
184
|
+
Strategy:
|
|
185
|
+
1. Scan forward to find first STABLE period (low variance over N frames)
|
|
186
|
+
2. Use that stable period as baseline
|
|
187
|
+
3. Detect when position starts changing significantly from baseline
|
|
188
|
+
|
|
189
|
+
This handles videos where athlete steps onto box at start (unstable beginning).
|
|
190
|
+
|
|
191
|
+
Args:
|
|
192
|
+
positions: Array of vertical positions (0-1 normalized, y increases downward)
|
|
193
|
+
fps: Video frame rate
|
|
194
|
+
min_stationary_duration: Minimum duration (seconds) of stable period (default: 1.0s)
|
|
195
|
+
position_change_threshold: Position change indicating start of drop
|
|
196
|
+
(default: 0.02 = 2% of frame)
|
|
197
|
+
smoothing_window: Window for computing position variance
|
|
198
|
+
debug: Print debug information (default: False)
|
|
199
|
+
|
|
200
|
+
Returns:
|
|
201
|
+
Frame index where drop starts (or 0 if no clear stable period found)
|
|
202
|
+
|
|
203
|
+
Example:
|
|
204
|
+
- Frames 0-14: Stepping onto box (noisy, unstable)
|
|
205
|
+
- Frames 15-119: Standing on box (stable, low variance)
|
|
206
|
+
- Frame 119: Drop begins (position changes significantly)
|
|
207
|
+
- Returns: 119
|
|
208
|
+
"""
|
|
209
|
+
min_stable_frames = int(fps * min_stationary_duration)
|
|
210
|
+
if len(positions) < min_stable_frames + 30:
|
|
211
|
+
if debug:
|
|
212
|
+
print(
|
|
213
|
+
f"[detect_drop_start] Video too short: {len(positions)} < "
|
|
214
|
+
f"{min_stable_frames + 30}"
|
|
215
|
+
)
|
|
216
|
+
return 0
|
|
217
|
+
|
|
218
|
+
# Find stable baseline period
|
|
219
|
+
baseline_start, baseline_position = _find_stable_baseline(
|
|
220
|
+
positions, min_stable_frames, debug=debug
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
if baseline_start < 0:
|
|
224
|
+
return 0
|
|
225
|
+
|
|
226
|
+
# Find drop from baseline
|
|
227
|
+
return _find_drop_from_baseline(
|
|
228
|
+
positions,
|
|
229
|
+
baseline_start,
|
|
230
|
+
baseline_position,
|
|
231
|
+
min_stable_frames,
|
|
232
|
+
position_change_threshold,
|
|
233
|
+
smoothing_window,
|
|
234
|
+
debug,
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def detect_ground_contact(
|
|
239
|
+
foot_positions: np.ndarray,
|
|
240
|
+
velocity_threshold: float = 0.02,
|
|
241
|
+
min_contact_frames: int = 3,
|
|
242
|
+
visibility_threshold: float = 0.5,
|
|
243
|
+
visibilities: np.ndarray | None = None,
|
|
244
|
+
window_length: int = 5,
|
|
245
|
+
polyorder: int = 2,
|
|
246
|
+
) -> list[ContactState]:
|
|
247
|
+
"""
|
|
248
|
+
Detect when feet are in contact with ground based on vertical motion.
|
|
249
|
+
|
|
250
|
+
Uses derivative-based velocity calculation via Savitzky-Golay filter for smooth,
|
|
251
|
+
accurate velocity estimates. This is consistent with the velocity calculation used
|
|
252
|
+
throughout the pipeline for sub-frame interpolation and curvature analysis.
|
|
253
|
+
|
|
254
|
+
Args:
|
|
255
|
+
foot_positions: Array of foot y-positions (normalized, 0-1, where 1 is bottom)
|
|
256
|
+
velocity_threshold: Threshold for vertical velocity to consider stationary
|
|
257
|
+
min_contact_frames: Minimum consecutive frames to confirm contact
|
|
258
|
+
visibility_threshold: Minimum visibility score to trust landmark
|
|
259
|
+
visibilities: Array of visibility scores for each frame
|
|
260
|
+
window_length: Window size for velocity derivative calculation (must be odd)
|
|
261
|
+
polyorder: Polynomial order for Savitzky-Golay filter (default: 2)
|
|
262
|
+
|
|
263
|
+
Returns:
|
|
264
|
+
List of ContactState for each frame
|
|
265
|
+
"""
|
|
266
|
+
n_frames = len(foot_positions)
|
|
267
|
+
states = [ContactState.UNKNOWN] * n_frames
|
|
268
|
+
|
|
269
|
+
if n_frames < 2:
|
|
270
|
+
return states
|
|
271
|
+
|
|
272
|
+
# Compute vertical velocity using derivative-based method
|
|
273
|
+
# This provides smoother, more accurate velocity estimates than frame-to-frame differences
|
|
274
|
+
# and is consistent with the velocity calculation used for sub-frame interpolation
|
|
275
|
+
velocities = compute_velocity_from_derivative(
|
|
276
|
+
foot_positions, window_length=window_length, polyorder=polyorder
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
# Detect potential contact frames based on low velocity
|
|
280
|
+
is_stationary = np.abs(velocities) < velocity_threshold
|
|
281
|
+
|
|
282
|
+
# Apply visibility filter
|
|
283
|
+
if visibilities is not None:
|
|
284
|
+
is_visible = visibilities > visibility_threshold
|
|
285
|
+
is_stationary = is_stationary & is_visible
|
|
286
|
+
|
|
287
|
+
# Apply minimum contact duration filter
|
|
288
|
+
contact_frames = []
|
|
289
|
+
current_run = []
|
|
290
|
+
|
|
291
|
+
for i, stationary in enumerate(is_stationary):
|
|
292
|
+
if stationary:
|
|
293
|
+
current_run.append(i)
|
|
294
|
+
else:
|
|
295
|
+
if len(current_run) >= min_contact_frames:
|
|
296
|
+
contact_frames.extend(current_run)
|
|
297
|
+
current_run = []
|
|
298
|
+
|
|
299
|
+
# Don't forget the last run
|
|
300
|
+
if len(current_run) >= min_contact_frames:
|
|
301
|
+
contact_frames.extend(current_run)
|
|
302
|
+
|
|
303
|
+
# Set states
|
|
304
|
+
for i in range(n_frames):
|
|
305
|
+
if visibilities is not None and visibilities[i] < visibility_threshold:
|
|
306
|
+
states[i] = ContactState.UNKNOWN
|
|
307
|
+
elif i in contact_frames:
|
|
308
|
+
states[i] = ContactState.ON_GROUND
|
|
309
|
+
else:
|
|
310
|
+
states[i] = ContactState.IN_AIR
|
|
311
|
+
|
|
312
|
+
return states
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
def find_contact_phases(
|
|
316
|
+
contact_states: list[ContactState],
|
|
317
|
+
) -> list[tuple[int, int, ContactState]]:
|
|
318
|
+
"""
|
|
319
|
+
Identify continuous phases of contact/flight.
|
|
320
|
+
|
|
321
|
+
Args:
|
|
322
|
+
contact_states: List of ContactState for each frame
|
|
323
|
+
|
|
324
|
+
Returns:
|
|
325
|
+
List of (start_frame, end_frame, state) tuples for each phase
|
|
326
|
+
"""
|
|
327
|
+
phases: list[tuple[int, int, ContactState]] = []
|
|
328
|
+
if not contact_states:
|
|
329
|
+
return phases
|
|
330
|
+
|
|
331
|
+
current_state = contact_states[0]
|
|
332
|
+
phase_start = 0
|
|
333
|
+
|
|
334
|
+
for i in range(1, len(contact_states)):
|
|
335
|
+
if contact_states[i] != current_state:
|
|
336
|
+
# Phase transition
|
|
337
|
+
phases.append((phase_start, i - 1, current_state))
|
|
338
|
+
current_state = contact_states[i]
|
|
339
|
+
phase_start = i
|
|
340
|
+
|
|
341
|
+
# Don't forget the last phase
|
|
342
|
+
phases.append((phase_start, len(contact_states) - 1, current_state))
|
|
343
|
+
|
|
344
|
+
return phases
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+
def interpolate_threshold_crossing(
|
|
348
|
+
vel_before: float,
|
|
349
|
+
vel_after: float,
|
|
350
|
+
velocity_threshold: float,
|
|
351
|
+
) -> float:
|
|
352
|
+
"""
|
|
353
|
+
Find fractional offset where velocity crosses threshold between two frames.
|
|
354
|
+
|
|
355
|
+
Uses linear interpolation assuming velocity changes linearly between frames.
|
|
356
|
+
|
|
357
|
+
Args:
|
|
358
|
+
vel_before: Velocity at frame boundary N (absolute value)
|
|
359
|
+
vel_after: Velocity at frame boundary N+1 (absolute value)
|
|
360
|
+
velocity_threshold: Threshold value
|
|
361
|
+
|
|
362
|
+
Returns:
|
|
363
|
+
Fractional offset from frame N (0.0 to 1.0)
|
|
364
|
+
"""
|
|
365
|
+
# Handle edge cases
|
|
366
|
+
if abs(vel_after - vel_before) < 1e-9: # Velocity not changing
|
|
367
|
+
return 0.5
|
|
368
|
+
|
|
369
|
+
# Linear interpolation: at what fraction t does velocity equal threshold?
|
|
370
|
+
# vel(t) = vel_before + t * (vel_after - vel_before)
|
|
371
|
+
# Solve for t when vel(t) = threshold:
|
|
372
|
+
# threshold = vel_before + t * (vel_after - vel_before)
|
|
373
|
+
# t = (threshold - vel_before) / (vel_after - vel_before)
|
|
374
|
+
|
|
375
|
+
t = (velocity_threshold - vel_before) / (vel_after - vel_before)
|
|
376
|
+
|
|
377
|
+
# Clamp to [0, 1] range
|
|
378
|
+
return float(max(0.0, min(1.0, t)))
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
def _interpolate_phase_start(
|
|
382
|
+
start_idx: int,
|
|
383
|
+
state: ContactState,
|
|
384
|
+
velocities: np.ndarray,
|
|
385
|
+
velocity_threshold: float,
|
|
386
|
+
) -> float:
|
|
387
|
+
"""Interpolate start boundary of a phase with sub-frame precision.
|
|
388
|
+
|
|
389
|
+
Returns:
|
|
390
|
+
Fractional start frame, or float(start_idx) if no interpolation.
|
|
391
|
+
"""
|
|
392
|
+
if start_idx <= 0 or start_idx >= len(velocities):
|
|
393
|
+
return float(start_idx)
|
|
394
|
+
|
|
395
|
+
vel_before = velocities[start_idx - 1]
|
|
396
|
+
vel_at = velocities[start_idx]
|
|
397
|
+
|
|
398
|
+
# Check threshold crossing based on state
|
|
399
|
+
is_landing = (
|
|
400
|
+
state == ContactState.ON_GROUND and vel_before > velocity_threshold > vel_at
|
|
401
|
+
)
|
|
402
|
+
is_takeoff = (
|
|
403
|
+
state == ContactState.IN_AIR and vel_before < velocity_threshold < vel_at
|
|
404
|
+
)
|
|
405
|
+
|
|
406
|
+
if is_landing or is_takeoff:
|
|
407
|
+
offset = interpolate_threshold_crossing(vel_before, vel_at, velocity_threshold)
|
|
408
|
+
return (start_idx - 1) + offset
|
|
409
|
+
|
|
410
|
+
return float(start_idx)
|
|
411
|
+
|
|
412
|
+
|
|
413
|
+
def _interpolate_phase_end(
|
|
414
|
+
end_idx: int,
|
|
415
|
+
state: ContactState,
|
|
416
|
+
velocities: np.ndarray,
|
|
417
|
+
velocity_threshold: float,
|
|
418
|
+
max_idx: int,
|
|
419
|
+
) -> float:
|
|
420
|
+
"""Interpolate end boundary of a phase with sub-frame precision.
|
|
421
|
+
|
|
422
|
+
Returns:
|
|
423
|
+
Fractional end frame, or float(end_idx) if no interpolation.
|
|
424
|
+
"""
|
|
425
|
+
if end_idx >= max_idx - 1 or end_idx + 1 >= len(velocities):
|
|
426
|
+
return float(end_idx)
|
|
427
|
+
|
|
428
|
+
vel_at = velocities[end_idx]
|
|
429
|
+
vel_after = velocities[end_idx + 1]
|
|
430
|
+
|
|
431
|
+
# Check threshold crossing based on state
|
|
432
|
+
is_takeoff = (
|
|
433
|
+
state == ContactState.ON_GROUND and vel_at < velocity_threshold < vel_after
|
|
434
|
+
)
|
|
435
|
+
is_landing = (
|
|
436
|
+
state == ContactState.IN_AIR and vel_at > velocity_threshold > vel_after
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
if is_takeoff or is_landing:
|
|
440
|
+
offset = interpolate_threshold_crossing(vel_at, vel_after, velocity_threshold)
|
|
441
|
+
return end_idx + offset
|
|
442
|
+
|
|
443
|
+
return float(end_idx)
|
|
444
|
+
|
|
445
|
+
|
|
446
|
+
def find_interpolated_phase_transitions(
|
|
447
|
+
foot_positions: np.ndarray,
|
|
448
|
+
contact_states: list[ContactState],
|
|
449
|
+
velocity_threshold: float,
|
|
450
|
+
smoothing_window: int = 5,
|
|
451
|
+
) -> list[tuple[float, float, ContactState]]:
|
|
452
|
+
"""
|
|
453
|
+
Find contact phases with sub-frame interpolation for precise timing.
|
|
454
|
+
|
|
455
|
+
Uses derivative-based velocity from smoothed trajectory for interpolation.
|
|
456
|
+
This provides much smoother velocity estimates than frame-to-frame differences,
|
|
457
|
+
leading to more accurate threshold crossing detection.
|
|
458
|
+
|
|
459
|
+
Args:
|
|
460
|
+
foot_positions: Array of foot y-positions (normalized, 0-1)
|
|
461
|
+
contact_states: List of ContactState for each frame
|
|
462
|
+
velocity_threshold: Threshold used for contact detection
|
|
463
|
+
smoothing_window: Window size for velocity smoothing (must be odd)
|
|
464
|
+
|
|
465
|
+
Returns:
|
|
466
|
+
List of (start_frame, end_frame, state) tuples with fractional frame indices
|
|
467
|
+
"""
|
|
468
|
+
phases = find_contact_phases(contact_states)
|
|
469
|
+
if not phases or len(foot_positions) < 2:
|
|
470
|
+
return []
|
|
471
|
+
|
|
472
|
+
velocities = compute_velocity_from_derivative(
|
|
473
|
+
foot_positions, window_length=smoothing_window, polyorder=2
|
|
474
|
+
)
|
|
475
|
+
|
|
476
|
+
interpolated_phases: list[tuple[float, float, ContactState]] = []
|
|
477
|
+
|
|
478
|
+
for start_idx, end_idx, state in phases:
|
|
479
|
+
start_frac = _interpolate_phase_start(
|
|
480
|
+
start_idx, state, velocities, velocity_threshold
|
|
481
|
+
)
|
|
482
|
+
end_frac = _interpolate_phase_end(
|
|
483
|
+
end_idx, state, velocities, velocity_threshold, len(foot_positions)
|
|
484
|
+
)
|
|
485
|
+
interpolated_phases.append((start_frac, end_frac, state))
|
|
486
|
+
|
|
487
|
+
return interpolated_phases
|
|
488
|
+
|
|
489
|
+
|
|
490
|
+
def refine_transition_with_curvature(
|
|
491
|
+
foot_positions: np.ndarray,
|
|
492
|
+
estimated_frame: float,
|
|
493
|
+
transition_type: str,
|
|
494
|
+
search_window: int = 3,
|
|
495
|
+
smoothing_window: int = 5,
|
|
496
|
+
polyorder: int = 2,
|
|
497
|
+
) -> float:
|
|
498
|
+
"""
|
|
499
|
+
Refine phase transition timing using trajectory curvature analysis.
|
|
500
|
+
|
|
501
|
+
Looks for characteristic acceleration patterns near estimated transition:
|
|
502
|
+
- Landing: Large acceleration spike (rapid deceleration on impact)
|
|
503
|
+
- Takeoff: Acceleration change (transition from static to upward motion)
|
|
504
|
+
|
|
505
|
+
Args:
|
|
506
|
+
foot_positions: Array of foot y-positions (normalized, 0-1)
|
|
507
|
+
estimated_frame: Initial estimate of transition frame (from velocity)
|
|
508
|
+
transition_type: Type of transition ("landing" or "takeoff")
|
|
509
|
+
search_window: Number of frames to search around estimate
|
|
510
|
+
smoothing_window: Window size for acceleration computation
|
|
511
|
+
polyorder: Polynomial order for Savitzky-Golay filter (default: 2)
|
|
512
|
+
|
|
513
|
+
Returns:
|
|
514
|
+
Refined fractional frame index
|
|
515
|
+
"""
|
|
516
|
+
if len(foot_positions) < smoothing_window:
|
|
517
|
+
return estimated_frame
|
|
518
|
+
|
|
519
|
+
# Compute acceleration (second derivative)
|
|
520
|
+
acceleration = compute_acceleration_from_derivative(
|
|
521
|
+
foot_positions, window_length=smoothing_window, polyorder=polyorder
|
|
522
|
+
)
|
|
523
|
+
|
|
524
|
+
# Define search range around estimated transition
|
|
525
|
+
est_int = int(estimated_frame)
|
|
526
|
+
search_start = max(0, est_int - search_window)
|
|
527
|
+
search_end = min(len(acceleration), est_int + search_window + 1)
|
|
528
|
+
|
|
529
|
+
if search_end <= search_start:
|
|
530
|
+
return estimated_frame
|
|
531
|
+
|
|
532
|
+
# Extract acceleration in search window
|
|
533
|
+
accel_window = acceleration[search_start:search_end]
|
|
534
|
+
|
|
535
|
+
if len(accel_window) == 0:
|
|
536
|
+
return estimated_frame
|
|
537
|
+
|
|
538
|
+
if transition_type == "landing":
|
|
539
|
+
# Landing: Look for large magnitude acceleration (impact deceleration)
|
|
540
|
+
# Find frame with maximum absolute acceleration
|
|
541
|
+
peak_idx = np.argmax(np.abs(accel_window))
|
|
542
|
+
refined_frame = float(search_start + peak_idx)
|
|
543
|
+
|
|
544
|
+
elif transition_type == "takeoff":
|
|
545
|
+
# Takeoff: Look for acceleration magnitude change
|
|
546
|
+
# Find frame with large acceleration change (derivative of acceleration)
|
|
547
|
+
if len(accel_window) < 2:
|
|
548
|
+
return estimated_frame
|
|
549
|
+
|
|
550
|
+
accel_diff = np.abs(np.diff(accel_window))
|
|
551
|
+
peak_idx = np.argmax(accel_diff)
|
|
552
|
+
refined_frame = float(search_start + peak_idx)
|
|
553
|
+
|
|
554
|
+
else:
|
|
555
|
+
return estimated_frame
|
|
556
|
+
|
|
557
|
+
# Blend with original estimate (don't stray too far)
|
|
558
|
+
# 70% curvature-based, 30% velocity-based
|
|
559
|
+
blend_factor = 0.7
|
|
560
|
+
refined_frame = blend_factor * refined_frame + (1 - blend_factor) * estimated_frame
|
|
561
|
+
|
|
562
|
+
return refined_frame
|
|
563
|
+
|
|
564
|
+
|
|
565
|
+
def find_interpolated_phase_transitions_with_curvature(
|
|
566
|
+
foot_positions: np.ndarray,
|
|
567
|
+
contact_states: list[ContactState],
|
|
568
|
+
velocity_threshold: float,
|
|
569
|
+
smoothing_window: int = 5,
|
|
570
|
+
polyorder: int = 2,
|
|
571
|
+
use_curvature: bool = True,
|
|
572
|
+
) -> list[tuple[float, float, ContactState]]:
|
|
573
|
+
"""
|
|
574
|
+
Find contact phases with sub-frame interpolation and curvature refinement.
|
|
575
|
+
|
|
576
|
+
Combines three methods for maximum accuracy:
|
|
577
|
+
1. Velocity thresholding (coarse integer frame detection)
|
|
578
|
+
2. Velocity interpolation (sub-frame precision)
|
|
579
|
+
3. Curvature analysis (refinement based on acceleration patterns)
|
|
580
|
+
|
|
581
|
+
Args:
|
|
582
|
+
foot_positions: Array of foot y-positions (normalized, 0-1)
|
|
583
|
+
contact_states: List of ContactState for each frame
|
|
584
|
+
velocity_threshold: Threshold used for contact detection
|
|
585
|
+
smoothing_window: Window size for velocity/acceleration smoothing
|
|
586
|
+
polyorder: Polynomial order for Savitzky-Golay filter (default: 2)
|
|
587
|
+
use_curvature: Whether to apply curvature-based refinement
|
|
588
|
+
|
|
589
|
+
Returns:
|
|
590
|
+
List of (start_frame, end_frame, state) tuples with fractional frame indices
|
|
591
|
+
"""
|
|
592
|
+
# Get interpolated phases using velocity
|
|
593
|
+
interpolated_phases = find_interpolated_phase_transitions(
|
|
594
|
+
foot_positions, contact_states, velocity_threshold, smoothing_window
|
|
595
|
+
)
|
|
596
|
+
|
|
597
|
+
if not use_curvature or len(interpolated_phases) == 0:
|
|
598
|
+
return interpolated_phases
|
|
599
|
+
|
|
600
|
+
# Refine phase boundaries using curvature analysis
|
|
601
|
+
refined_phases: list[tuple[float, float, ContactState]] = []
|
|
602
|
+
|
|
603
|
+
for start_frac, end_frac, state in interpolated_phases:
|
|
604
|
+
refined_start = start_frac
|
|
605
|
+
refined_end = end_frac
|
|
606
|
+
|
|
607
|
+
if state == ContactState.ON_GROUND:
|
|
608
|
+
# Refine landing (start of ground contact)
|
|
609
|
+
refined_start = refine_transition_with_curvature(
|
|
610
|
+
foot_positions,
|
|
611
|
+
start_frac,
|
|
612
|
+
"landing",
|
|
613
|
+
search_window=3,
|
|
614
|
+
smoothing_window=smoothing_window,
|
|
615
|
+
polyorder=polyorder,
|
|
616
|
+
)
|
|
617
|
+
# Refine takeoff (end of ground contact)
|
|
618
|
+
refined_end = refine_transition_with_curvature(
|
|
619
|
+
foot_positions,
|
|
620
|
+
end_frac,
|
|
621
|
+
"takeoff",
|
|
622
|
+
search_window=3,
|
|
623
|
+
smoothing_window=smoothing_window,
|
|
624
|
+
polyorder=polyorder,
|
|
625
|
+
)
|
|
626
|
+
|
|
627
|
+
elif state == ContactState.IN_AIR:
|
|
628
|
+
# For flight phases, takeoff is at start, landing is at end
|
|
629
|
+
refined_start = refine_transition_with_curvature(
|
|
630
|
+
foot_positions,
|
|
631
|
+
start_frac,
|
|
632
|
+
"takeoff",
|
|
633
|
+
search_window=3,
|
|
634
|
+
smoothing_window=smoothing_window,
|
|
635
|
+
polyorder=polyorder,
|
|
636
|
+
)
|
|
637
|
+
refined_end = refine_transition_with_curvature(
|
|
638
|
+
foot_positions,
|
|
639
|
+
end_frac,
|
|
640
|
+
"landing",
|
|
641
|
+
search_window=3,
|
|
642
|
+
smoothing_window=smoothing_window,
|
|
643
|
+
polyorder=polyorder,
|
|
644
|
+
)
|
|
645
|
+
|
|
646
|
+
refined_phases.append((refined_start, refined_end, state))
|
|
647
|
+
|
|
648
|
+
return refined_phases
|
|
649
|
+
|
|
650
|
+
|
|
651
|
+
def find_landing_from_acceleration(
|
|
652
|
+
positions: np.ndarray,
|
|
653
|
+
accelerations: np.ndarray,
|
|
654
|
+
takeoff_frame: int,
|
|
655
|
+
fps: float,
|
|
656
|
+
search_duration: float = 0.7,
|
|
657
|
+
) -> int:
|
|
658
|
+
"""
|
|
659
|
+
Find landing frame by detecting impact acceleration after takeoff.
|
|
660
|
+
|
|
661
|
+
Similar to CMJ landing detection, looks for maximum positive acceleration
|
|
662
|
+
(deceleration on ground impact) after the jump peak.
|
|
663
|
+
|
|
664
|
+
Args:
|
|
665
|
+
positions: Array of vertical positions (normalized 0-1)
|
|
666
|
+
accelerations: Array of accelerations (second derivative)
|
|
667
|
+
takeoff_frame: Frame at takeoff (end of ground contact)
|
|
668
|
+
fps: Video frame rate
|
|
669
|
+
search_duration: Duration in seconds to search for landing (default: 0.7s)
|
|
670
|
+
|
|
671
|
+
Returns:
|
|
672
|
+
Landing frame index (integer)
|
|
673
|
+
"""
|
|
674
|
+
# Find peak height (minimum y value = highest point)
|
|
675
|
+
search_start = takeoff_frame
|
|
676
|
+
search_end = min(len(positions), takeoff_frame + int(fps * search_duration))
|
|
677
|
+
|
|
678
|
+
if search_end <= search_start:
|
|
679
|
+
return min(len(positions) - 1, takeoff_frame + int(fps * 0.3))
|
|
680
|
+
|
|
681
|
+
flight_positions = positions[search_start:search_end]
|
|
682
|
+
peak_idx = int(np.argmin(flight_positions))
|
|
683
|
+
peak_frame = search_start + peak_idx
|
|
684
|
+
|
|
685
|
+
# After peak, look for landing (impact with ground)
|
|
686
|
+
# Landing is detected by maximum positive acceleration (deceleration on impact)
|
|
687
|
+
landing_search_start = peak_frame + 2
|
|
688
|
+
landing_search_end = min(len(accelerations), landing_search_start + int(fps * 0.6))
|
|
689
|
+
|
|
690
|
+
if landing_search_end <= landing_search_start:
|
|
691
|
+
return min(len(positions) - 1, peak_frame + int(fps * 0.2))
|
|
692
|
+
|
|
693
|
+
# Find impact: maximum positive acceleration after peak
|
|
694
|
+
landing_accelerations = accelerations[landing_search_start:landing_search_end]
|
|
695
|
+
impact_idx = int(np.argmax(landing_accelerations))
|
|
696
|
+
impact_frame = landing_search_start + impact_idx
|
|
697
|
+
|
|
698
|
+
# After acceleration peak, look for position stabilization (full ground contact)
|
|
699
|
+
# Check where vertical position stops decreasing (athlete stops compressing)
|
|
700
|
+
stabilization_search_start = impact_frame
|
|
701
|
+
stabilization_search_end = min(len(positions), impact_frame + int(fps * 0.2))
|
|
702
|
+
|
|
703
|
+
landing_frame = impact_frame
|
|
704
|
+
if stabilization_search_end > stabilization_search_start + 3:
|
|
705
|
+
# Find where position reaches maximum (lowest point) and starts stabilizing
|
|
706
|
+
search_positions = positions[
|
|
707
|
+
stabilization_search_start:stabilization_search_end
|
|
708
|
+
]
|
|
709
|
+
|
|
710
|
+
# Look for the frame where position reaches its maximum (deepest landing)
|
|
711
|
+
max_pos_idx = int(np.argmax(search_positions))
|
|
712
|
+
|
|
713
|
+
# Landing is just after max position (athlete at deepest landing compression)
|
|
714
|
+
landing_frame = stabilization_search_start + max_pos_idx
|
|
715
|
+
landing_frame = min(len(positions) - 1, landing_frame)
|
|
716
|
+
|
|
717
|
+
return landing_frame
|
|
718
|
+
|
|
719
|
+
|
|
720
|
+
def compute_average_foot_position(
|
|
721
|
+
landmarks: dict[str, tuple[float, float, float]],
|
|
722
|
+
) -> tuple[float, float]:
|
|
723
|
+
"""
|
|
724
|
+
Compute average foot position from ankle and foot landmarks.
|
|
725
|
+
|
|
726
|
+
Args:
|
|
727
|
+
landmarks: Dictionary of landmark positions
|
|
728
|
+
|
|
729
|
+
Returns:
|
|
730
|
+
(x, y) average foot position in normalized coordinates
|
|
731
|
+
"""
|
|
732
|
+
foot_keys = [
|
|
733
|
+
"left_ankle",
|
|
734
|
+
"right_ankle",
|
|
735
|
+
"left_heel",
|
|
736
|
+
"right_heel",
|
|
737
|
+
"left_foot_index",
|
|
738
|
+
"right_foot_index",
|
|
739
|
+
]
|
|
740
|
+
|
|
741
|
+
x_positions = []
|
|
742
|
+
y_positions = []
|
|
743
|
+
|
|
744
|
+
for key in foot_keys:
|
|
745
|
+
if key in landmarks:
|
|
746
|
+
x, y, visibility = landmarks[key]
|
|
747
|
+
if visibility > 0.5: # Only use visible landmarks
|
|
748
|
+
x_positions.append(x)
|
|
749
|
+
y_positions.append(y)
|
|
750
|
+
|
|
751
|
+
if not x_positions:
|
|
752
|
+
return (0.5, 0.5) # Default to center if no visible feet
|
|
753
|
+
|
|
754
|
+
return (float(np.mean(x_positions)), float(np.mean(y_positions)))
|
|
755
|
+
|
|
756
|
+
|
|
757
|
+
def extract_foot_positions_and_visibilities(
|
|
758
|
+
smoothed_landmarks: list[dict[str, tuple[float, float, float]] | None],
|
|
759
|
+
) -> tuple[np.ndarray, np.ndarray]:
|
|
760
|
+
"""
|
|
761
|
+
Extract vertical positions and average visibilities from smoothed landmarks.
|
|
762
|
+
|
|
763
|
+
This utility function eliminates code duplication between CLI and programmatic usage.
|
|
764
|
+
|
|
765
|
+
Args:
|
|
766
|
+
smoothed_landmarks: Smoothed landmark sequence from tracking
|
|
767
|
+
|
|
768
|
+
Returns:
|
|
769
|
+
Tuple of (vertical_positions, visibilities) as numpy arrays
|
|
770
|
+
"""
|
|
771
|
+
position_list: list[float] = []
|
|
772
|
+
visibilities_list: list[float] = []
|
|
773
|
+
|
|
774
|
+
for frame_landmarks in smoothed_landmarks:
|
|
775
|
+
if frame_landmarks:
|
|
776
|
+
_, foot_y = compute_average_foot_position(frame_landmarks)
|
|
777
|
+
position_list.append(foot_y)
|
|
778
|
+
|
|
779
|
+
# Average visibility of foot landmarks
|
|
780
|
+
foot_vis = []
|
|
781
|
+
for key in ["left_ankle", "right_ankle", "left_heel", "right_heel"]:
|
|
782
|
+
if key in frame_landmarks:
|
|
783
|
+
foot_vis.append(frame_landmarks[key][2])
|
|
784
|
+
visibilities_list.append(float(np.mean(foot_vis)) if foot_vis else 0.0)
|
|
785
|
+
else:
|
|
786
|
+
# Fill missing frames with last known position or default
|
|
787
|
+
position_list.append(position_list[-1] if position_list else 0.5)
|
|
788
|
+
visibilities_list.append(0.0)
|
|
789
|
+
|
|
790
|
+
return np.array(position_list), np.array(visibilities_list)
|