kinemotion 0.12.1__tar.gz → 0.12.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kinemotion might be problematic. Click here for more details.
- {kinemotion-0.12.1 → kinemotion-0.12.2}/CHANGELOG.md +22 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/PKG-INFO +1 -1
- {kinemotion-0.12.1 → kinemotion-0.12.2}/pyproject.toml +1 -1
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/api.py +0 -2
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/core/pose.py +134 -95
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/core/smoothing.py +2 -2
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/dropjump/analysis.py +169 -123
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/dropjump/cli.py +0 -2
- kinemotion-0.12.2/src/kinemotion/dropjump/debug_overlay.py +179 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/dropjump/kinematics.py +3 -6
- {kinemotion-0.12.1 → kinemotion-0.12.2}/uv.lock +1 -1
- kinemotion-0.12.1/src/kinemotion/dropjump/debug_overlay.py +0 -167
- {kinemotion-0.12.1 → kinemotion-0.12.2}/.dockerignore +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/.github/ISSUE_TEMPLATE/bug_report.yml +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/.github/ISSUE_TEMPLATE/feature_request.yml +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/.github/pull_request_template.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/.github/workflows/release.yml +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/.gitignore +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/.pre-commit-config.yaml +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/.tool-versions +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/CLAUDE.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/CODE_OF_CONDUCT.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/CONTRIBUTING.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/Dockerfile +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/GEMINI.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/LICENSE +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/README.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/SECURITY.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/BULK_PROCESSING.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/CAMERA_SETUP.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/CAMERA_SETUP_ES.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/CMJ_GUIDE.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/ERRORS_FINDINGS.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/FRAMERATE.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/IMU_METADATA_PRESERVATION.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/PARAMETERS.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/REAL_TIME_ANALYSIS.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/TRIPLE_EXTENSION.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/docs/VALIDATION_PLAN.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/examples/bulk/README.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/examples/bulk/bulk_processing.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/examples/bulk/simple_example.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/examples/programmatic_usage.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/samples/cmjs/README.md +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/__init__.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/cli.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/cmj/__init__.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/cmj/analysis.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/cmj/cli.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/cmj/debug_overlay.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/cmj/joint_angles.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/cmj/kinematics.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/core/__init__.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/core/auto_tuning.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/core/cli_utils.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/core/debug_overlay_utils.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/core/filtering.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/core/video_io.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/dropjump/__init__.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/src/kinemotion/py.typed +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/__init__.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_adaptive_threshold.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_api.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_aspect_ratio.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_cmj_analysis.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_cmj_kinematics.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_com_estimation.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_contact_detection.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_filtering.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_kinematics.py +0 -0
- {kinemotion-0.12.1 → kinemotion-0.12.2}/tests/test_polyorder.py +0 -0
|
@@ -7,6 +7,28 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|
|
7
7
|
|
|
8
8
|
<!-- version list -->
|
|
9
9
|
|
|
10
|
+
## v0.12.2 (2025-11-06)
|
|
11
|
+
|
|
12
|
+
### Bug Fixes
|
|
13
|
+
|
|
14
|
+
- **core**: Suppress false positive for polyorder parameter
|
|
15
|
+
([`ae5ffea`](https://github.com/feniix/kinemotion/commit/ae5ffea708741592e1cd356cdf35dcc388cbe97f))
|
|
16
|
+
|
|
17
|
+
- **dropjump**: Remove unused parameters from calculate_drop_jump_metrics
|
|
18
|
+
([`6130c11`](https://github.com/feniix/kinemotion/commit/6130c113be71dcd8c278b1f31a3b5e300a6b4532))
|
|
19
|
+
|
|
20
|
+
### Refactoring
|
|
21
|
+
|
|
22
|
+
- **core**: Reduce cognitive complexity in pose.py
|
|
23
|
+
([`f0a3805`](https://github.com/feniix/kinemotion/commit/f0a380561844e54b4372f57c93b82f8c8a1440ee))
|
|
24
|
+
|
|
25
|
+
- **dropjump**: Reduce cognitive complexity in analysis.py
|
|
26
|
+
([`180bb37`](https://github.com/feniix/kinemotion/commit/180bb373f63675ef6ecacaea8e9ee9f63c3d3746))
|
|
27
|
+
|
|
28
|
+
- **dropjump**: Reduce cognitive complexity in debug_overlay.py
|
|
29
|
+
([`076cb56`](https://github.com/feniix/kinemotion/commit/076cb560c55baaff0ba93d0631eb38d69f8a7d7b))
|
|
30
|
+
|
|
31
|
+
|
|
10
32
|
## v0.12.1 (2025-11-06)
|
|
11
33
|
|
|
12
34
|
### Bug Fixes
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: kinemotion
|
|
3
|
-
Version: 0.12.
|
|
3
|
+
Version: 0.12.2
|
|
4
4
|
Summary: Video-based kinematic analysis for athletic performance
|
|
5
5
|
Project-URL: Homepage, https://github.com/feniix/kinemotion
|
|
6
6
|
Project-URL: Repository, https://github.com/feniix/kinemotion
|
|
@@ -463,13 +463,11 @@ def process_video(
|
|
|
463
463
|
contact_states,
|
|
464
464
|
vertical_positions,
|
|
465
465
|
video.fps,
|
|
466
|
-
drop_height_m=None,
|
|
467
466
|
drop_start_frame=drop_start_frame,
|
|
468
467
|
velocity_threshold=params.velocity_threshold,
|
|
469
468
|
smoothing_window=params.smoothing_window,
|
|
470
469
|
polyorder=params.polyorder,
|
|
471
470
|
use_curvature=params.use_curvature,
|
|
472
|
-
kinematic_correction_factor=1.0,
|
|
473
471
|
)
|
|
474
472
|
|
|
475
473
|
# Generate outputs (JSON and debug video)
|
|
@@ -81,6 +81,100 @@ class PoseTracker:
|
|
|
81
81
|
self.pose.close()
|
|
82
82
|
|
|
83
83
|
|
|
84
|
+
def _add_head_segment(
|
|
85
|
+
segments: list,
|
|
86
|
+
weights: list,
|
|
87
|
+
visibilities: list,
|
|
88
|
+
landmarks: dict[str, tuple[float, float, float]],
|
|
89
|
+
vis_threshold: float,
|
|
90
|
+
) -> None:
|
|
91
|
+
"""Add head segment (8% body mass) if visible."""
|
|
92
|
+
if "nose" in landmarks:
|
|
93
|
+
x, y, vis = landmarks["nose"]
|
|
94
|
+
if vis > vis_threshold:
|
|
95
|
+
segments.append((x, y))
|
|
96
|
+
weights.append(0.08)
|
|
97
|
+
visibilities.append(vis)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def _add_trunk_segment(
|
|
101
|
+
segments: list,
|
|
102
|
+
weights: list,
|
|
103
|
+
visibilities: list,
|
|
104
|
+
landmarks: dict[str, tuple[float, float, float]],
|
|
105
|
+
vis_threshold: float,
|
|
106
|
+
) -> None:
|
|
107
|
+
"""Add trunk segment (50% body mass) if visible."""
|
|
108
|
+
trunk_keys = ["left_shoulder", "right_shoulder", "left_hip", "right_hip"]
|
|
109
|
+
trunk_pos = [
|
|
110
|
+
(x, y, vis)
|
|
111
|
+
for key in trunk_keys
|
|
112
|
+
if key in landmarks
|
|
113
|
+
for x, y, vis in [landmarks[key]]
|
|
114
|
+
if vis > vis_threshold
|
|
115
|
+
]
|
|
116
|
+
if len(trunk_pos) >= 2:
|
|
117
|
+
trunk_x = float(np.mean([p[0] for p in trunk_pos]))
|
|
118
|
+
trunk_y = float(np.mean([p[1] for p in trunk_pos]))
|
|
119
|
+
trunk_vis = float(np.mean([p[2] for p in trunk_pos]))
|
|
120
|
+
segments.append((trunk_x, trunk_y))
|
|
121
|
+
weights.append(0.50)
|
|
122
|
+
visibilities.append(trunk_vis)
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def _add_limb_segment(
|
|
126
|
+
segments: list,
|
|
127
|
+
weights: list,
|
|
128
|
+
visibilities: list,
|
|
129
|
+
landmarks: dict[str, tuple[float, float, float]],
|
|
130
|
+
side: str,
|
|
131
|
+
proximal_key: str,
|
|
132
|
+
distal_key: str,
|
|
133
|
+
segment_weight: float,
|
|
134
|
+
vis_threshold: float,
|
|
135
|
+
) -> None:
|
|
136
|
+
"""Add a limb segment (thigh or lower leg) if both endpoints visible."""
|
|
137
|
+
prox_full = f"{side}_{proximal_key}"
|
|
138
|
+
dist_full = f"{side}_{distal_key}"
|
|
139
|
+
|
|
140
|
+
if prox_full in landmarks and dist_full in landmarks:
|
|
141
|
+
px, py, pvis = landmarks[prox_full]
|
|
142
|
+
dx, dy, dvis = landmarks[dist_full]
|
|
143
|
+
if pvis > vis_threshold and dvis > vis_threshold:
|
|
144
|
+
seg_x = (px + dx) / 2
|
|
145
|
+
seg_y = (py + dy) / 2
|
|
146
|
+
seg_vis = (pvis + dvis) / 2
|
|
147
|
+
segments.append((seg_x, seg_y))
|
|
148
|
+
weights.append(segment_weight)
|
|
149
|
+
visibilities.append(seg_vis)
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def _add_foot_segment(
|
|
153
|
+
segments: list,
|
|
154
|
+
weights: list,
|
|
155
|
+
visibilities: list,
|
|
156
|
+
landmarks: dict[str, tuple[float, float, float]],
|
|
157
|
+
side: str,
|
|
158
|
+
vis_threshold: float,
|
|
159
|
+
) -> None:
|
|
160
|
+
"""Add foot segment (1.5% body mass per foot) if visible."""
|
|
161
|
+
foot_keys = [f"{side}_ankle", f"{side}_heel", f"{side}_foot_index"]
|
|
162
|
+
foot_pos = [
|
|
163
|
+
(x, y, vis)
|
|
164
|
+
for key in foot_keys
|
|
165
|
+
if key in landmarks
|
|
166
|
+
for x, y, vis in [landmarks[key]]
|
|
167
|
+
if vis > vis_threshold
|
|
168
|
+
]
|
|
169
|
+
if foot_pos:
|
|
170
|
+
foot_x = float(np.mean([p[0] for p in foot_pos]))
|
|
171
|
+
foot_y = float(np.mean([p[1] for p in foot_pos]))
|
|
172
|
+
foot_vis = float(np.mean([p[2] for p in foot_pos]))
|
|
173
|
+
segments.append((foot_x, foot_y))
|
|
174
|
+
weights.append(0.015)
|
|
175
|
+
visibilities.append(foot_vis)
|
|
176
|
+
|
|
177
|
+
|
|
84
178
|
def compute_center_of_mass(
|
|
85
179
|
landmarks: dict[str, tuple[float, float, float]],
|
|
86
180
|
visibility_threshold: float = 0.5,
|
|
@@ -106,114 +200,59 @@ def compute_center_of_mass(
|
|
|
106
200
|
(x, y, visibility) tuple for estimated CoM position
|
|
107
201
|
visibility = average visibility of all segments used
|
|
108
202
|
"""
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
segment_weights = []
|
|
113
|
-
visibilities = []
|
|
203
|
+
segments: list = []
|
|
204
|
+
weights: list = []
|
|
205
|
+
visibilities: list = []
|
|
114
206
|
|
|
115
|
-
#
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
if vis > visibility_threshold:
|
|
119
|
-
segments.append((x, y))
|
|
120
|
-
segment_weights.append(0.08)
|
|
121
|
-
visibilities.append(vis)
|
|
207
|
+
# Add body segments
|
|
208
|
+
_add_head_segment(segments, weights, visibilities, landmarks, visibility_threshold)
|
|
209
|
+
_add_trunk_segment(segments, weights, visibilities, landmarks, visibility_threshold)
|
|
122
210
|
|
|
123
|
-
#
|
|
124
|
-
trunk_landmarks = ["left_shoulder", "right_shoulder", "left_hip", "right_hip"]
|
|
125
|
-
trunk_positions = [
|
|
126
|
-
(x, y, vis)
|
|
127
|
-
for key in trunk_landmarks
|
|
128
|
-
if key in landmarks
|
|
129
|
-
for x, y, vis in [landmarks[key]]
|
|
130
|
-
if vis > visibility_threshold
|
|
131
|
-
]
|
|
132
|
-
if len(trunk_positions) >= 2:
|
|
133
|
-
trunk_x = float(np.mean([pos[0] for pos in trunk_positions]))
|
|
134
|
-
trunk_y = float(np.mean([pos[1] for pos in trunk_positions]))
|
|
135
|
-
trunk_vis = float(np.mean([pos[2] for pos in trunk_positions]))
|
|
136
|
-
segments.append((trunk_x, trunk_y))
|
|
137
|
-
segment_weights.append(0.50)
|
|
138
|
-
visibilities.append(trunk_vis)
|
|
139
|
-
|
|
140
|
-
# Thigh segment: 20% total (midpoint hip to knee for each leg)
|
|
211
|
+
# Add bilateral limb segments
|
|
141
212
|
for side in ["left", "right"]:
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
# Foot segment: 3% total (average of ankle, heel, foot_index)
|
|
171
|
-
for side in ["left", "right"]:
|
|
172
|
-
foot_keys = [f"{side}_ankle", f"{side}_heel", f"{side}_foot_index"]
|
|
173
|
-
foot_positions = [
|
|
174
|
-
(x, y, vis)
|
|
175
|
-
for key in foot_keys
|
|
176
|
-
if key in landmarks
|
|
177
|
-
for x, y, vis in [landmarks[key]]
|
|
178
|
-
if vis > visibility_threshold
|
|
179
|
-
]
|
|
180
|
-
if foot_positions:
|
|
181
|
-
foot_x = float(np.mean([pos[0] for pos in foot_positions]))
|
|
182
|
-
foot_y = float(np.mean([pos[1] for pos in foot_positions]))
|
|
183
|
-
foot_vis = float(np.mean([pos[2] for pos in foot_positions]))
|
|
184
|
-
segments.append((foot_x, foot_y))
|
|
185
|
-
segment_weights.append(0.015) # 1.5% per foot
|
|
186
|
-
visibilities.append(foot_vis)
|
|
187
|
-
|
|
188
|
-
# If no segments found, fall back to hip average
|
|
213
|
+
_add_limb_segment(
|
|
214
|
+
segments,
|
|
215
|
+
weights,
|
|
216
|
+
visibilities,
|
|
217
|
+
landmarks,
|
|
218
|
+
side,
|
|
219
|
+
"hip",
|
|
220
|
+
"knee",
|
|
221
|
+
0.10,
|
|
222
|
+
visibility_threshold,
|
|
223
|
+
)
|
|
224
|
+
_add_limb_segment(
|
|
225
|
+
segments,
|
|
226
|
+
weights,
|
|
227
|
+
visibilities,
|
|
228
|
+
landmarks,
|
|
229
|
+
side,
|
|
230
|
+
"knee",
|
|
231
|
+
"ankle",
|
|
232
|
+
0.05,
|
|
233
|
+
visibility_threshold,
|
|
234
|
+
)
|
|
235
|
+
_add_foot_segment(
|
|
236
|
+
segments, weights, visibilities, landmarks, side, visibility_threshold
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
# Fallback if no segments found
|
|
189
240
|
if not segments:
|
|
190
241
|
if "left_hip" in landmarks and "right_hip" in landmarks:
|
|
191
242
|
lh_x, lh_y, lh_vis = landmarks["left_hip"]
|
|
192
243
|
rh_x, rh_y, rh_vis = landmarks["right_hip"]
|
|
193
|
-
return (
|
|
194
|
-
(lh_x + rh_x) / 2,
|
|
195
|
-
(lh_y + rh_y) / 2,
|
|
196
|
-
(lh_vis + rh_vis) / 2,
|
|
197
|
-
)
|
|
198
|
-
# Ultimate fallback: center of frame
|
|
244
|
+
return ((lh_x + rh_x) / 2, (lh_y + rh_y) / 2, (lh_vis + rh_vis) / 2)
|
|
199
245
|
return (0.5, 0.5, 0.0)
|
|
200
246
|
|
|
201
|
-
# Normalize weights
|
|
202
|
-
total_weight = sum(
|
|
203
|
-
normalized_weights = [w / total_weight for w in
|
|
247
|
+
# Normalize weights and compute weighted average
|
|
248
|
+
total_weight = sum(weights)
|
|
249
|
+
normalized_weights = [w / total_weight for w in weights]
|
|
204
250
|
|
|
205
|
-
# Compute weighted average of segment positions
|
|
206
251
|
com_x = float(
|
|
207
|
-
sum(
|
|
208
|
-
pos[0] * weight
|
|
209
|
-
for pos, weight in zip(segments, normalized_weights, strict=True)
|
|
210
|
-
)
|
|
252
|
+
sum(p[0] * w for p, w in zip(segments, normalized_weights, strict=True))
|
|
211
253
|
)
|
|
212
254
|
com_y = float(
|
|
213
|
-
sum(
|
|
214
|
-
pos[1] * weight
|
|
215
|
-
for pos, weight in zip(segments, normalized_weights, strict=True)
|
|
216
|
-
)
|
|
255
|
+
sum(p[1] * w for p, w in zip(segments, normalized_weights, strict=True))
|
|
217
256
|
)
|
|
218
257
|
com_visibility = float(np.mean(visibilities)) if visibilities else 0.0
|
|
219
258
|
|
|
@@ -117,7 +117,7 @@ def _store_smoothed_landmarks(
|
|
|
117
117
|
)
|
|
118
118
|
|
|
119
119
|
|
|
120
|
-
def _smooth_landmarks_core(
|
|
120
|
+
def _smooth_landmarks_core( # NOSONAR(S1172) - polyorder used via closure capture in smoother_fn
|
|
121
121
|
landmark_sequence: list[dict[str, tuple[float, float, float]] | None],
|
|
122
122
|
window_length: int,
|
|
123
123
|
polyorder: int,
|
|
@@ -129,7 +129,7 @@ def _smooth_landmarks_core(
|
|
|
129
129
|
Args:
|
|
130
130
|
landmark_sequence: List of landmark dictionaries from each frame
|
|
131
131
|
window_length: Length of filter window (must be odd)
|
|
132
|
-
polyorder: Order of polynomial used to fit samples
|
|
132
|
+
polyorder: Order of polynomial used to fit samples (captured by smoother_fn closure)
|
|
133
133
|
smoother_fn: Function that takes (x_coords, y_coords, valid_frames)
|
|
134
134
|
and returns (x_smooth, y_smooth)
|
|
135
135
|
|
|
@@ -89,6 +89,87 @@ def calculate_adaptive_threshold(
|
|
|
89
89
|
return adaptive_threshold
|
|
90
90
|
|
|
91
91
|
|
|
92
|
+
def _find_stable_baseline(
|
|
93
|
+
positions: np.ndarray,
|
|
94
|
+
min_stable_frames: int,
|
|
95
|
+
stability_threshold: float = 0.01,
|
|
96
|
+
debug: bool = False,
|
|
97
|
+
) -> tuple[int, float]:
|
|
98
|
+
"""Find first stable period and return baseline position.
|
|
99
|
+
|
|
100
|
+
Returns:
|
|
101
|
+
Tuple of (baseline_start_frame, baseline_position). Returns (-1, 0.0) if not found.
|
|
102
|
+
"""
|
|
103
|
+
stable_window = min_stable_frames
|
|
104
|
+
|
|
105
|
+
for start_idx in range(0, len(positions) - stable_window, 5):
|
|
106
|
+
window = positions[start_idx : start_idx + stable_window]
|
|
107
|
+
window_std = float(np.std(window))
|
|
108
|
+
|
|
109
|
+
if window_std < stability_threshold:
|
|
110
|
+
baseline_start = start_idx
|
|
111
|
+
baseline_position = float(np.median(window))
|
|
112
|
+
|
|
113
|
+
if debug:
|
|
114
|
+
end_frame = baseline_start + stable_window - 1
|
|
115
|
+
print("[detect_drop_start] Found stable period:")
|
|
116
|
+
print(f" frames {baseline_start}-{end_frame}")
|
|
117
|
+
print(f" baseline_position: {baseline_position:.4f}")
|
|
118
|
+
print(f" baseline_std: {window_std:.4f} < {stability_threshold:.4f}")
|
|
119
|
+
|
|
120
|
+
return baseline_start, baseline_position
|
|
121
|
+
|
|
122
|
+
if debug:
|
|
123
|
+
print(
|
|
124
|
+
f"[detect_drop_start] No stable period found "
|
|
125
|
+
f"(variance always > {stability_threshold:.4f})"
|
|
126
|
+
)
|
|
127
|
+
return -1, 0.0
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def _find_drop_from_baseline(
|
|
131
|
+
positions: np.ndarray,
|
|
132
|
+
baseline_start: int,
|
|
133
|
+
baseline_position: float,
|
|
134
|
+
stable_window: int,
|
|
135
|
+
position_change_threshold: float,
|
|
136
|
+
smoothing_window: int,
|
|
137
|
+
debug: bool = False,
|
|
138
|
+
) -> int:
|
|
139
|
+
"""Find drop start after stable baseline period.
|
|
140
|
+
|
|
141
|
+
Returns:
|
|
142
|
+
Drop frame index, or 0 if not found.
|
|
143
|
+
"""
|
|
144
|
+
search_start = baseline_start + stable_window
|
|
145
|
+
window_size = max(3, smoothing_window)
|
|
146
|
+
|
|
147
|
+
for i in range(search_start, len(positions) - window_size):
|
|
148
|
+
window_positions = positions[i : i + window_size]
|
|
149
|
+
avg_position = float(np.mean(window_positions))
|
|
150
|
+
position_change = avg_position - baseline_position
|
|
151
|
+
|
|
152
|
+
if position_change > position_change_threshold:
|
|
153
|
+
drop_frame = max(baseline_start, i - window_size)
|
|
154
|
+
|
|
155
|
+
if debug:
|
|
156
|
+
print(f"[detect_drop_start] Drop detected at frame {drop_frame}")
|
|
157
|
+
print(
|
|
158
|
+
f" position_change: {position_change:.4f} > "
|
|
159
|
+
f"{position_change_threshold:.4f}"
|
|
160
|
+
)
|
|
161
|
+
print(
|
|
162
|
+
f" avg_position: {avg_position:.4f} vs "
|
|
163
|
+
f"baseline: {baseline_position:.4f}"
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
return drop_frame
|
|
167
|
+
|
|
168
|
+
if debug:
|
|
169
|
+
print("[detect_drop_start] No drop detected after stable period")
|
|
170
|
+
return 0
|
|
171
|
+
|
|
172
|
+
|
|
92
173
|
def detect_drop_start(
|
|
93
174
|
positions: np.ndarray,
|
|
94
175
|
fps: float,
|
|
@@ -126,84 +207,32 @@ def detect_drop_start(
|
|
|
126
207
|
- Returns: 119
|
|
127
208
|
"""
|
|
128
209
|
min_stable_frames = int(fps * min_stationary_duration)
|
|
129
|
-
if len(positions) < min_stable_frames + 30:
|
|
210
|
+
if len(positions) < min_stable_frames + 30:
|
|
130
211
|
if debug:
|
|
131
|
-
min_frames_needed = min_stable_frames + 30
|
|
132
212
|
print(
|
|
133
|
-
f"[detect_drop_start] Video too short: {len(positions)} <
|
|
213
|
+
f"[detect_drop_start] Video too short: {len(positions)} < "
|
|
214
|
+
f"{min_stable_frames + 30}"
|
|
134
215
|
)
|
|
135
216
|
return 0
|
|
136
217
|
|
|
137
|
-
#
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
baseline_start = -1
|
|
143
|
-
baseline_position = 0.0
|
|
144
|
-
|
|
145
|
-
# Scan from start, looking for stable window
|
|
146
|
-
for start_idx in range(0, len(positions) - stable_window, 5): # Step by 5 frames
|
|
147
|
-
window = positions[start_idx : start_idx + stable_window]
|
|
148
|
-
window_std = float(np.std(window))
|
|
149
|
-
|
|
150
|
-
if window_std < stability_threshold:
|
|
151
|
-
# Found stable period!
|
|
152
|
-
baseline_start = start_idx
|
|
153
|
-
baseline_position = float(np.median(window))
|
|
154
|
-
|
|
155
|
-
if debug:
|
|
156
|
-
end_frame = baseline_start + stable_window - 1
|
|
157
|
-
print("[detect_drop_start] Found stable period:")
|
|
158
|
-
print(f" frames {baseline_start}-{end_frame}")
|
|
159
|
-
print(f" baseline_position: {baseline_position:.4f}")
|
|
160
|
-
print(f" baseline_std: {window_std:.4f} < {stability_threshold:.4f}")
|
|
161
|
-
break
|
|
218
|
+
# Find stable baseline period
|
|
219
|
+
baseline_start, baseline_position = _find_stable_baseline(
|
|
220
|
+
positions, min_stable_frames, debug=debug
|
|
221
|
+
)
|
|
162
222
|
|
|
163
223
|
if baseline_start < 0:
|
|
164
|
-
if debug:
|
|
165
|
-
msg = (
|
|
166
|
-
f"No stable period found (variance always > {stability_threshold:.4f})"
|
|
167
|
-
)
|
|
168
|
-
print(f"[detect_drop_start] {msg}")
|
|
169
224
|
return 0
|
|
170
225
|
|
|
171
|
-
#
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
# Check if position has increased (dropped) significantly
|
|
182
|
-
position_change = avg_position - baseline_position
|
|
183
|
-
|
|
184
|
-
if position_change > position_change_threshold:
|
|
185
|
-
# Found start of drop - back up slightly to catch beginning
|
|
186
|
-
drop_frame_candidate = i - window_size
|
|
187
|
-
if drop_frame_candidate < baseline_start:
|
|
188
|
-
drop_frame = baseline_start
|
|
189
|
-
else:
|
|
190
|
-
drop_frame = drop_frame_candidate
|
|
191
|
-
|
|
192
|
-
if debug:
|
|
193
|
-
print(f"[detect_drop_start] Drop detected at frame {drop_frame}")
|
|
194
|
-
print(
|
|
195
|
-
f" position_change: {position_change:.4f} > {position_change_threshold:.4f}"
|
|
196
|
-
)
|
|
197
|
-
print(
|
|
198
|
-
f" avg_position: {avg_position:.4f} vs baseline: {baseline_position:.4f}"
|
|
199
|
-
)
|
|
200
|
-
|
|
201
|
-
return drop_frame
|
|
202
|
-
|
|
203
|
-
# No significant position change detected
|
|
204
|
-
if debug:
|
|
205
|
-
print("[detect_drop_start] No drop detected after stable period")
|
|
206
|
-
return 0
|
|
226
|
+
# Find drop from baseline
|
|
227
|
+
return _find_drop_from_baseline(
|
|
228
|
+
positions,
|
|
229
|
+
baseline_start,
|
|
230
|
+
baseline_position,
|
|
231
|
+
min_stable_frames,
|
|
232
|
+
position_change_threshold,
|
|
233
|
+
smoothing_window,
|
|
234
|
+
debug,
|
|
235
|
+
)
|
|
207
236
|
|
|
208
237
|
|
|
209
238
|
def detect_ground_contact(
|
|
@@ -349,6 +378,71 @@ def interpolate_threshold_crossing(
|
|
|
349
378
|
return float(max(0.0, min(1.0, t)))
|
|
350
379
|
|
|
351
380
|
|
|
381
|
+
def _interpolate_phase_start(
|
|
382
|
+
start_idx: int,
|
|
383
|
+
state: ContactState,
|
|
384
|
+
velocities: np.ndarray,
|
|
385
|
+
velocity_threshold: float,
|
|
386
|
+
) -> float:
|
|
387
|
+
"""Interpolate start boundary of a phase with sub-frame precision.
|
|
388
|
+
|
|
389
|
+
Returns:
|
|
390
|
+
Fractional start frame, or float(start_idx) if no interpolation.
|
|
391
|
+
"""
|
|
392
|
+
if start_idx <= 0 or start_idx >= len(velocities):
|
|
393
|
+
return float(start_idx)
|
|
394
|
+
|
|
395
|
+
vel_before = velocities[start_idx - 1]
|
|
396
|
+
vel_at = velocities[start_idx]
|
|
397
|
+
|
|
398
|
+
# Check threshold crossing based on state
|
|
399
|
+
is_landing = (
|
|
400
|
+
state == ContactState.ON_GROUND and vel_before > velocity_threshold > vel_at
|
|
401
|
+
)
|
|
402
|
+
is_takeoff = (
|
|
403
|
+
state == ContactState.IN_AIR and vel_before < velocity_threshold < vel_at
|
|
404
|
+
)
|
|
405
|
+
|
|
406
|
+
if is_landing or is_takeoff:
|
|
407
|
+
offset = interpolate_threshold_crossing(vel_before, vel_at, velocity_threshold)
|
|
408
|
+
return (start_idx - 1) + offset
|
|
409
|
+
|
|
410
|
+
return float(start_idx)
|
|
411
|
+
|
|
412
|
+
|
|
413
|
+
def _interpolate_phase_end(
|
|
414
|
+
end_idx: int,
|
|
415
|
+
state: ContactState,
|
|
416
|
+
velocities: np.ndarray,
|
|
417
|
+
velocity_threshold: float,
|
|
418
|
+
max_idx: int,
|
|
419
|
+
) -> float:
|
|
420
|
+
"""Interpolate end boundary of a phase with sub-frame precision.
|
|
421
|
+
|
|
422
|
+
Returns:
|
|
423
|
+
Fractional end frame, or float(end_idx) if no interpolation.
|
|
424
|
+
"""
|
|
425
|
+
if end_idx >= max_idx - 1 or end_idx + 1 >= len(velocities):
|
|
426
|
+
return float(end_idx)
|
|
427
|
+
|
|
428
|
+
vel_at = velocities[end_idx]
|
|
429
|
+
vel_after = velocities[end_idx + 1]
|
|
430
|
+
|
|
431
|
+
# Check threshold crossing based on state
|
|
432
|
+
is_takeoff = (
|
|
433
|
+
state == ContactState.ON_GROUND and vel_at < velocity_threshold < vel_after
|
|
434
|
+
)
|
|
435
|
+
is_landing = (
|
|
436
|
+
state == ContactState.IN_AIR and vel_at > velocity_threshold > vel_after
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
if is_takeoff or is_landing:
|
|
440
|
+
offset = interpolate_threshold_crossing(vel_at, vel_after, velocity_threshold)
|
|
441
|
+
return end_idx + offset
|
|
442
|
+
|
|
443
|
+
return float(end_idx)
|
|
444
|
+
|
|
445
|
+
|
|
352
446
|
def find_interpolated_phase_transitions(
|
|
353
447
|
foot_positions: np.ndarray,
|
|
354
448
|
contact_states: list[ContactState],
|
|
@@ -371,13 +465,10 @@ def find_interpolated_phase_transitions(
|
|
|
371
465
|
Returns:
|
|
372
466
|
List of (start_frame, end_frame, state) tuples with fractional frame indices
|
|
373
467
|
"""
|
|
374
|
-
# First get integer frame phases
|
|
375
468
|
phases = find_contact_phases(contact_states)
|
|
376
469
|
if not phases or len(foot_positions) < 2:
|
|
377
470
|
return []
|
|
378
471
|
|
|
379
|
-
# Compute velocities from derivative of smoothed trajectory
|
|
380
|
-
# This gives much smoother velocity estimates than simple frame differences
|
|
381
472
|
velocities = compute_velocity_from_derivative(
|
|
382
473
|
foot_positions, window_length=smoothing_window, polyorder=2
|
|
383
474
|
)
|
|
@@ -385,57 +476,12 @@ def find_interpolated_phase_transitions(
|
|
|
385
476
|
interpolated_phases: list[tuple[float, float, ContactState]] = []
|
|
386
477
|
|
|
387
478
|
for start_idx, end_idx, state in phases:
|
|
388
|
-
start_frac =
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
velocities[start_idx - 1] if start_idx > 0 else velocities[start_idx]
|
|
395
|
-
)
|
|
396
|
-
vel_at = velocities[start_idx]
|
|
397
|
-
|
|
398
|
-
# Check if we're crossing the threshold at this boundary
|
|
399
|
-
if state == ContactState.ON_GROUND:
|
|
400
|
-
# Transition air→ground: velocity dropping below threshold
|
|
401
|
-
if vel_before > velocity_threshold > vel_at:
|
|
402
|
-
# Interpolate between start_idx-1 and start_idx
|
|
403
|
-
offset = interpolate_threshold_crossing(
|
|
404
|
-
vel_before, vel_at, velocity_threshold
|
|
405
|
-
)
|
|
406
|
-
start_frac = (start_idx - 1) + offset
|
|
407
|
-
elif state == ContactState.IN_AIR:
|
|
408
|
-
# Transition ground→air: velocity rising above threshold
|
|
409
|
-
if vel_before < velocity_threshold < vel_at:
|
|
410
|
-
# Interpolate between start_idx-1 and start_idx
|
|
411
|
-
offset = interpolate_threshold_crossing(
|
|
412
|
-
vel_before, vel_at, velocity_threshold
|
|
413
|
-
)
|
|
414
|
-
start_frac = (start_idx - 1) + offset
|
|
415
|
-
|
|
416
|
-
# Interpolate end boundary (transition OUT OF this phase)
|
|
417
|
-
if end_idx < len(foot_positions) - 1 and end_idx + 1 < len(velocities):
|
|
418
|
-
vel_at = velocities[end_idx]
|
|
419
|
-
vel_after = velocities[end_idx + 1]
|
|
420
|
-
|
|
421
|
-
# Check if we're crossing the threshold at this boundary
|
|
422
|
-
if state == ContactState.ON_GROUND:
|
|
423
|
-
# Transition ground→air: velocity rising above threshold
|
|
424
|
-
if vel_at < velocity_threshold < vel_after:
|
|
425
|
-
# Interpolate between end_idx and end_idx+1
|
|
426
|
-
offset = interpolate_threshold_crossing(
|
|
427
|
-
vel_at, vel_after, velocity_threshold
|
|
428
|
-
)
|
|
429
|
-
end_frac = end_idx + offset
|
|
430
|
-
elif state == ContactState.IN_AIR:
|
|
431
|
-
# Transition air→ground: velocity dropping below threshold
|
|
432
|
-
if vel_at > velocity_threshold > vel_after:
|
|
433
|
-
# Interpolate between end_idx and end_idx+1
|
|
434
|
-
offset = interpolate_threshold_crossing(
|
|
435
|
-
vel_at, vel_after, velocity_threshold
|
|
436
|
-
)
|
|
437
|
-
end_frac = end_idx + offset
|
|
438
|
-
|
|
479
|
+
start_frac = _interpolate_phase_start(
|
|
480
|
+
start_idx, state, velocities, velocity_threshold
|
|
481
|
+
)
|
|
482
|
+
end_frac = _interpolate_phase_end(
|
|
483
|
+
end_idx, state, velocities, velocity_threshold, len(foot_positions)
|
|
484
|
+
)
|
|
439
485
|
interpolated_phases.append((start_frac, end_frac, state))
|
|
440
486
|
|
|
441
487
|
return interpolated_phases
|