kinemotion 0.12.0__tar.gz → 0.12.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kinemotion might be problematic. Click here for more details.
- {kinemotion-0.12.0 → kinemotion-0.12.2}/CHANGELOG.md +38 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/PKG-INFO +1 -1
- {kinemotion-0.12.0 → kinemotion-0.12.2}/examples/bulk/bulk_processing.py +3 -10
- {kinemotion-0.12.0 → kinemotion-0.12.2}/examples/bulk/simple_example.py +5 -7
- {kinemotion-0.12.0 → kinemotion-0.12.2}/pyproject.toml +1 -1
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/api.py +0 -2
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/core/cli_utils.py +0 -2
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/core/pose.py +134 -95
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/core/smoothing.py +2 -2
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/dropjump/analysis.py +169 -123
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/dropjump/cli.py +0 -2
- kinemotion-0.12.2/src/kinemotion/dropjump/debug_overlay.py +179 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/dropjump/kinematics.py +3 -69
- {kinemotion-0.12.0 → kinemotion-0.12.2}/uv.lock +1 -1
- kinemotion-0.12.0/src/kinemotion/dropjump/debug_overlay.py +0 -167
- {kinemotion-0.12.0 → kinemotion-0.12.2}/.dockerignore +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/.github/ISSUE_TEMPLATE/bug_report.yml +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/.github/ISSUE_TEMPLATE/feature_request.yml +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/.github/pull_request_template.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/.github/workflows/release.yml +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/.gitignore +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/.pre-commit-config.yaml +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/.tool-versions +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/CLAUDE.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/CODE_OF_CONDUCT.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/CONTRIBUTING.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/Dockerfile +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/GEMINI.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/LICENSE +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/README.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/SECURITY.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/BULK_PROCESSING.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/CAMERA_SETUP.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/CAMERA_SETUP_ES.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/CMJ_GUIDE.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/ERRORS_FINDINGS.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/FRAMERATE.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/IMU_METADATA_PRESERVATION.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/PARAMETERS.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/REAL_TIME_ANALYSIS.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/TRIPLE_EXTENSION.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/docs/VALIDATION_PLAN.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/examples/bulk/README.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/examples/programmatic_usage.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/samples/cmjs/README.md +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/__init__.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/cli.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/cmj/__init__.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/cmj/analysis.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/cmj/cli.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/cmj/debug_overlay.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/cmj/joint_angles.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/cmj/kinematics.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/core/__init__.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/core/auto_tuning.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/core/debug_overlay_utils.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/core/filtering.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/core/video_io.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/dropjump/__init__.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/src/kinemotion/py.typed +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/__init__.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_adaptive_threshold.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_api.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_aspect_ratio.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_cmj_analysis.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_cmj_kinematics.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_com_estimation.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_contact_detection.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_filtering.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_kinematics.py +0 -0
- {kinemotion-0.12.0 → kinemotion-0.12.2}/tests/test_polyorder.py +0 -0
|
@@ -7,6 +7,44 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|
|
7
7
|
|
|
8
8
|
<!-- version list -->
|
|
9
9
|
|
|
10
|
+
## v0.12.2 (2025-11-06)
|
|
11
|
+
|
|
12
|
+
### Bug Fixes
|
|
13
|
+
|
|
14
|
+
- **core**: Suppress false positive for polyorder parameter
|
|
15
|
+
([`ae5ffea`](https://github.com/feniix/kinemotion/commit/ae5ffea708741592e1cd356cdf35dcc388cbe97f))
|
|
16
|
+
|
|
17
|
+
- **dropjump**: Remove unused parameters from calculate_drop_jump_metrics
|
|
18
|
+
([`6130c11`](https://github.com/feniix/kinemotion/commit/6130c113be71dcd8c278b1f31a3b5e300a6b4532))
|
|
19
|
+
|
|
20
|
+
### Refactoring
|
|
21
|
+
|
|
22
|
+
- **core**: Reduce cognitive complexity in pose.py
|
|
23
|
+
([`f0a3805`](https://github.com/feniix/kinemotion/commit/f0a380561844e54b4372f57c93b82f8c8a1440ee))
|
|
24
|
+
|
|
25
|
+
- **dropjump**: Reduce cognitive complexity in analysis.py
|
|
26
|
+
([`180bb37`](https://github.com/feniix/kinemotion/commit/180bb373f63675ef6ecacaea8e9ee9f63c3d3746))
|
|
27
|
+
|
|
28
|
+
- **dropjump**: Reduce cognitive complexity in debug_overlay.py
|
|
29
|
+
([`076cb56`](https://github.com/feniix/kinemotion/commit/076cb560c55baaff0ba93d0631eb38d69f8a7d7b))
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
## v0.12.1 (2025-11-06)
|
|
33
|
+
|
|
34
|
+
### Bug Fixes
|
|
35
|
+
|
|
36
|
+
- **core**: Remove unreachable duplicate return statement
|
|
37
|
+
([`294115d`](https://github.com/feniix/kinemotion/commit/294115da761b2851ecc4405a6503138851a56ad1))
|
|
38
|
+
|
|
39
|
+
- **examples**: Remove drop_height from API examples
|
|
40
|
+
([`f3da09e`](https://github.com/feniix/kinemotion/commit/f3da09ef4ab050b13b80b9fdd8c7734e4556647a))
|
|
41
|
+
|
|
42
|
+
### Refactoring
|
|
43
|
+
|
|
44
|
+
- **dropjump**: Remove unused calibration parameters
|
|
45
|
+
([`1a7572c`](https://github.com/feniix/kinemotion/commit/1a7572c83ff4e990e39dcb96ff61220adf40818e))
|
|
46
|
+
|
|
47
|
+
|
|
10
48
|
## v0.12.0 (2025-11-06)
|
|
11
49
|
|
|
12
50
|
### Documentation
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: kinemotion
|
|
3
|
-
Version: 0.12.
|
|
3
|
+
Version: 0.12.2
|
|
4
4
|
Summary: Video-based kinematic analysis for athletic performance
|
|
5
5
|
Project-URL: Homepage, https://github.com/feniix/kinemotion
|
|
6
6
|
Project-URL: Repository, https://github.com/feniix/kinemotion
|
|
@@ -18,9 +18,9 @@ def example_simple_bulk() -> None:
|
|
|
18
18
|
print("=" * 80)
|
|
19
19
|
|
|
20
20
|
video_configs = [
|
|
21
|
-
VideoConfig(video_path="video1.mp4"
|
|
22
|
-
VideoConfig(video_path="video2.mp4"
|
|
23
|
-
VideoConfig(video_path="video3.mp4"
|
|
21
|
+
VideoConfig(video_path="video1.mp4"),
|
|
22
|
+
VideoConfig(video_path="video2.mp4"),
|
|
23
|
+
VideoConfig(video_path="video3.mp4"),
|
|
24
24
|
]
|
|
25
25
|
|
|
26
26
|
# Process videos with 4 parallel workers
|
|
@@ -41,21 +41,18 @@ def example_advanced_configuration() -> None:
|
|
|
41
41
|
# Fast analysis for quick screening
|
|
42
42
|
VideoConfig(
|
|
43
43
|
video_path="athlete1_trial1.mp4",
|
|
44
|
-
drop_height=0.40,
|
|
45
44
|
quality="fast",
|
|
46
45
|
json_output="results/athlete1_trial1.json",
|
|
47
46
|
),
|
|
48
47
|
# Balanced analysis (default)
|
|
49
48
|
VideoConfig(
|
|
50
49
|
video_path="athlete1_trial2.mp4",
|
|
51
|
-
drop_height=0.40,
|
|
52
50
|
quality="balanced",
|
|
53
51
|
json_output="results/athlete1_trial2.json",
|
|
54
52
|
),
|
|
55
53
|
# Research-grade accurate analysis with debug video
|
|
56
54
|
VideoConfig(
|
|
57
55
|
video_path="athlete1_trial3.mp4",
|
|
58
|
-
drop_height=0.40,
|
|
59
56
|
quality="accurate",
|
|
60
57
|
output_video="debug/athlete1_trial3_debug.mp4",
|
|
61
58
|
json_output="results/athlete1_trial3.json",
|
|
@@ -101,7 +98,6 @@ def example_process_directory() -> list[VideoResult]:
|
|
|
101
98
|
dir_configs = [
|
|
102
99
|
VideoConfig(
|
|
103
100
|
video_path=str(video_file),
|
|
104
|
-
drop_height=0.40,
|
|
105
101
|
quality="balanced",
|
|
106
102
|
json_output=f"results/{video_file.stem}.json",
|
|
107
103
|
)
|
|
@@ -187,7 +183,6 @@ def example_custom_parameters() -> None:
|
|
|
187
183
|
# Low quality video - use more aggressive smoothing
|
|
188
184
|
VideoConfig(
|
|
189
185
|
video_path="low_quality.mp4",
|
|
190
|
-
drop_height=0.40,
|
|
191
186
|
smoothing_window=7, # More smoothing
|
|
192
187
|
velocity_threshold=0.025, # Higher threshold
|
|
193
188
|
quality="accurate",
|
|
@@ -195,7 +190,6 @@ def example_custom_parameters() -> None:
|
|
|
195
190
|
# High speed video - adjust for higher framerate
|
|
196
191
|
VideoConfig(
|
|
197
192
|
video_path="high_speed_120fps.mp4",
|
|
198
|
-
drop_height=0.40,
|
|
199
193
|
quality="accurate",
|
|
200
194
|
# Auto-tuning will handle FPS adjustments
|
|
201
195
|
),
|
|
@@ -290,7 +284,6 @@ def example_single_video() -> None:
|
|
|
290
284
|
# Process single video with verbose output
|
|
291
285
|
metrics = process_video(
|
|
292
286
|
video_path="sample.mp4",
|
|
293
|
-
drop_height=0.40,
|
|
294
287
|
quality="balanced",
|
|
295
288
|
output_video="sample_debug.mp4",
|
|
296
289
|
json_output="sample_results.json",
|
|
@@ -12,10 +12,9 @@ def process_single_video_example() -> None:
|
|
|
12
12
|
"""Process a single video - the simplest usage."""
|
|
13
13
|
print("Processing single video...")
|
|
14
14
|
|
|
15
|
-
# Process with just the
|
|
15
|
+
# Process with just the video path
|
|
16
16
|
metrics = process_video(
|
|
17
17
|
video_path="my_video.mp4",
|
|
18
|
-
drop_height=0.40, # 40cm drop box
|
|
19
18
|
verbose=True,
|
|
20
19
|
)
|
|
21
20
|
|
|
@@ -36,10 +35,10 @@ def process_multiple_videos_example() -> None:
|
|
|
36
35
|
|
|
37
36
|
# Configure videos to process
|
|
38
37
|
configs = [
|
|
39
|
-
VideoConfig("athlete1_jump1.mp4"
|
|
40
|
-
VideoConfig("athlete1_jump2.mp4"
|
|
41
|
-
VideoConfig("athlete1_jump3.mp4"
|
|
42
|
-
VideoConfig("athlete2_jump1.mp4",
|
|
38
|
+
VideoConfig("athlete1_jump1.mp4"),
|
|
39
|
+
VideoConfig("athlete1_jump2.mp4"),
|
|
40
|
+
VideoConfig("athlete1_jump3.mp4"),
|
|
41
|
+
VideoConfig("athlete2_jump1.mp4", quality="accurate"),
|
|
43
42
|
]
|
|
44
43
|
|
|
45
44
|
# Process all videos using 4 parallel workers
|
|
@@ -74,7 +73,6 @@ def process_with_outputs_example() -> None:
|
|
|
74
73
|
|
|
75
74
|
metrics = process_video(
|
|
76
75
|
video_path="my_video.mp4",
|
|
77
|
-
drop_height=0.40,
|
|
78
76
|
output_video="debug_output.mp4", # Save annotated video
|
|
79
77
|
json_output="results.json", # Save metrics as JSON
|
|
80
78
|
quality="accurate", # Use highest quality analysis
|
|
@@ -463,13 +463,11 @@ def process_video(
|
|
|
463
463
|
contact_states,
|
|
464
464
|
vertical_positions,
|
|
465
465
|
video.fps,
|
|
466
|
-
drop_height_m=None,
|
|
467
466
|
drop_start_frame=drop_start_frame,
|
|
468
467
|
velocity_threshold=params.velocity_threshold,
|
|
469
468
|
smoothing_window=params.smoothing_window,
|
|
470
469
|
polyorder=params.polyorder,
|
|
471
470
|
use_curvature=params.use_curvature,
|
|
472
|
-
kinematic_correction_factor=1.0,
|
|
473
471
|
)
|
|
474
472
|
|
|
475
473
|
# Generate outputs (JSON and debug video)
|
|
@@ -81,6 +81,100 @@ class PoseTracker:
|
|
|
81
81
|
self.pose.close()
|
|
82
82
|
|
|
83
83
|
|
|
84
|
+
def _add_head_segment(
|
|
85
|
+
segments: list,
|
|
86
|
+
weights: list,
|
|
87
|
+
visibilities: list,
|
|
88
|
+
landmarks: dict[str, tuple[float, float, float]],
|
|
89
|
+
vis_threshold: float,
|
|
90
|
+
) -> None:
|
|
91
|
+
"""Add head segment (8% body mass) if visible."""
|
|
92
|
+
if "nose" in landmarks:
|
|
93
|
+
x, y, vis = landmarks["nose"]
|
|
94
|
+
if vis > vis_threshold:
|
|
95
|
+
segments.append((x, y))
|
|
96
|
+
weights.append(0.08)
|
|
97
|
+
visibilities.append(vis)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def _add_trunk_segment(
|
|
101
|
+
segments: list,
|
|
102
|
+
weights: list,
|
|
103
|
+
visibilities: list,
|
|
104
|
+
landmarks: dict[str, tuple[float, float, float]],
|
|
105
|
+
vis_threshold: float,
|
|
106
|
+
) -> None:
|
|
107
|
+
"""Add trunk segment (50% body mass) if visible."""
|
|
108
|
+
trunk_keys = ["left_shoulder", "right_shoulder", "left_hip", "right_hip"]
|
|
109
|
+
trunk_pos = [
|
|
110
|
+
(x, y, vis)
|
|
111
|
+
for key in trunk_keys
|
|
112
|
+
if key in landmarks
|
|
113
|
+
for x, y, vis in [landmarks[key]]
|
|
114
|
+
if vis > vis_threshold
|
|
115
|
+
]
|
|
116
|
+
if len(trunk_pos) >= 2:
|
|
117
|
+
trunk_x = float(np.mean([p[0] for p in trunk_pos]))
|
|
118
|
+
trunk_y = float(np.mean([p[1] for p in trunk_pos]))
|
|
119
|
+
trunk_vis = float(np.mean([p[2] for p in trunk_pos]))
|
|
120
|
+
segments.append((trunk_x, trunk_y))
|
|
121
|
+
weights.append(0.50)
|
|
122
|
+
visibilities.append(trunk_vis)
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def _add_limb_segment(
|
|
126
|
+
segments: list,
|
|
127
|
+
weights: list,
|
|
128
|
+
visibilities: list,
|
|
129
|
+
landmarks: dict[str, tuple[float, float, float]],
|
|
130
|
+
side: str,
|
|
131
|
+
proximal_key: str,
|
|
132
|
+
distal_key: str,
|
|
133
|
+
segment_weight: float,
|
|
134
|
+
vis_threshold: float,
|
|
135
|
+
) -> None:
|
|
136
|
+
"""Add a limb segment (thigh or lower leg) if both endpoints visible."""
|
|
137
|
+
prox_full = f"{side}_{proximal_key}"
|
|
138
|
+
dist_full = f"{side}_{distal_key}"
|
|
139
|
+
|
|
140
|
+
if prox_full in landmarks and dist_full in landmarks:
|
|
141
|
+
px, py, pvis = landmarks[prox_full]
|
|
142
|
+
dx, dy, dvis = landmarks[dist_full]
|
|
143
|
+
if pvis > vis_threshold and dvis > vis_threshold:
|
|
144
|
+
seg_x = (px + dx) / 2
|
|
145
|
+
seg_y = (py + dy) / 2
|
|
146
|
+
seg_vis = (pvis + dvis) / 2
|
|
147
|
+
segments.append((seg_x, seg_y))
|
|
148
|
+
weights.append(segment_weight)
|
|
149
|
+
visibilities.append(seg_vis)
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def _add_foot_segment(
|
|
153
|
+
segments: list,
|
|
154
|
+
weights: list,
|
|
155
|
+
visibilities: list,
|
|
156
|
+
landmarks: dict[str, tuple[float, float, float]],
|
|
157
|
+
side: str,
|
|
158
|
+
vis_threshold: float,
|
|
159
|
+
) -> None:
|
|
160
|
+
"""Add foot segment (1.5% body mass per foot) if visible."""
|
|
161
|
+
foot_keys = [f"{side}_ankle", f"{side}_heel", f"{side}_foot_index"]
|
|
162
|
+
foot_pos = [
|
|
163
|
+
(x, y, vis)
|
|
164
|
+
for key in foot_keys
|
|
165
|
+
if key in landmarks
|
|
166
|
+
for x, y, vis in [landmarks[key]]
|
|
167
|
+
if vis > vis_threshold
|
|
168
|
+
]
|
|
169
|
+
if foot_pos:
|
|
170
|
+
foot_x = float(np.mean([p[0] for p in foot_pos]))
|
|
171
|
+
foot_y = float(np.mean([p[1] for p in foot_pos]))
|
|
172
|
+
foot_vis = float(np.mean([p[2] for p in foot_pos]))
|
|
173
|
+
segments.append((foot_x, foot_y))
|
|
174
|
+
weights.append(0.015)
|
|
175
|
+
visibilities.append(foot_vis)
|
|
176
|
+
|
|
177
|
+
|
|
84
178
|
def compute_center_of_mass(
|
|
85
179
|
landmarks: dict[str, tuple[float, float, float]],
|
|
86
180
|
visibility_threshold: float = 0.5,
|
|
@@ -106,114 +200,59 @@ def compute_center_of_mass(
|
|
|
106
200
|
(x, y, visibility) tuple for estimated CoM position
|
|
107
201
|
visibility = average visibility of all segments used
|
|
108
202
|
"""
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
segment_weights = []
|
|
113
|
-
visibilities = []
|
|
203
|
+
segments: list = []
|
|
204
|
+
weights: list = []
|
|
205
|
+
visibilities: list = []
|
|
114
206
|
|
|
115
|
-
#
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
if vis > visibility_threshold:
|
|
119
|
-
segments.append((x, y))
|
|
120
|
-
segment_weights.append(0.08)
|
|
121
|
-
visibilities.append(vis)
|
|
207
|
+
# Add body segments
|
|
208
|
+
_add_head_segment(segments, weights, visibilities, landmarks, visibility_threshold)
|
|
209
|
+
_add_trunk_segment(segments, weights, visibilities, landmarks, visibility_threshold)
|
|
122
210
|
|
|
123
|
-
#
|
|
124
|
-
trunk_landmarks = ["left_shoulder", "right_shoulder", "left_hip", "right_hip"]
|
|
125
|
-
trunk_positions = [
|
|
126
|
-
(x, y, vis)
|
|
127
|
-
for key in trunk_landmarks
|
|
128
|
-
if key in landmarks
|
|
129
|
-
for x, y, vis in [landmarks[key]]
|
|
130
|
-
if vis > visibility_threshold
|
|
131
|
-
]
|
|
132
|
-
if len(trunk_positions) >= 2:
|
|
133
|
-
trunk_x = float(np.mean([pos[0] for pos in trunk_positions]))
|
|
134
|
-
trunk_y = float(np.mean([pos[1] for pos in trunk_positions]))
|
|
135
|
-
trunk_vis = float(np.mean([pos[2] for pos in trunk_positions]))
|
|
136
|
-
segments.append((trunk_x, trunk_y))
|
|
137
|
-
segment_weights.append(0.50)
|
|
138
|
-
visibilities.append(trunk_vis)
|
|
139
|
-
|
|
140
|
-
# Thigh segment: 20% total (midpoint hip to knee for each leg)
|
|
211
|
+
# Add bilateral limb segments
|
|
141
212
|
for side in ["left", "right"]:
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
# Foot segment: 3% total (average of ankle, heel, foot_index)
|
|
171
|
-
for side in ["left", "right"]:
|
|
172
|
-
foot_keys = [f"{side}_ankle", f"{side}_heel", f"{side}_foot_index"]
|
|
173
|
-
foot_positions = [
|
|
174
|
-
(x, y, vis)
|
|
175
|
-
for key in foot_keys
|
|
176
|
-
if key in landmarks
|
|
177
|
-
for x, y, vis in [landmarks[key]]
|
|
178
|
-
if vis > visibility_threshold
|
|
179
|
-
]
|
|
180
|
-
if foot_positions:
|
|
181
|
-
foot_x = float(np.mean([pos[0] for pos in foot_positions]))
|
|
182
|
-
foot_y = float(np.mean([pos[1] for pos in foot_positions]))
|
|
183
|
-
foot_vis = float(np.mean([pos[2] for pos in foot_positions]))
|
|
184
|
-
segments.append((foot_x, foot_y))
|
|
185
|
-
segment_weights.append(0.015) # 1.5% per foot
|
|
186
|
-
visibilities.append(foot_vis)
|
|
187
|
-
|
|
188
|
-
# If no segments found, fall back to hip average
|
|
213
|
+
_add_limb_segment(
|
|
214
|
+
segments,
|
|
215
|
+
weights,
|
|
216
|
+
visibilities,
|
|
217
|
+
landmarks,
|
|
218
|
+
side,
|
|
219
|
+
"hip",
|
|
220
|
+
"knee",
|
|
221
|
+
0.10,
|
|
222
|
+
visibility_threshold,
|
|
223
|
+
)
|
|
224
|
+
_add_limb_segment(
|
|
225
|
+
segments,
|
|
226
|
+
weights,
|
|
227
|
+
visibilities,
|
|
228
|
+
landmarks,
|
|
229
|
+
side,
|
|
230
|
+
"knee",
|
|
231
|
+
"ankle",
|
|
232
|
+
0.05,
|
|
233
|
+
visibility_threshold,
|
|
234
|
+
)
|
|
235
|
+
_add_foot_segment(
|
|
236
|
+
segments, weights, visibilities, landmarks, side, visibility_threshold
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
# Fallback if no segments found
|
|
189
240
|
if not segments:
|
|
190
241
|
if "left_hip" in landmarks and "right_hip" in landmarks:
|
|
191
242
|
lh_x, lh_y, lh_vis = landmarks["left_hip"]
|
|
192
243
|
rh_x, rh_y, rh_vis = landmarks["right_hip"]
|
|
193
|
-
return (
|
|
194
|
-
(lh_x + rh_x) / 2,
|
|
195
|
-
(lh_y + rh_y) / 2,
|
|
196
|
-
(lh_vis + rh_vis) / 2,
|
|
197
|
-
)
|
|
198
|
-
# Ultimate fallback: center of frame
|
|
244
|
+
return ((lh_x + rh_x) / 2, (lh_y + rh_y) / 2, (lh_vis + rh_vis) / 2)
|
|
199
245
|
return (0.5, 0.5, 0.0)
|
|
200
246
|
|
|
201
|
-
# Normalize weights
|
|
202
|
-
total_weight = sum(
|
|
203
|
-
normalized_weights = [w / total_weight for w in
|
|
247
|
+
# Normalize weights and compute weighted average
|
|
248
|
+
total_weight = sum(weights)
|
|
249
|
+
normalized_weights = [w / total_weight for w in weights]
|
|
204
250
|
|
|
205
|
-
# Compute weighted average of segment positions
|
|
206
251
|
com_x = float(
|
|
207
|
-
sum(
|
|
208
|
-
pos[0] * weight
|
|
209
|
-
for pos, weight in zip(segments, normalized_weights, strict=True)
|
|
210
|
-
)
|
|
252
|
+
sum(p[0] * w for p, w in zip(segments, normalized_weights, strict=True))
|
|
211
253
|
)
|
|
212
254
|
com_y = float(
|
|
213
|
-
sum(
|
|
214
|
-
pos[1] * weight
|
|
215
|
-
for pos, weight in zip(segments, normalized_weights, strict=True)
|
|
216
|
-
)
|
|
255
|
+
sum(p[1] * w for p, w in zip(segments, normalized_weights, strict=True))
|
|
217
256
|
)
|
|
218
257
|
com_visibility = float(np.mean(visibilities)) if visibilities else 0.0
|
|
219
258
|
|
|
@@ -117,7 +117,7 @@ def _store_smoothed_landmarks(
|
|
|
117
117
|
)
|
|
118
118
|
|
|
119
119
|
|
|
120
|
-
def _smooth_landmarks_core(
|
|
120
|
+
def _smooth_landmarks_core( # NOSONAR(S1172) - polyorder used via closure capture in smoother_fn
|
|
121
121
|
landmark_sequence: list[dict[str, tuple[float, float, float]] | None],
|
|
122
122
|
window_length: int,
|
|
123
123
|
polyorder: int,
|
|
@@ -129,7 +129,7 @@ def _smooth_landmarks_core(
|
|
|
129
129
|
Args:
|
|
130
130
|
landmark_sequence: List of landmark dictionaries from each frame
|
|
131
131
|
window_length: Length of filter window (must be odd)
|
|
132
|
-
polyorder: Order of polynomial used to fit samples
|
|
132
|
+
polyorder: Order of polynomial used to fit samples (captured by smoother_fn closure)
|
|
133
133
|
smoother_fn: Function that takes (x_coords, y_coords, valid_frames)
|
|
134
134
|
and returns (x_smooth, y_smooth)
|
|
135
135
|
|