kiln-ai 0.13.0__tar.gz → 0.14.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kiln-ai might be problematic. Click here for more details.
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/PKG-INFO +2 -2
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/adapter_registry.py +4 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/eval/g_eval.py +17 -2
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/eval/test_g_eval.py +12 -7
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/base_finetune.py +0 -20
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/fireworks_finetune.py +169 -15
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/test_base_finetune.py +0 -9
- kiln_ai-0.14.0/kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py +1052 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/test_together_finetune.py +2 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/together_finetune.py +2 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/ml_model_list.py +1 -6
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/provider_tools.py +2 -2
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/test_provider_tools.py +2 -2
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/utils/config.py +9 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/pyproject.toml +6 -2
- kiln_ai-0.13.0/kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py +0 -547
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/.gitignore +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/.python-version +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/LICENSE.txt +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/README.md +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/index.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/data_gen/data_gen_task.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/data_gen.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/eval/base_eval.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/eval/eval_runner.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/eval/g_eval.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/eval/registry.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/eval.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/fine_tune/base_finetune.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/fine_tune/dataset_formatter.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/fine_tune/finetune_registry.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/fine_tune/openai_finetune.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/fine_tune.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/ml_model_list.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/model_adapters/base_adapter.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/model_adapters/litellm_adapter.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/model_adapters.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/prompt_builders.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/repair/repair_task.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters/repair.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/adapters.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/datamodel/dataset_split.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/datamodel/eval.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/datamodel/strict_mode.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/datamodel.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/utils/config.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/utils/formatting.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai/utils.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/kiln_ai.html +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/docs/kiln_core_docs/search.js +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/data_gen/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/data_gen/data_gen_prompts.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/data_gen/data_gen_task.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/data_gen/test_data_gen_task.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/eval/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/eval/base_eval.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/eval/eval_runner.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/eval/registry.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/eval/test_base_eval.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/eval/test_eval_runner.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/eval/test_g_eval_data.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/dataset_formatter.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/finetune_registry.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/openai_finetune.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/test_dataset_formatter.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/fine_tune/test_openai_finetune.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/model_adapters/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/model_adapters/base_adapter.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/model_adapters/litellm_adapter.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/model_adapters/litellm_config.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/model_adapters/test_base_adapter.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/model_adapters/test_litellm_adapter.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/model_adapters/test_saving_adapter_results.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/model_adapters/test_structured_output.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/ollama_tools.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/parsers/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/parsers/base_parser.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/parsers/json_parser.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/parsers/parser_registry.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/parsers/r1_parser.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/parsers/test_json_parser.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/parsers/test_parser_registry.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/parsers/test_r1_parser.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/prompt_builders.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/repair/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/repair/repair_task.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/repair/test_repair_task.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/run_output.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/test_adapter_registry.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/test_generate_docs.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/test_ollama_tools.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/test_prompt_adaptors.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/adapters/test_prompt_builders.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/basemodel.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/datamodel_enums.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/dataset_filters.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/dataset_split.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/eval.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/finetune.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/json_schema.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/model_cache.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/project.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/prompt.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/prompt_id.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/registry.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/strict_mode.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/task.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/task_output.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/task_run.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_basemodel.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_dataset_filters.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_dataset_split.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_datasource.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_eval_model.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_example_models.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_json_schema.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_model_cache.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_model_perf.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_models.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_nested_save.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_output_rating.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_prompt_id.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_registry.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/datamodel/test_task.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/utils/__init__.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/utils/dataset_import.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/utils/exhaustive_error.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/utils/formatting.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/utils/name_generator.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/utils/test_config.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/utils/test_dataset_import.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/kiln_ai/utils/test_name_geneator.py +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/setup.cfg +0 -0
- {kiln_ai-0.13.0 → kiln_ai-0.14.0}/uv.lock +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: kiln-ai
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.14.0
|
|
4
4
|
Summary: Kiln AI
|
|
5
5
|
Project-URL: Homepage, https://getkiln.ai
|
|
6
6
|
Project-URL: Repository, https://github.com/Kiln-AI/kiln
|
|
@@ -26,7 +26,7 @@ Requires-Dist: pydantic>=2.9.2
|
|
|
26
26
|
Requires-Dist: pytest-benchmark>=5.1.0
|
|
27
27
|
Requires-Dist: pytest-cov>=6.0.0
|
|
28
28
|
Requires-Dist: pyyaml>=6.0.2
|
|
29
|
-
Requires-Dist: together
|
|
29
|
+
Requires-Dist: together
|
|
30
30
|
Requires-Dist: typing-extensions>=4.12.2
|
|
31
31
|
Description-Content-Type: text/markdown
|
|
32
32
|
|
|
@@ -108,6 +108,10 @@ def adapter_for_task(
|
|
|
108
108
|
# 1. To use the correct base URL
|
|
109
109
|
# 2. We use Ollama's OpenAI compatible API (/v1), and don't just let litellm use the Ollama API. We use more advanced features like json_schema.
|
|
110
110
|
base_url=ollama_base_url + "/v1",
|
|
111
|
+
additional_body_options={
|
|
112
|
+
# LiteLLM errors without an api_key, even though Ollama doesn't support one.
|
|
113
|
+
"api_key": "NA",
|
|
114
|
+
},
|
|
111
115
|
),
|
|
112
116
|
)
|
|
113
117
|
case ModelProviderName.fireworks_ai:
|
|
@@ -297,9 +297,12 @@ The model produced the following output for the task:
|
|
|
297
297
|
|
|
298
298
|
total_score = 0.0
|
|
299
299
|
total_probability = 0.0
|
|
300
|
+
top_logprobs_contains_primary_token = False
|
|
300
301
|
|
|
301
|
-
# Process all valid scoring tokens
|
|
302
|
+
# Process all valid scoring tokens from alternatives
|
|
302
303
|
for top_logprob in token_logprob.top_logprobs:
|
|
304
|
+
if top_logprob.token == token_logprob.token:
|
|
305
|
+
top_logprobs_contains_primary_token = True
|
|
303
306
|
token_score = self.score_from_token_string(top_logprob.token)
|
|
304
307
|
if token_score is not None:
|
|
305
308
|
# Convert logprob to probability
|
|
@@ -307,9 +310,21 @@ The model produced the following output for the task:
|
|
|
307
310
|
total_score += token_score * probability
|
|
308
311
|
total_probability += probability
|
|
309
312
|
|
|
313
|
+
# Weird OpenAI 4o bug - sometimes the primary token is included in the top logprobs, sometimes not.
|
|
314
|
+
# Add the primary token back in if excluded
|
|
315
|
+
if not top_logprobs_contains_primary_token:
|
|
316
|
+
if token_logprob.logprob == -9999.0:
|
|
317
|
+
# Another "bug" - sometimes the logprob is -9999.0. This seems to happen when the rest of the logprobs are tiny probability.
|
|
318
|
+
total_score += primary_token_score * 1.0
|
|
319
|
+
total_probability += 1.0
|
|
320
|
+
else:
|
|
321
|
+
probability = math.exp(token_logprob.logprob)
|
|
322
|
+
total_score += primary_token_score * probability
|
|
323
|
+
total_probability += probability
|
|
324
|
+
|
|
310
325
|
if total_probability <= 0.0:
|
|
311
326
|
raise RuntimeError(
|
|
312
|
-
f"No valid scoring tokens found for {token_logprob.token}. This should never happen. Please file a bug if you see this."
|
|
327
|
+
f"No valid scoring tokens found for {token_logprob.token}. This should never happen as the token has a valid score (so it must be excluded from top logprobs). Please file a bug if you see this."
|
|
313
328
|
)
|
|
314
329
|
|
|
315
330
|
# Normalize by total probability of valid tokens (LLM may have wanted to generate other non-rating tokens, these shouldn't lower score of rating tokens)
|
|
@@ -393,12 +393,13 @@ def test_rating_token_to_score(test_eval_config, test_run_config):
|
|
|
393
393
|
self.logprob = logprob
|
|
394
394
|
|
|
395
395
|
class MockTokenLogprob:
|
|
396
|
-
def __init__(self, token, top_logprobs):
|
|
396
|
+
def __init__(self, token, top_logprobs, logprob):
|
|
397
397
|
self.token = token
|
|
398
398
|
self.top_logprobs = [MockTopLogprob(t, lp) for t, lp in top_logprobs]
|
|
399
|
+
self.logprob = logprob
|
|
399
400
|
|
|
400
401
|
# Test single token case
|
|
401
|
-
token_logprob = MockTokenLogprob("5", [("5", 0.0)]) # log(1) = 0
|
|
402
|
+
token_logprob = MockTokenLogprob("5", [("5", 0.0)], logprob=1e-8) # log(1) = 0
|
|
402
403
|
score = g_eval.rating_token_to_score(token_logprob)
|
|
403
404
|
assert score == 5.0
|
|
404
405
|
|
|
@@ -409,18 +410,22 @@ def test_rating_token_to_score(test_eval_config, test_run_config):
|
|
|
409
410
|
("4", math.log(0.6)), # 60% probability
|
|
410
411
|
("5", math.log(0.4)), # 40% probability
|
|
411
412
|
],
|
|
413
|
+
logprob=math.log(0.6),
|
|
412
414
|
)
|
|
413
415
|
score = g_eval.rating_token_to_score(token_logprob)
|
|
414
416
|
assert pytest.approx(score) == 4.4 # (4 * 0.6 + 5 * 0.4)
|
|
415
417
|
|
|
416
418
|
# Test invalid token
|
|
417
|
-
token_logprob = MockTokenLogprob(":", [(":", 0.0)])
|
|
419
|
+
token_logprob = MockTokenLogprob(":", [(":", 0.0)], logprob=1e-8)
|
|
418
420
|
assert g_eval.rating_token_to_score(token_logprob) is None
|
|
419
421
|
|
|
420
|
-
# Test
|
|
421
|
-
token_logprob = MockTokenLogprob("5", [])
|
|
422
|
-
|
|
423
|
-
|
|
422
|
+
# Test missing from top logprobs
|
|
423
|
+
token_logprob = MockTokenLogprob("5", [], logprob=1e-8)
|
|
424
|
+
assert pytest.approx(g_eval.rating_token_to_score(token_logprob)) == 5.0
|
|
425
|
+
|
|
426
|
+
# Test missing from top logprobs, with special case logprob
|
|
427
|
+
token_logprob = MockTokenLogprob("5", [], logprob=-9999)
|
|
428
|
+
assert pytest.approx(g_eval.rating_token_to_score(token_logprob)) == 5.0
|
|
424
429
|
|
|
425
430
|
|
|
426
431
|
def test_g_eval_system_instruction():
|
|
@@ -72,8 +72,6 @@ class BaseFinetuneAdapter(ABC):
|
|
|
72
72
|
Create and start a fine-tune.
|
|
73
73
|
"""
|
|
74
74
|
|
|
75
|
-
cls.check_valid_provider_model(provider_id, provider_base_model_id)
|
|
76
|
-
|
|
77
75
|
if not dataset.id:
|
|
78
76
|
raise ValueError("Dataset must have an id")
|
|
79
77
|
|
|
@@ -184,21 +182,3 @@ class BaseFinetuneAdapter(ABC):
|
|
|
184
182
|
for parameter_key in parameters:
|
|
185
183
|
if parameter_key not in allowed_parameters:
|
|
186
184
|
raise ValueError(f"Parameter {parameter_key} is not available")
|
|
187
|
-
|
|
188
|
-
@classmethod
|
|
189
|
-
def check_valid_provider_model(
|
|
190
|
-
cls, provider_id: str, provider_base_model_id: str
|
|
191
|
-
) -> None:
|
|
192
|
-
"""
|
|
193
|
-
Check if the provider and base model are valid.
|
|
194
|
-
"""
|
|
195
|
-
for model in built_in_models:
|
|
196
|
-
for provider in model.providers:
|
|
197
|
-
if (
|
|
198
|
-
provider.name == provider_id
|
|
199
|
-
and provider.provider_finetune_id == provider_base_model_id
|
|
200
|
-
):
|
|
201
|
-
return
|
|
202
|
-
raise ValueError(
|
|
203
|
-
f"Provider {provider_id} with base model {provider_base_model_id} is not available"
|
|
204
|
-
)
|
|
@@ -1,4 +1,5 @@
|
|
|
1
|
-
|
|
1
|
+
import logging
|
|
2
|
+
from typing import List, Tuple
|
|
2
3
|
from uuid import uuid4
|
|
3
4
|
|
|
4
5
|
import httpx
|
|
@@ -13,6 +14,14 @@ from kiln_ai.adapters.fine_tune.dataset_formatter import DatasetFormat, DatasetF
|
|
|
13
14
|
from kiln_ai.datamodel import DatasetSplit, StructuredOutputMode, Task
|
|
14
15
|
from kiln_ai.utils.config import Config
|
|
15
16
|
|
|
17
|
+
logger = logging.getLogger(__name__)
|
|
18
|
+
|
|
19
|
+
# https://docs.fireworks.ai/fine-tuning/fine-tuning-models#supported-base-models-loras-on-serverless
|
|
20
|
+
serverless_models = [
|
|
21
|
+
"accounts/fireworks/models/llama-v3p1-8b-instruct",
|
|
22
|
+
"accounts/fireworks/models/llama-v3p1-70b-instruct",
|
|
23
|
+
]
|
|
24
|
+
|
|
16
25
|
|
|
17
26
|
class FireworksFinetune(BaseFinetuneAdapter):
|
|
18
27
|
"""
|
|
@@ -132,11 +141,18 @@ class FireworksFinetune(BaseFinetuneAdapter):
|
|
|
132
141
|
:60
|
|
133
142
|
]
|
|
134
143
|
)
|
|
135
|
-
payload = {
|
|
144
|
+
payload: dict[str, str | dict[str, str | bool]] = {
|
|
136
145
|
"dataset": f"accounts/{account_id}/datasets/{train_file_id}",
|
|
137
146
|
"displayName": display_name,
|
|
138
147
|
"baseModel": self.datamodel.base_model_id,
|
|
139
148
|
}
|
|
149
|
+
# Add W&B config if API key is set
|
|
150
|
+
if Config.shared().wandb_api_key:
|
|
151
|
+
payload["wandbConfig"] = {
|
|
152
|
+
"enabled": True,
|
|
153
|
+
"project": "Kiln_AI",
|
|
154
|
+
"apiKey": Config.shared().wandb_api_key,
|
|
155
|
+
}
|
|
140
156
|
hyperparameters = self.create_payload_parameters(self.datamodel.parameters)
|
|
141
157
|
payload.update(hyperparameters)
|
|
142
158
|
headers = {
|
|
@@ -276,32 +292,54 @@ class FireworksFinetune(BaseFinetuneAdapter):
|
|
|
276
292
|
return {k: v for k, v in payload.items() if v is not None}
|
|
277
293
|
|
|
278
294
|
async def _deploy(self) -> bool:
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
# https://docs.fireworks.ai/models/deploying#deploying-to-serverless
|
|
284
|
-
# This endpoint will return 400 if already deployed with code 9, so we consider that a success.
|
|
295
|
+
if self.datamodel.base_model_id in serverless_models:
|
|
296
|
+
return await self._deploy_serverless()
|
|
297
|
+
else:
|
|
298
|
+
return await self._check_or_deploy_server()
|
|
285
299
|
|
|
300
|
+
def api_key_and_account_id(self) -> Tuple[str, str]:
|
|
286
301
|
api_key = Config.shared().fireworks_api_key
|
|
287
302
|
account_id = Config.shared().fireworks_account_id
|
|
288
303
|
if not api_key or not account_id:
|
|
289
304
|
raise ValueError("Fireworks API key or account ID not set")
|
|
305
|
+
return api_key, account_id
|
|
306
|
+
|
|
307
|
+
def deployment_display_name(self) -> str:
|
|
308
|
+
# Limit the display name to 60 characters
|
|
309
|
+
display_name = f"Kiln AI fine-tuned model [ID:{self.datamodel.id}][name:{self.datamodel.name}]"[
|
|
310
|
+
:60
|
|
311
|
+
]
|
|
312
|
+
return display_name
|
|
290
313
|
|
|
314
|
+
async def model_id_checking_status(self) -> str | None:
|
|
291
315
|
# Model ID != fine tune ID on Fireworks. Model is the result of the tune job. Call status to get it.
|
|
292
316
|
status, model_id = await self._status()
|
|
293
317
|
if status.status != FineTuneStatusType.completed:
|
|
294
|
-
return
|
|
318
|
+
return None
|
|
295
319
|
if not model_id or not isinstance(model_id, str):
|
|
296
|
-
return
|
|
320
|
+
return None
|
|
321
|
+
return model_id
|
|
322
|
+
|
|
323
|
+
async def _deploy_serverless(self) -> bool:
|
|
324
|
+
# Now we "deploy" the model using PEFT serverless.
|
|
325
|
+
# A bit complicated: most fireworks deploys are server based.
|
|
326
|
+
# However, a Lora can be serverless (PEFT).
|
|
327
|
+
# By calling the deploy endpoint WITHOUT first creating a deployment ID, it will only deploy if it can be done serverless.
|
|
328
|
+
# https://docs.fireworks.ai/models/deploying#deploying-to-serverless
|
|
329
|
+
# This endpoint will return 400 if already deployed with code 9, so we consider that a success.
|
|
330
|
+
|
|
331
|
+
api_key, account_id = self.api_key_and_account_id()
|
|
297
332
|
|
|
298
333
|
url = f"https://api.fireworks.ai/v1/accounts/{account_id}/deployedModels"
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
334
|
+
model_id = await self.model_id_checking_status()
|
|
335
|
+
if not model_id:
|
|
336
|
+
logger.error(
|
|
337
|
+
"Model ID not found - can't deploy model to Fireworks serverless"
|
|
338
|
+
)
|
|
339
|
+
return False
|
|
340
|
+
|
|
303
341
|
payload = {
|
|
304
|
-
"displayName":
|
|
342
|
+
"displayName": self.deployment_display_name(),
|
|
305
343
|
"model": model_id,
|
|
306
344
|
}
|
|
307
345
|
headers = {
|
|
@@ -320,4 +358,120 @@ class FireworksFinetune(BaseFinetuneAdapter):
|
|
|
320
358
|
self.datamodel.save_to_file()
|
|
321
359
|
return True
|
|
322
360
|
|
|
361
|
+
logger.error(
|
|
362
|
+
f"Failed to deploy model to Fireworks serverless: [{response.status_code}] {response.text}"
|
|
363
|
+
)
|
|
323
364
|
return False
|
|
365
|
+
|
|
366
|
+
async def _check_or_deploy_server(self) -> bool:
|
|
367
|
+
"""
|
|
368
|
+
Check if the model is already deployed. If not, deploy it to a dedicated server.
|
|
369
|
+
"""
|
|
370
|
+
|
|
371
|
+
# Check if the model is already deployed
|
|
372
|
+
# If it's fine_tune_model_id is set, it might be deployed. However, Fireworks deletes them over time so we need to check.
|
|
373
|
+
if self.datamodel.fine_tune_model_id:
|
|
374
|
+
deployments = await self._fetch_all_deployments()
|
|
375
|
+
for deployment in deployments:
|
|
376
|
+
if deployment[
|
|
377
|
+
"baseModel"
|
|
378
|
+
] == self.datamodel.fine_tune_model_id and deployment["state"] in [
|
|
379
|
+
"READY",
|
|
380
|
+
"CREATING",
|
|
381
|
+
]:
|
|
382
|
+
return True
|
|
383
|
+
|
|
384
|
+
# If the model is not deployed, deploy it
|
|
385
|
+
return await self._deploy_server()
|
|
386
|
+
|
|
387
|
+
async def _deploy_server(self) -> bool:
|
|
388
|
+
# For models that are not serverless, we just need to deploy the model to a server.
|
|
389
|
+
# We use a scale-to-zero on-demand deployment. If you stop using it, it
|
|
390
|
+
# will scale to zero and charges will stop.
|
|
391
|
+
model_id = await self.model_id_checking_status()
|
|
392
|
+
if not model_id:
|
|
393
|
+
logger.error("Model ID not found - can't deploy model to Fireworks server")
|
|
394
|
+
return False
|
|
395
|
+
|
|
396
|
+
api_key, account_id = self.api_key_and_account_id()
|
|
397
|
+
url = f"https://api.fireworks.ai/v1/accounts/{account_id}/deployments"
|
|
398
|
+
|
|
399
|
+
payload = {
|
|
400
|
+
"displayName": self.deployment_display_name(),
|
|
401
|
+
"description": "Deployed by Kiln AI",
|
|
402
|
+
# Allow scale to zero
|
|
403
|
+
"minReplicaCount": 0,
|
|
404
|
+
"autoscalingPolicy": {
|
|
405
|
+
"scaleUpWindow": "30s",
|
|
406
|
+
"scaleDownWindow": "300s",
|
|
407
|
+
# Scale to zero after 5 minutes of inactivity - this is the minimum allowed
|
|
408
|
+
"scaleToZeroWindow": "300s",
|
|
409
|
+
},
|
|
410
|
+
"baseModel": model_id,
|
|
411
|
+
}
|
|
412
|
+
headers = {
|
|
413
|
+
"Authorization": f"Bearer {api_key}",
|
|
414
|
+
"Content-Type": "application/json",
|
|
415
|
+
}
|
|
416
|
+
|
|
417
|
+
async with httpx.AsyncClient() as client:
|
|
418
|
+
response = await client.post(url, json=payload, headers=headers)
|
|
419
|
+
|
|
420
|
+
if response.status_code == 200:
|
|
421
|
+
basemodel = response.json().get("baseModel")
|
|
422
|
+
if basemodel is not None and isinstance(basemodel, str):
|
|
423
|
+
self.datamodel.fine_tune_model_id = basemodel
|
|
424
|
+
if self.datamodel.path:
|
|
425
|
+
self.datamodel.save_to_file()
|
|
426
|
+
return True
|
|
427
|
+
|
|
428
|
+
logger.error(
|
|
429
|
+
f"Failed to deploy model to Fireworks server: [{response.status_code}] {response.text}"
|
|
430
|
+
)
|
|
431
|
+
return False
|
|
432
|
+
|
|
433
|
+
async def _fetch_all_deployments(self) -> List[dict]:
|
|
434
|
+
"""
|
|
435
|
+
Fetch all deployments for an account.
|
|
436
|
+
"""
|
|
437
|
+
api_key, account_id = self.api_key_and_account_id()
|
|
438
|
+
|
|
439
|
+
url = f"https://api.fireworks.ai/v1/accounts/{account_id}/deployments"
|
|
440
|
+
|
|
441
|
+
params = {
|
|
442
|
+
# Note: filter param does not work for baseModel, which would have been ideal, and ideally would have been documented. Instead we'll fetch all and filter.
|
|
443
|
+
# Max page size
|
|
444
|
+
"pageSize": 200,
|
|
445
|
+
}
|
|
446
|
+
headers = {
|
|
447
|
+
"Authorization": f"Bearer {api_key}",
|
|
448
|
+
}
|
|
449
|
+
|
|
450
|
+
deployments = []
|
|
451
|
+
|
|
452
|
+
# Paginate through all deployments
|
|
453
|
+
async with httpx.AsyncClient() as client:
|
|
454
|
+
while True:
|
|
455
|
+
response = await client.get(url, params=params, headers=headers)
|
|
456
|
+
json = response.json()
|
|
457
|
+
if "deployments" not in json or not isinstance(
|
|
458
|
+
json["deployments"], list
|
|
459
|
+
):
|
|
460
|
+
raise ValueError(
|
|
461
|
+
f"Invalid response from Fireworks. Expected list of deployments in 'deployments' key: [{response.status_code}] {response.text}"
|
|
462
|
+
)
|
|
463
|
+
deployments.extend(json["deployments"])
|
|
464
|
+
next_page_token = json.get("nextPageToken")
|
|
465
|
+
if (
|
|
466
|
+
next_page_token
|
|
467
|
+
and isinstance(next_page_token, str)
|
|
468
|
+
and len(next_page_token) > 0
|
|
469
|
+
):
|
|
470
|
+
params = {
|
|
471
|
+
"pageSize": 200,
|
|
472
|
+
"pageToken": next_page_token,
|
|
473
|
+
}
|
|
474
|
+
else:
|
|
475
|
+
break
|
|
476
|
+
|
|
477
|
+
return deployments
|
|
@@ -261,15 +261,6 @@ async def test_create_and_start_no_parent_task_path():
|
|
|
261
261
|
)
|
|
262
262
|
|
|
263
263
|
|
|
264
|
-
def test_check_valid_provider_model():
|
|
265
|
-
MockFinetune.check_valid_provider_model("openai", "gpt-4o-mini-2024-07-18")
|
|
266
|
-
|
|
267
|
-
with pytest.raises(
|
|
268
|
-
ValueError, match="Provider openai with base model gpt-99 is not available"
|
|
269
|
-
):
|
|
270
|
-
MockFinetune.check_valid_provider_model("openai", "gpt-99")
|
|
271
|
-
|
|
272
|
-
|
|
273
264
|
async def test_create_and_start_invalid_train_split(mock_dataset):
|
|
274
265
|
# Test with an invalid train split name
|
|
275
266
|
mock_dataset.split_contents = {"valid_train": [], "valid_test": []}
|