kernelforge 0.1.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kernelforge-0.1.2/.github/workflows/ci.yml +56 -0
- kernelforge-0.1.2/.github/workflows/release.yaml +74 -0
- kernelforge-0.1.2/.gitignore +210 -0
- kernelforge-0.1.2/CMakeLists.txt +51 -0
- kernelforge-0.1.2/LICENSE +21 -0
- kernelforge-0.1.2/Makefile +5 -0
- kernelforge-0.1.2/PKG-INFO +41 -0
- kernelforge-0.1.2/README.md +24 -0
- kernelforge-0.1.2/pyproject.toml +36 -0
- kernelforge-0.1.2/pytest.ini +2 -0
- kernelforge-0.1.2/python/kernelforge/__init__.py +2 -0
- kernelforge-0.1.2/src/bindings.cpp +89 -0
- kernelforge-0.1.2/src/kernel.f90 +108 -0
- kernelforge-0.1.2/tests/test_basic.py +99 -0
- kernelforge-0.1.2/wheelhouse/kernelforge-0.1.2-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl +0 -0
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
name: CI
|
|
2
|
+
|
|
3
|
+
on:
|
|
4
|
+
push:
|
|
5
|
+
branches: [ master ]
|
|
6
|
+
pull_request:
|
|
7
|
+
|
|
8
|
+
jobs:
|
|
9
|
+
test:
|
|
10
|
+
name: pytest (${{ matrix.os }} / py${{ matrix.python-version }})
|
|
11
|
+
runs-on: ${{ matrix.os }}
|
|
12
|
+
strategy:
|
|
13
|
+
fail-fast: false
|
|
14
|
+
matrix:
|
|
15
|
+
os: [ubuntu-22.04] # add 'windows-2022' if desired
|
|
16
|
+
python-version: ["3.12"]
|
|
17
|
+
|
|
18
|
+
steps:
|
|
19
|
+
- uses: actions/checkout@v4
|
|
20
|
+
|
|
21
|
+
- uses: actions/setup-python@v5
|
|
22
|
+
with:
|
|
23
|
+
python-version: ${{ matrix.python-version }}
|
|
24
|
+
|
|
25
|
+
- name: Cache pip
|
|
26
|
+
uses: actions/cache@v4
|
|
27
|
+
with:
|
|
28
|
+
path: ~/.cache/pip
|
|
29
|
+
key: pip-${{ runner.os }}-${{ matrix.python-version }}-${{ hashFiles('pyproject.toml') }}
|
|
30
|
+
|
|
31
|
+
# macOS: Accelerate, Linux: OpenBLAS from system or wheels; keep it simple for CI
|
|
32
|
+
- name: Install build deps
|
|
33
|
+
run: |
|
|
34
|
+
python -m pip install -U pip
|
|
35
|
+
python -m pip install -U build ".[test]"
|
|
36
|
+
# Optional: OpenBLAS dev on Ubuntu if you link system BLAS
|
|
37
|
+
if [[ "$RUNNER_OS" == "Linux" ]]; then sudo apt-get update && sudo apt-get install -y libopenblas-dev; fi
|
|
38
|
+
|
|
39
|
+
- name: Build & install (editable)
|
|
40
|
+
env:
|
|
41
|
+
# Make MKL/OpenBLAS behave in CI
|
|
42
|
+
OMP_NUM_THREADS: "1"
|
|
43
|
+
MKL_NUM_THREADS: "1"
|
|
44
|
+
MKL_THREADING_LAYER: "SEQUENTIAL"
|
|
45
|
+
MKL_INTERFACE_LAYER: "LP64"
|
|
46
|
+
run: |
|
|
47
|
+
python -m pip install -e . -v
|
|
48
|
+
|
|
49
|
+
- name: Pytest (fast)
|
|
50
|
+
env:
|
|
51
|
+
OMP_NUM_THREADS: "1"
|
|
52
|
+
MKL_NUM_THREADS: "1"
|
|
53
|
+
MKL_THREADING_LAYER: "SEQUENTIAL"
|
|
54
|
+
MKL_INTERFACE_LAYER: "LP64"
|
|
55
|
+
run: |
|
|
56
|
+
pytest -q -ra -k "not slow" -x
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
# .github/workflows/release.yml
|
|
2
|
+
name: Build & Publish
|
|
3
|
+
|
|
4
|
+
on:
|
|
5
|
+
release:
|
|
6
|
+
types: [published]
|
|
7
|
+
workflow_dispatch:
|
|
8
|
+
|
|
9
|
+
jobs:
|
|
10
|
+
build-wheels:
|
|
11
|
+
runs-on: ${{ matrix.os }}
|
|
12
|
+
strategy:
|
|
13
|
+
fail-fast: false
|
|
14
|
+
matrix:
|
|
15
|
+
os: [ubuntu-22.04] # macos-14]
|
|
16
|
+
|
|
17
|
+
steps:
|
|
18
|
+
- uses: actions/checkout@v4
|
|
19
|
+
|
|
20
|
+
- uses: actions/setup-python@v5
|
|
21
|
+
with:
|
|
22
|
+
python-version: "3.12" # host Python, cibuildwheel makes all others
|
|
23
|
+
|
|
24
|
+
- name: Install cibuildwheel
|
|
25
|
+
run: python -m pip install cibuildwheel==2.*
|
|
26
|
+
|
|
27
|
+
- name: Build wheels
|
|
28
|
+
env:
|
|
29
|
+
CIBW_BUILD: "cp312-*"
|
|
30
|
+
CIBW_SKIP: "pp* *-musllinux_* cp*-manylinux_i686"
|
|
31
|
+
CIBW_TEST_COMMAND: "pytest -q {project}/tests -k 'not slow' -x"
|
|
32
|
+
CIBW_TEST_EXTRAS: "test"
|
|
33
|
+
CIBW_ENVIRONMENT: >
|
|
34
|
+
OMP_NUM_THREADS=1
|
|
35
|
+
OPENBLAS_NUM_THREADS=1
|
|
36
|
+
CIBW_BEFORE_BUILD_LINUX: |
|
|
37
|
+
curl -L https://anaconda.org/multibuild-wheels-staging/openblas-libs/v0.3.27/download/openblas-v0.3.27-manylinux2014_x86_64.tar.gz | tar xz
|
|
38
|
+
cp -r usr /opt/openblas
|
|
39
|
+
ls -l /opt/openblas/local/lib/libopenblas.so
|
|
40
|
+
CIBW_ENVIRONMENT_LINUX: >
|
|
41
|
+
LD_LIBRARY_PATH=/opt/openblas/local/lib:$LD_LIBRARY_PATH
|
|
42
|
+
CMAKE_ARGS="-DBLAS_LIBRARIES=/opt/openblas/local/lib/libopenblas.so -DBLAS_INCLUDE_DIR=/opt/openblas/local/include -DBLAS_VENDOR=OpenBLAS"
|
|
43
|
+
OPENBLAS_NUM_THREADS=1
|
|
44
|
+
OMP_NUM_THREADS=1
|
|
45
|
+
CIBW_ENVIRONMENT_PASS_LINUX: >
|
|
46
|
+
LD_LIBRARY_PATH
|
|
47
|
+
CMAKE_ARGS
|
|
48
|
+
OPENBLAS_NUM_THREADS
|
|
49
|
+
OMP_NUM_THREADS
|
|
50
|
+
run: python -m cibuildwheel --output-dir wheelhouse
|
|
51
|
+
|
|
52
|
+
- name: Build sdist
|
|
53
|
+
run: python -m pip install build && python -m build --sdist -o wheelhouse
|
|
54
|
+
|
|
55
|
+
- name: Upload artifacts
|
|
56
|
+
uses: actions/upload-artifact@v4
|
|
57
|
+
with:
|
|
58
|
+
name: wheels
|
|
59
|
+
path: wheelhouse/*
|
|
60
|
+
|
|
61
|
+
publish:
|
|
62
|
+
needs: build-wheels
|
|
63
|
+
runs-on: ubuntu-22.04
|
|
64
|
+
if: github.event_name == 'release'
|
|
65
|
+
steps:
|
|
66
|
+
- uses: actions/download-artifact@v4
|
|
67
|
+
with:
|
|
68
|
+
name: wheels
|
|
69
|
+
path: dist
|
|
70
|
+
- uses: pypa/gh-action-pypi-publish@v1.11.0
|
|
71
|
+
with:
|
|
72
|
+
user: __token__
|
|
73
|
+
password: ${{ secrets.PYPI_API_TOKEN }}
|
|
74
|
+
|
|
@@ -0,0 +1,210 @@
|
|
|
1
|
+
# Byte-compiled / optimized / DLL files
|
|
2
|
+
__pycache__/
|
|
3
|
+
*.py[codz]
|
|
4
|
+
*$py.class
|
|
5
|
+
|
|
6
|
+
# C extensions
|
|
7
|
+
*.so
|
|
8
|
+
|
|
9
|
+
# Distribution / packaging
|
|
10
|
+
.Python
|
|
11
|
+
build/
|
|
12
|
+
develop-eggs/
|
|
13
|
+
dist/
|
|
14
|
+
downloads/
|
|
15
|
+
eggs/
|
|
16
|
+
CMakeFiles/
|
|
17
|
+
.eggs/
|
|
18
|
+
lib/
|
|
19
|
+
lib64/
|
|
20
|
+
parts/
|
|
21
|
+
sdist/
|
|
22
|
+
var/
|
|
23
|
+
wheels/
|
|
24
|
+
share/python-wheels/
|
|
25
|
+
*.egg-info/
|
|
26
|
+
.installed.cfg
|
|
27
|
+
*.egg
|
|
28
|
+
MANIFEST
|
|
29
|
+
|
|
30
|
+
CMakeCache.txt
|
|
31
|
+
|
|
32
|
+
# PyInstaller
|
|
33
|
+
# Usually these files are written by a python script from a template
|
|
34
|
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
35
|
+
*.manifest
|
|
36
|
+
*.spec
|
|
37
|
+
|
|
38
|
+
# Installer logs
|
|
39
|
+
pip-log.txt
|
|
40
|
+
pip-delete-this-directory.txt
|
|
41
|
+
|
|
42
|
+
# Unit test / coverage reports
|
|
43
|
+
htmlcov/
|
|
44
|
+
.tox/
|
|
45
|
+
.nox/
|
|
46
|
+
.coverage
|
|
47
|
+
.coverage.*
|
|
48
|
+
.cache
|
|
49
|
+
nosetests.xml
|
|
50
|
+
coverage.xml
|
|
51
|
+
*.cover
|
|
52
|
+
*.py.cover
|
|
53
|
+
.hypothesis/
|
|
54
|
+
.pytest_cache/
|
|
55
|
+
cover/
|
|
56
|
+
|
|
57
|
+
# Translations
|
|
58
|
+
*.mo
|
|
59
|
+
*.pot
|
|
60
|
+
|
|
61
|
+
# Django stuff:
|
|
62
|
+
*.log
|
|
63
|
+
local_settings.py
|
|
64
|
+
db.sqlite3
|
|
65
|
+
db.sqlite3-journal
|
|
66
|
+
|
|
67
|
+
# Flask stuff:
|
|
68
|
+
instance/
|
|
69
|
+
.webassets-cache
|
|
70
|
+
|
|
71
|
+
# Scrapy stuff:
|
|
72
|
+
.scrapy
|
|
73
|
+
|
|
74
|
+
# Sphinx documentation
|
|
75
|
+
docs/_build/
|
|
76
|
+
|
|
77
|
+
# PyBuilder
|
|
78
|
+
.pybuilder/
|
|
79
|
+
target/
|
|
80
|
+
|
|
81
|
+
# Jupyter Notebook
|
|
82
|
+
.ipynb_checkpoints
|
|
83
|
+
|
|
84
|
+
# IPython
|
|
85
|
+
profile_default/
|
|
86
|
+
ipython_config.py
|
|
87
|
+
|
|
88
|
+
# pyenv
|
|
89
|
+
# For a library or package, you might want to ignore these files since the code is
|
|
90
|
+
# intended to run in multiple environments; otherwise, check them in:
|
|
91
|
+
# .python-version
|
|
92
|
+
|
|
93
|
+
# pipenv
|
|
94
|
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
95
|
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
96
|
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
97
|
+
# install all needed dependencies.
|
|
98
|
+
#Pipfile.lock
|
|
99
|
+
|
|
100
|
+
# UV
|
|
101
|
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
|
102
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
103
|
+
# commonly ignored for libraries.
|
|
104
|
+
#uv.lock
|
|
105
|
+
|
|
106
|
+
# poetry
|
|
107
|
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
|
108
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
109
|
+
# commonly ignored for libraries.
|
|
110
|
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
|
111
|
+
#poetry.lock
|
|
112
|
+
#poetry.toml
|
|
113
|
+
|
|
114
|
+
# pdm
|
|
115
|
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
|
116
|
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
|
117
|
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
|
118
|
+
#pdm.lock
|
|
119
|
+
#pdm.toml
|
|
120
|
+
.pdm-python
|
|
121
|
+
.pdm-build/
|
|
122
|
+
|
|
123
|
+
# pixi
|
|
124
|
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
|
125
|
+
#pixi.lock
|
|
126
|
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
|
127
|
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
|
128
|
+
.pixi
|
|
129
|
+
|
|
130
|
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
|
131
|
+
__pypackages__/
|
|
132
|
+
|
|
133
|
+
# Celery stuff
|
|
134
|
+
celerybeat-schedule
|
|
135
|
+
celerybeat.pid
|
|
136
|
+
|
|
137
|
+
# SageMath parsed files
|
|
138
|
+
*.sage.py
|
|
139
|
+
|
|
140
|
+
# Environments
|
|
141
|
+
.env
|
|
142
|
+
.envrc
|
|
143
|
+
.venv
|
|
144
|
+
env/
|
|
145
|
+
venv/
|
|
146
|
+
ENV/
|
|
147
|
+
env.bak/
|
|
148
|
+
venv.bak/
|
|
149
|
+
|
|
150
|
+
# Spyder project settings
|
|
151
|
+
.spyderproject
|
|
152
|
+
.spyproject
|
|
153
|
+
|
|
154
|
+
# Rope project settings
|
|
155
|
+
.ropeproject
|
|
156
|
+
|
|
157
|
+
# mkdocs documentation
|
|
158
|
+
/site
|
|
159
|
+
|
|
160
|
+
# mypy
|
|
161
|
+
.mypy_cache/
|
|
162
|
+
.dmypy.json
|
|
163
|
+
dmypy.json
|
|
164
|
+
|
|
165
|
+
# Pyre type checker
|
|
166
|
+
.pyre/
|
|
167
|
+
|
|
168
|
+
# pytype static type analyzer
|
|
169
|
+
.pytype/
|
|
170
|
+
|
|
171
|
+
# Cython debug symbols
|
|
172
|
+
cython_debug/
|
|
173
|
+
|
|
174
|
+
# PyCharm
|
|
175
|
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
|
176
|
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
|
177
|
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
|
178
|
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
|
179
|
+
#.idea/
|
|
180
|
+
|
|
181
|
+
# Abstra
|
|
182
|
+
# Abstra is an AI-powered process automation framework.
|
|
183
|
+
# Ignore directories containing user credentials, local state, and settings.
|
|
184
|
+
# Learn more at https://abstra.io/docs
|
|
185
|
+
.abstra/
|
|
186
|
+
|
|
187
|
+
# Visual Studio Code
|
|
188
|
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
|
189
|
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
|
190
|
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
|
191
|
+
# you could uncomment the following to ignore the entire vscode folder
|
|
192
|
+
# .vscode/
|
|
193
|
+
|
|
194
|
+
# Ruff stuff:
|
|
195
|
+
.ruff_cache/
|
|
196
|
+
|
|
197
|
+
# PyPI configuration file
|
|
198
|
+
.pypirc
|
|
199
|
+
|
|
200
|
+
# Cursor
|
|
201
|
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
|
202
|
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
|
203
|
+
# refer to https://docs.cursor.com/context/ignore-files
|
|
204
|
+
.cursorignore
|
|
205
|
+
.cursorindexingignore
|
|
206
|
+
|
|
207
|
+
# Marimo
|
|
208
|
+
marimo/_static/
|
|
209
|
+
marimo/_lsp/
|
|
210
|
+
__marimo__/
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
cmake_minimum_required(VERSION 3.18)
|
|
2
|
+
project(kernelforge LANGUAGES C CXX Fortran)
|
|
3
|
+
|
|
4
|
+
# Python + pybind11
|
|
5
|
+
find_package(Python COMPONENTS Interpreter Development.Module REQUIRED)
|
|
6
|
+
find_package(pybind11 CONFIG REQUIRED)
|
|
7
|
+
|
|
8
|
+
# Fortran kernels as an object library (for linking into the Python module)
|
|
9
|
+
add_library(kf_fortran OBJECT src/kernel.f90)
|
|
10
|
+
set_property(TARGET kf_fortran PROPERTY POSITION_INDEPENDENT_CODE ON)
|
|
11
|
+
|
|
12
|
+
# Build the Python extension module via pybind11 and link the Fortran objects
|
|
13
|
+
pybind11_add_module(_kernelforge MODULE
|
|
14
|
+
src/bindings.cpp
|
|
15
|
+
$<TARGET_OBJECTS:kf_fortran>
|
|
16
|
+
)
|
|
17
|
+
# Ensure the built filename is exactly "_kernelforge.*"
|
|
18
|
+
set_target_properties(_kernelforge PROPERTIES OUTPUT_NAME "_kernelforge")
|
|
19
|
+
|
|
20
|
+
# Optional: OpenMP for Fortran if you use it
|
|
21
|
+
find_package(OpenMP)
|
|
22
|
+
if (OpenMP_Fortran_FOUND)
|
|
23
|
+
target_link_libraries(_kernelforge PRIVATE OpenMP::OpenMP_Fortran)
|
|
24
|
+
endif()
|
|
25
|
+
|
|
26
|
+
# Optional BLAS/LAPACK backends (enable later if needed)
|
|
27
|
+
if(APPLE)
|
|
28
|
+
find_library(ACCELERATE Accelerate REQUIRED)
|
|
29
|
+
target_link_libraries(_kernelforge PRIVATE ${ACCELERATE})
|
|
30
|
+
elseif(WIN32)
|
|
31
|
+
find_package(MKL CONFIG REQUIRED)
|
|
32
|
+
target_link_libraries(_kernelforge PRIVATE MKL::MKL)
|
|
33
|
+
else()
|
|
34
|
+
find_package(BLAS REQUIRED)
|
|
35
|
+
target_link_libraries(_kernelforge PRIVATE BLAS::BLAS)
|
|
36
|
+
endif()
|
|
37
|
+
|
|
38
|
+
# Conservative optimization flags (portable wheels). Override via env if you want.
|
|
39
|
+
if (CMAKE_Fortran_COMPILER_ID STREQUAL "IntelLLVM" OR CMAKE_Fortran_COMPILER_ID STREQUAL "Intel")
|
|
40
|
+
target_compile_options(kf_fortran PRIVATE -O3 -ipo -xHost -fp-model fast=2 -no-prec-div -fno-alias -qopenmp)
|
|
41
|
+
elseif (CMAKE_Fortran_COMPILER_ID STREQUAL "GNU")
|
|
42
|
+
target_compile_options(kf_fortran PRIVATE -O3 -fopenmp -mcpu=native -mtune=native -ffast-math -ftree-vectorize)
|
|
43
|
+
endif()
|
|
44
|
+
|
|
45
|
+
# Install the compiled extension into the Python package and the Python shim
|
|
46
|
+
install(TARGETS _kernelforge
|
|
47
|
+
LIBRARY DESTINATION kernelforge # Linux/macOS
|
|
48
|
+
RUNTIME DESTINATION kernelforge # Windows (.pyd)
|
|
49
|
+
)
|
|
50
|
+
install(FILES python/kernelforge/__init__.py DESTINATION kernelforge)
|
|
51
|
+
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Anders Steen Christensen
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
|
+
Name: kernelforge
|
|
3
|
+
Version: 0.1.2
|
|
4
|
+
Summary: Fortran kernels with C ABI and Python bindings (CMake/skbuild/pybind11)
|
|
5
|
+
Author: Anders Christensen
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/youruser/kernelforge
|
|
8
|
+
Project-URL: Issues, https://github.com/youruser/kernelforge/issues
|
|
9
|
+
Requires-Python: >=3.9
|
|
10
|
+
Requires-Dist: numpy>=2.00
|
|
11
|
+
Provides-Extra: test
|
|
12
|
+
Requires-Dist: pytest>=8; extra == "test"
|
|
13
|
+
Requires-Dist: pytest-xdist; extra == "test"
|
|
14
|
+
Requires-Dist: pytest-cov; extra == "test"
|
|
15
|
+
Requires-Dist: pytest-timeout; extra == "test"
|
|
16
|
+
Description-Content-Type: text/markdown
|
|
17
|
+
|
|
18
|
+
# kernelforge
|
|
19
|
+
Optimized kernels for ML
|
|
20
|
+
|
|
21
|
+
- Without using F2PY or Meson
|
|
22
|
+
|
|
23
|
+
# Installation
|
|
24
|
+
|
|
25
|
+
```bash
|
|
26
|
+
pip install -e .
|
|
27
|
+
pytest -v -s
|
|
28
|
+
```
|
|
29
|
+
|
|
30
|
+
## Intel compilers and MKL
|
|
31
|
+
|
|
32
|
+
GNU compilers will be used by default. If you want to use Intel compilers and MKL, you can set the environment variables:
|
|
33
|
+
|
|
34
|
+
```bash
|
|
35
|
+
source /opt/intel/oneapi/setvars.sh
|
|
36
|
+
```
|
|
37
|
+
In this case, MKL will be autodetected and used. If you additionally want to compile with Intel compilers, you can set the environment variables when running `pip install`:
|
|
38
|
+
|
|
39
|
+
```bash
|
|
40
|
+
CC=icx CXX=icpx FC=ifx make install
|
|
41
|
+
```
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
# kernelforge
|
|
2
|
+
Optimized kernels for ML
|
|
3
|
+
|
|
4
|
+
- Without using F2PY or Meson
|
|
5
|
+
|
|
6
|
+
# Installation
|
|
7
|
+
|
|
8
|
+
```bash
|
|
9
|
+
pip install -e .
|
|
10
|
+
pytest -v -s
|
|
11
|
+
```
|
|
12
|
+
|
|
13
|
+
## Intel compilers and MKL
|
|
14
|
+
|
|
15
|
+
GNU compilers will be used by default. If you want to use Intel compilers and MKL, you can set the environment variables:
|
|
16
|
+
|
|
17
|
+
```bash
|
|
18
|
+
source /opt/intel/oneapi/setvars.sh
|
|
19
|
+
```
|
|
20
|
+
In this case, MKL will be autodetected and used. If you additionally want to compile with Intel compilers, you can set the environment variables when running `pip install`:
|
|
21
|
+
|
|
22
|
+
```bash
|
|
23
|
+
CC=icx CXX=icpx FC=ifx make install
|
|
24
|
+
```
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["scikit-build-core>=0.9", "pybind11", "setuptools"]
|
|
3
|
+
build-backend = "scikit_build_core.build"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "kernelforge"
|
|
7
|
+
version = "0.1.2"
|
|
8
|
+
description = "Fortran kernels with C ABI and Python bindings (CMake/skbuild/pybind11)"
|
|
9
|
+
readme = "README.md"
|
|
10
|
+
license = {text = "MIT"}
|
|
11
|
+
authors = [{name = "Anders Christensen"}]
|
|
12
|
+
requires-python = ">=3.9"
|
|
13
|
+
dependencies = [
|
|
14
|
+
"numpy>=2.00", # required at runtime
|
|
15
|
+
]
|
|
16
|
+
|
|
17
|
+
[project.optional-dependencies]
|
|
18
|
+
test = ["pytest>=8", "pytest-xdist", "pytest-cov", "pytest-timeout"]
|
|
19
|
+
|
|
20
|
+
[project.urls]
|
|
21
|
+
Homepage = "https://github.com/youruser/kernelforge"
|
|
22
|
+
Issues = "https://github.com/youruser/kernelforge/issues"
|
|
23
|
+
|
|
24
|
+
[tool.scikit-build]
|
|
25
|
+
wheel.expand-macos-universal-tags = true
|
|
26
|
+
wheel.py-api = "py3"
|
|
27
|
+
cmake.build-type = "Release"
|
|
28
|
+
cmake.verbose = true
|
|
29
|
+
wheel.packages = ["python/kernelforge"]
|
|
30
|
+
|
|
31
|
+
# optional: put compiled outputs under build/{tag}/ to avoid clashes
|
|
32
|
+
# build-dir = "build/{wheel_tag}"
|
|
33
|
+
|
|
34
|
+
[tool.scikit-build.cmake.define]
|
|
35
|
+
CMAKE_VERBOSE_MAKEFILE = "ON"
|
|
36
|
+
CMAKE_BUILD_TYPE = "Release"
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
#include <pybind11/pybind11.h>
|
|
2
|
+
#include <pybind11/numpy.h>
|
|
3
|
+
extern "C" {
|
|
4
|
+
void compute_inverse_distance(const double* x_3_by_n, int n, double* d_packed);
|
|
5
|
+
void kernel_symm_simple(const double* x, int lda, int n, double* k, int ldk, double alpha);
|
|
6
|
+
void kernel_symm_blas(const double* x, int lda, int n, double* k, int ldk, double alpha);
|
|
7
|
+
}
|
|
8
|
+
|
|
9
|
+
namespace py = pybind11;
|
|
10
|
+
|
|
11
|
+
py::array_t<double> inverse_distance(py::array_t<double, py::array::c_style | py::array::forcecast> X) {
|
|
12
|
+
auto buf = X.request();
|
|
13
|
+
if (buf.ndim != 2 || buf.shape[1] != 3) {
|
|
14
|
+
throw std::runtime_error("X must have shape (N,3)");
|
|
15
|
+
}
|
|
16
|
+
const int n = static_cast<int>(buf.shape[0]);
|
|
17
|
+
|
|
18
|
+
// D packed length
|
|
19
|
+
const ssize_t m = static_cast<ssize_t>(n) * (n - 1) / 2;
|
|
20
|
+
auto D = py::array_t<double>(m);
|
|
21
|
+
|
|
22
|
+
// Pass row-major (N,3) as transposed view (3,N) to Fortran without copy:
|
|
23
|
+
// NumPy will give a view; pybind11 exposes data pointer for the view.
|
|
24
|
+
py::array_t<double> XT({3, n}, {buf.strides[1], buf.strides[0]}, static_cast<double*>(buf.ptr), X);
|
|
25
|
+
|
|
26
|
+
compute_inverse_distance(static_cast<const double*>(XT.request().ptr), n,
|
|
27
|
+
static_cast<double*>(D.request().ptr));
|
|
28
|
+
return D;
|
|
29
|
+
}
|
|
30
|
+
|
|
31
|
+
py::array_t<double> kernel_symm_simple_py(
|
|
32
|
+
py::array_t<double, py::array::forcecast | py::array::f_style> X,
|
|
33
|
+
double alpha
|
|
34
|
+
) {
|
|
35
|
+
// Require (rep_size, n) in Fortran order; forcecast|f_style will copy if needed.
|
|
36
|
+
auto xb = X.request();
|
|
37
|
+
if (xb.ndim != 2) {
|
|
38
|
+
throw std::runtime_error("X must be 2D with shape (rep_size, n) in column-major (Fortran) order");
|
|
39
|
+
}
|
|
40
|
+
const int lda = static_cast<int>(xb.shape[0]);
|
|
41
|
+
const int n = static_cast<int>(xb.shape[1]);
|
|
42
|
+
|
|
43
|
+
// Allocate K as Fortran-order (n x n): stride0 = 8, stride1 = n*8
|
|
44
|
+
auto K = py::array_t<double>({n, n}, {sizeof(double), static_cast<ssize_t>(n)*sizeof(double)});
|
|
45
|
+
|
|
46
|
+
kernel_symm_simple(static_cast<const double*>(xb.ptr),
|
|
47
|
+
lda, n,
|
|
48
|
+
static_cast<double*>(K.request().ptr),
|
|
49
|
+
/*ldk=*/n, alpha);
|
|
50
|
+
|
|
51
|
+
return K;
|
|
52
|
+
}
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
py::array_t<double> kernel_symm_blas_py(
|
|
56
|
+
py::array_t<double, py::array::forcecast | py::array::f_style> X,
|
|
57
|
+
double alpha
|
|
58
|
+
) {
|
|
59
|
+
// Require (rep_size, n) in Fortran order; forcecast|f_style will copy if needed.
|
|
60
|
+
auto xb = X.request();
|
|
61
|
+
if (xb.ndim != 2) {
|
|
62
|
+
throw std::runtime_error("X must be 2D with shape (rep_size, n) in column-major (Fortran) order");
|
|
63
|
+
}
|
|
64
|
+
const int lda = static_cast<int>(xb.shape[0]);
|
|
65
|
+
const int n = static_cast<int>(xb.shape[1]);
|
|
66
|
+
|
|
67
|
+
// Allocate K as Fortran-order (n x n): stride0 = 8, stride1 = n*8
|
|
68
|
+
auto K = py::array_t<double>({n, n}, {sizeof(double), static_cast<ssize_t>(n)*sizeof(double)});
|
|
69
|
+
|
|
70
|
+
kernel_symm_blas(static_cast<const double*>(xb.ptr),
|
|
71
|
+
lda, n,
|
|
72
|
+
static_cast<double*>(K.request().ptr),
|
|
73
|
+
/*ldk=*/n, alpha);
|
|
74
|
+
|
|
75
|
+
return K;
|
|
76
|
+
}
|
|
77
|
+
|
|
78
|
+
PYBIND11_MODULE(_kernelforge, m) {
|
|
79
|
+
m.doc() = "kernelforge: Fortran kernels with C ABI and Python bindings";
|
|
80
|
+
m.def("inverse_distance", &inverse_distance, "Compute packed inverse distance matrix from (N,3) coordinates");
|
|
81
|
+
m.def("kernel_symm_simple", &kernel_symm_simple_py,
|
|
82
|
+
"Compute K (upper triangle) with Gaussian-like exp(alpha * ||xi-xj||^2). "
|
|
83
|
+
"X must be shape (rep_size, n), Fortran-order.");
|
|
84
|
+
m.def("kernel_symm_blas", &kernel_symm_blas_py,
|
|
85
|
+
"Compute K (upper triangle) with Gaussian-like exp(alpha * ||xi-xj||^2). "
|
|
86
|
+
"X must be shape (rep_size, n), Fortran-order.");
|
|
87
|
+
|
|
88
|
+
}
|
|
89
|
+
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
module kernelforge_mod
|
|
2
|
+
|
|
3
|
+
use, intrinsic :: iso_c_binding
|
|
4
|
+
implicit none
|
|
5
|
+
|
|
6
|
+
contains
|
|
7
|
+
|
|
8
|
+
! Example kernel: inverse distance (packed upper triangle)
|
|
9
|
+
subroutine compute_inverse_distance(x, n, d) bind(C, name="compute_inverse_distance")
|
|
10
|
+
|
|
11
|
+
implicit none
|
|
12
|
+
|
|
13
|
+
integer(c_int), value :: n
|
|
14
|
+
real(c_double), intent(in) :: x(3,n) ! expect (3,n)
|
|
15
|
+
real(c_double), intent(out) :: d(n*(n-1)/2) ! packed upper triangle
|
|
16
|
+
|
|
17
|
+
integer :: i, j, idx
|
|
18
|
+
real(c_double) :: dx, dy, dz, rij2, rij
|
|
19
|
+
|
|
20
|
+
idx = 0
|
|
21
|
+
do j = 2, n
|
|
22
|
+
do i = 1, j-1
|
|
23
|
+
idx = idx + 1
|
|
24
|
+
dx = x(1,i) - x(1,j)
|
|
25
|
+
dy = x(2,i) - x(2,j)
|
|
26
|
+
dz = x(3,i) - x(3,j)
|
|
27
|
+
rij2 = dx*dx + dy*dy + dz*dz
|
|
28
|
+
rij = sqrt(rij2)
|
|
29
|
+
d(idx) = 1.0d0 / rij
|
|
30
|
+
end do
|
|
31
|
+
end do
|
|
32
|
+
end subroutine compute_inverse_distance
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
subroutine kernel_symm_simple(X, lda, n, K, ldk, alpha) bind(C, name="kernel_symm_simple")
|
|
36
|
+
|
|
37
|
+
integer(c_int), value :: lda, n, ldk
|
|
38
|
+
real(c_double), intent(in) :: X(lda, *)
|
|
39
|
+
real(c_double), intent(inout) :: K(ldk, *)
|
|
40
|
+
real(c_double), value :: alpha
|
|
41
|
+
|
|
42
|
+
integer :: i, j, p
|
|
43
|
+
real(c_double) :: dx, rij2, dist2
|
|
44
|
+
|
|
45
|
+
!$omp parallel do private(i, j, dist2) shared(X, K, alpha, n) schedule(guided)
|
|
46
|
+
do j = 1, n
|
|
47
|
+
do i = 1, j
|
|
48
|
+
dist2 = sum((X(:, i) - X(:, j))**2)
|
|
49
|
+
K(i, j) = exp(alpha * dist2)
|
|
50
|
+
end do
|
|
51
|
+
end do
|
|
52
|
+
!$omp end parallel do
|
|
53
|
+
|
|
54
|
+
end subroutine kernel_symm_simple
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
subroutine kernel_symm_blas(X, lda, n, K, ldk, alpha) bind(C, name="kernel_symm_blas")
|
|
58
|
+
|
|
59
|
+
use, intrinsic :: iso_c_binding, only: c_int, c_double
|
|
60
|
+
use, intrinsic :: iso_fortran_env, only: dp => real64
|
|
61
|
+
use omp_lib
|
|
62
|
+
|
|
63
|
+
implicit none
|
|
64
|
+
|
|
65
|
+
! C ABI args
|
|
66
|
+
integer(c_int), value :: lda, n, ldk
|
|
67
|
+
real(c_double), intent(in) :: X(lda,*)
|
|
68
|
+
real(c_double), intent(inout):: K(ldk,*)
|
|
69
|
+
real(c_double), value :: alpha
|
|
70
|
+
|
|
71
|
+
! Fortran default integers for BLAS calls
|
|
72
|
+
integer :: lda_f, n_f, ldk_f, rep_size_f
|
|
73
|
+
integer :: i, j
|
|
74
|
+
real(c_double), allocatable :: diag(:), onevec(:)
|
|
75
|
+
|
|
76
|
+
! Copy c_int (by-value) to default INTEGERs for BLAS (expects default INTEGER by ref)
|
|
77
|
+
lda_f = int(lda)
|
|
78
|
+
n_f = int(n)
|
|
79
|
+
ldk_f = int(ldk)
|
|
80
|
+
|
|
81
|
+
! Rep size is the first dim of X; keep as default INTEGER
|
|
82
|
+
rep_size_f = lda_f
|
|
83
|
+
|
|
84
|
+
! Gram matrix computation using DGEMM/DSYRK
|
|
85
|
+
call dsyrk('U', 'T', int(n), int(lda), -2.0_dp * alpha, X, int(lda), 0.0_dp, K, int(n))
|
|
86
|
+
|
|
87
|
+
allocate(diag(n_f), onevec(n_f))
|
|
88
|
+
diag(:) = -0.5_dp * [ (K(i,i), i = 1, n) ]
|
|
89
|
+
onevec(:) = 1.0_dp
|
|
90
|
+
|
|
91
|
+
! Add the (diagonal) self-inner products the matrix to form the distance matrix
|
|
92
|
+
call dsyr2('U', n_f, 1.0_dp, onevec, 1, diag, 1, K, n_f)
|
|
93
|
+
deallocate(diag, onevec)
|
|
94
|
+
|
|
95
|
+
! EXP double loop is fast compared to dsyrk anyway.
|
|
96
|
+
!$omp parallel do private(i, j) shared(K, n) schedule(guided)
|
|
97
|
+
do j = 1, n
|
|
98
|
+
do i = 1, j
|
|
99
|
+
K(i, j) = exp(K(i, j))
|
|
100
|
+
end do
|
|
101
|
+
end do
|
|
102
|
+
!$omp end parallel do
|
|
103
|
+
|
|
104
|
+
end subroutine kernel_symm_blas
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
end module kernelforge_mod
|
|
108
|
+
|
|
@@ -0,0 +1,99 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from time import time
|
|
3
|
+
import kernelforge as kf
|
|
4
|
+
import pytest
|
|
5
|
+
|
|
6
|
+
def test_inverse_distance_shapes():
|
|
7
|
+
X = np.random.rand(5, 3)
|
|
8
|
+
D = kf.inverse_distance(X)
|
|
9
|
+
assert D.shape == (5*4//2,)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def test_kernel_simple_runs():
|
|
13
|
+
rep, n = 512, 64
|
|
14
|
+
rng = np.random.default_rng(0)
|
|
15
|
+
X = np.asfortranarray(rng.random((rep, n)))
|
|
16
|
+
alpha = -1.0 / rep
|
|
17
|
+
|
|
18
|
+
K = kf.kernel_symm_simple(X, alpha)
|
|
19
|
+
assert K.shape == (n, n)
|
|
20
|
+
|
|
21
|
+
# Symmetrize since only upper triangle is written
|
|
22
|
+
iu = np.triu_indices(n, 1)
|
|
23
|
+
K[(iu[1], iu[0])] = K[iu]
|
|
24
|
+
# Check diagonal ~ 1.0
|
|
25
|
+
assert np.allclose(np.diag(K), 1.0)
|
|
26
|
+
|
|
27
|
+
# Off-diagonal entries should be between 0 and 1
|
|
28
|
+
off_diag = K[iu]
|
|
29
|
+
assert np.all((off_diag >= 0.0) & (off_diag <= 1.0))
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def test_kernel_blas_runs():
|
|
33
|
+
rep, n = 512, 64
|
|
34
|
+
rng = np.random.default_rng(0)
|
|
35
|
+
X = np.asfortranarray(rng.random((rep, n)))
|
|
36
|
+
alpha = -1.0 / rep
|
|
37
|
+
|
|
38
|
+
K = kf.kernel_symm_blas(X, alpha)
|
|
39
|
+
assert K.shape == (n, n)
|
|
40
|
+
|
|
41
|
+
# Symmetrize since only upper triangle is written
|
|
42
|
+
iu = np.triu_indices(n, 1)
|
|
43
|
+
K[(iu[1], iu[0])] = K[iu]
|
|
44
|
+
|
|
45
|
+
# Check diagonal ~ 1.0
|
|
46
|
+
assert np.allclose(np.diag(K), 1.0)
|
|
47
|
+
|
|
48
|
+
# Off-diagonal entries should be between 0 and 1
|
|
49
|
+
off_diag = K[iu]
|
|
50
|
+
assert np.all((off_diag >= 0.0) & (off_diag <= 1.0))
|
|
51
|
+
|
|
52
|
+
@pytest.mark.slow
|
|
53
|
+
def test_kernel_simple_time():
|
|
54
|
+
rep, n = 512, 16000
|
|
55
|
+
rng = np.random.default_rng(0)
|
|
56
|
+
X = np.asfortranarray(rng.random((rep, n)))
|
|
57
|
+
alpha = -1.0 / rep
|
|
58
|
+
|
|
59
|
+
start = time()
|
|
60
|
+
K = kf.kernel_symm_simple(X, alpha)
|
|
61
|
+
end = time()
|
|
62
|
+
print(f"Kernel SIMPLE took {end - start:.2f} seconds for {n} points.")
|
|
63
|
+
assert K.shape == (n, n)
|
|
64
|
+
|
|
65
|
+
# Symmetrize since only upper triangle is written
|
|
66
|
+
iu = np.triu_indices(n, 1)
|
|
67
|
+
K[(iu[1], iu[0])] = K[iu]
|
|
68
|
+
# Check diagonal ~ 1.0
|
|
69
|
+
assert np.allclose(np.diag(K), 1.0)
|
|
70
|
+
|
|
71
|
+
# Off-diagonal entries should be between 0 and 1
|
|
72
|
+
off_diag = K[iu]
|
|
73
|
+
assert np.all((off_diag >= 0.0) & (off_diag <= 1.0))
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
@pytest.mark.slow
|
|
77
|
+
def test_kernel_blas_time():
|
|
78
|
+
rep, n = 512, 16000
|
|
79
|
+
rng = np.random.default_rng(0)
|
|
80
|
+
X = np.asfortranarray(rng.random((rep, n)))
|
|
81
|
+
alpha = -1.0 / rep
|
|
82
|
+
|
|
83
|
+
start = time()
|
|
84
|
+
K = kf.kernel_symm_blas(X, alpha)
|
|
85
|
+
|
|
86
|
+
end = time()
|
|
87
|
+
print(f"Kernel BLAS took {end - start:.2f} seconds for {n} points.")
|
|
88
|
+
assert K.shape == (n, n)
|
|
89
|
+
|
|
90
|
+
# Symmetrize since only upper triangle is written
|
|
91
|
+
iu = np.triu_indices(n, 1)
|
|
92
|
+
K[(iu[1], iu[0])] = K[iu]
|
|
93
|
+
|
|
94
|
+
# Check diagonal ~ 1.0
|
|
95
|
+
assert np.allclose(np.diag(K), 1.0)
|
|
96
|
+
|
|
97
|
+
# Off-diagonal entries should be between 0 and 1
|
|
98
|
+
off_diag = K[iu]
|
|
99
|
+
assert np.all((off_diag >= 0.0) & (off_diag <= 1.0))
|