keras-remote 0.0.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,207 @@
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[codz]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py.cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # UV
98
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ #uv.lock
102
+
103
+ # poetry
104
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
106
+ # commonly ignored for libraries.
107
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108
+ #poetry.lock
109
+ #poetry.toml
110
+
111
+ # pdm
112
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
113
+ # pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
114
+ # https://pdm-project.org/en/latest/usage/project/#working-with-version-control
115
+ #pdm.lock
116
+ #pdm.toml
117
+ .pdm-python
118
+ .pdm-build/
119
+
120
+ # pixi
121
+ # Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
122
+ #pixi.lock
123
+ # Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
124
+ # in the .venv directory. It is recommended not to include this directory in version control.
125
+ .pixi
126
+
127
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
128
+ __pypackages__/
129
+
130
+ # Celery stuff
131
+ celerybeat-schedule
132
+ celerybeat.pid
133
+
134
+ # SageMath parsed files
135
+ *.sage.py
136
+
137
+ # Environments
138
+ .env
139
+ .envrc
140
+ .venv
141
+ env/
142
+ venv/
143
+ ENV/
144
+ env.bak/
145
+ venv.bak/
146
+
147
+ # Spyder project settings
148
+ .spyderproject
149
+ .spyproject
150
+
151
+ # Rope project settings
152
+ .ropeproject
153
+
154
+ # mkdocs documentation
155
+ /site
156
+
157
+ # mypy
158
+ .mypy_cache/
159
+ .dmypy.json
160
+ dmypy.json
161
+
162
+ # Pyre type checker
163
+ .pyre/
164
+
165
+ # pytype static type analyzer
166
+ .pytype/
167
+
168
+ # Cython debug symbols
169
+ cython_debug/
170
+
171
+ # PyCharm
172
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
173
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
174
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
175
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
176
+ #.idea/
177
+
178
+ # Abstra
179
+ # Abstra is an AI-powered process automation framework.
180
+ # Ignore directories containing user credentials, local state, and settings.
181
+ # Learn more at https://abstra.io/docs
182
+ .abstra/
183
+
184
+ # Visual Studio Code
185
+ # Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
186
+ # that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
187
+ # and can be added to the global gitignore or merged into this file. However, if you prefer,
188
+ # you could uncomment the following to ignore the entire vscode folder
189
+ # .vscode/
190
+
191
+ # Ruff stuff:
192
+ .ruff_cache/
193
+
194
+ # PyPI configuration file
195
+ .pypirc
196
+
197
+ # Cursor
198
+ # Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
199
+ # exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
200
+ # refer to https://docs.cursor.com/context/ignore-files
201
+ .cursorignore
202
+ .cursorindexingignore
203
+
204
+ # Marimo
205
+ marimo/_static/
206
+ marimo/_lsp/
207
+ __marimo__/
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,54 @@
1
+ Metadata-Version: 2.4
2
+ Name: keras-remote
3
+ Version: 0.0.1
4
+ Summary: Run Keras models remotely on TPU seamlessly.
5
+ Project-URL: Homepage, https://github.com/keras-team/keras-remote
6
+ Project-URL: Issues, https://github.com/keras-team/keras-remote/issues
7
+ Author-email: Jeff Carpenter <code@jeffcarp.com>
8
+ License-Expression: Apache-2.0
9
+ Classifier: Operating System :: OS Independent
10
+ Classifier: Programming Language :: Python :: 3
11
+ Requires-Python: >=3.9
12
+ Requires-Dist: cloudpickle
13
+ Requires-Dist: keras
14
+ Requires-Dist: numpy
15
+ Provides-Extra: dev
16
+ Requires-Dist: build; extra == 'dev'
17
+ Requires-Dist: twine; extra == 'dev'
18
+ Description-Content-Type: text/markdown
19
+
20
+ # Keras Remote
21
+
22
+ Run Keras models remotely on TPU as seamlessly as running the same code locally.
23
+
24
+ ## Prerequisites
25
+
26
+ 1. **Google Cloud SDK**: Install the `gcloud` CLI.
27
+ 2. **Authentication**: Run `gcloud auth login` and `gcloud auth application-default login`.
28
+ 3. **Permissions**: Ensure your GCP user has permissions to create and manage TPU VMs.
29
+
30
+ ## Installation
31
+
32
+ ```bash
33
+ pip install -r requirements.txt
34
+ ```
35
+
36
+ ## Running the Demo
37
+
38
+ The `demo_train.py` script demonstrates how to run a Keras model on a remote TPU.
39
+
40
+ ```bash
41
+ # Optional: Set your GCP project and zone
42
+ export KERAS_REMOTE_PROJECT="your-project-id"
43
+ export KERAS_REMOTE_ZONE="us-central1-f" # or other zones like europe-west4-a
44
+
45
+ python demo_train.py
46
+ ```
47
+
48
+ **Note:** TPU availability varies by zone. If you encounter a `RESOURCE_EXHAUSTED` error, try a different zone or accelerator type (e.g., `v2-8` vs `v3-8`).
49
+
50
+ The `@keras_remote.run` decorator handles:
51
+ 1. Packaging your local code.
52
+ 2. Provisioning (or finding) a TPU VM.
53
+ 3. Uploading your code and dependencies.
54
+ 4. Executing the function inside a Docker container on the TPU VM.
@@ -0,0 +1,35 @@
1
+ # Keras Remote
2
+
3
+ Run Keras models remotely on TPU as seamlessly as running the same code locally.
4
+
5
+ ## Prerequisites
6
+
7
+ 1. **Google Cloud SDK**: Install the `gcloud` CLI.
8
+ 2. **Authentication**: Run `gcloud auth login` and `gcloud auth application-default login`.
9
+ 3. **Permissions**: Ensure your GCP user has permissions to create and manage TPU VMs.
10
+
11
+ ## Installation
12
+
13
+ ```bash
14
+ pip install -r requirements.txt
15
+ ```
16
+
17
+ ## Running the Demo
18
+
19
+ The `demo_train.py` script demonstrates how to run a Keras model on a remote TPU.
20
+
21
+ ```bash
22
+ # Optional: Set your GCP project and zone
23
+ export KERAS_REMOTE_PROJECT="your-project-id"
24
+ export KERAS_REMOTE_ZONE="us-central1-f" # or other zones like europe-west4-a
25
+
26
+ python demo_train.py
27
+ ```
28
+
29
+ **Note:** TPU availability varies by zone. If you encounter a `RESOURCE_EXHAUSTED` error, try a different zone or accelerator type (e.g., `v2-8` vs `v3-8`).
30
+
31
+ The `@keras_remote.run` decorator handles:
32
+ 1. Packaging your local code.
33
+ 2. Provisioning (or finding) a TPU VM.
34
+ 3. Uploading your code and dependencies.
35
+ 4. Executing the function inside a Docker container on the TPU VM.
@@ -0,0 +1,62 @@
1
+ import os
2
+ import socket
3
+
4
+ os.environ["KERAS_BACKEND"] = "jax"
5
+
6
+ import keras
7
+ import numpy as np
8
+ import jax
9
+ from keras_remote import core as keras_remote
10
+
11
+
12
+ @keras_remote.run(accelerator='v2-8')
13
+ def train_keras_jax_model():
14
+ host = socket.gethostname()
15
+ print(f"Running on host: {host}")
16
+ print(f"Keras version: {keras.__version__}")
17
+ print(f"Keras backend: {keras.config.backend()}")
18
+ print(f"JAX version: {jax.__version__}")
19
+ print(f"JAX devices: {jax.devices()}")
20
+
21
+ num_classes = 10
22
+ input_shape = (28, 28, 1)
23
+
24
+ model = keras.Sequential(
25
+ [
26
+ keras.layers.Input(shape=input_shape),
27
+ keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
28
+ keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
29
+ keras.layers.MaxPooling2D(pool_size=(2, 2)),
30
+ keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),
31
+ keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),
32
+ keras.layers.GlobalAveragePooling2D(),
33
+ keras.layers.Dropout(0.5),
34
+ keras.layers.Dense(num_classes, activation="softmax"),
35
+ ]
36
+ )
37
+ print("Model defined.")
38
+
39
+ model.compile(
40
+ loss=keras.losses.SparseCategoricalCrossentropy(),
41
+ optimizer=keras.optimizers.Adam(learning_rate=1e-3),
42
+ metrics=[
43
+ keras.metrics.SparseCategoricalAccuracy(name="acc"),
44
+ ],
45
+ )
46
+ print("Model compiled.")
47
+
48
+ # Dummy data
49
+ num_samples = 128
50
+ x_train = np.random.rand(num_samples, *input_shape).astype(np.float32)
51
+ y_train = np.random.randint(0, num_classes, size=(num_samples,)).astype(np.int32)
52
+
53
+ print("Starting model.fit...")
54
+ model.fit(x_train, y_train, epochs=1, batch_size=32, verbose=2)
55
+ print("Model.fit finished.")
56
+
57
+ return f"Keras JAX training complete on {host}"
58
+
59
+ if __name__ == "__main__":
60
+ print("Starting Keras JAX demo...")
61
+ result = train_keras_jax_model()
62
+ print(f"Demo result: {result}")
@@ -0,0 +1 @@
1
+ from keras_remote.core import run
@@ -0,0 +1,95 @@
1
+ import datetime
2
+ import functools
3
+ import getpass
4
+ import inspect
5
+ import os
6
+ import shutil
7
+ import tempfile
8
+
9
+ from keras_remote import packager
10
+ from keras_remote import infra
11
+
12
+ logger = infra.logger
13
+
14
+ def run(accelerator='v3-8', zone=None, project=None, vm_name=None):
15
+ def decorator(func):
16
+ @functools.wraps(func)
17
+ def wrapper(*args, **kwargs):
18
+ with tempfile.TemporaryDirectory() as tmpdir:
19
+
20
+ timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
21
+ context_zip_name = f'context_{timestamp}.zip'
22
+ remote_context_zip_path = f'/tmp/{context_zip_name}'
23
+
24
+ context_zip = os.path.join(tmpdir, context_zip_name)
25
+ payload_pkl = os.path.join(tmpdir, 'payload.pkl')
26
+ remote_runner_py = os.path.join(tmpdir, 'remote_runner.py')
27
+
28
+ # 1. Create zip/pickle artifacts
29
+ frame = inspect.stack()[1]
30
+ module = inspect.getmodule(frame[0])
31
+ if module:
32
+ caller_path = os.path.dirname(os.path.abspath(module.__file__))
33
+ else:
34
+ caller_path = os.getcwd() # Fallback
35
+
36
+ logger.info(f"Packaging directory: {caller_path}...")
37
+ packager.zip_working_dir(caller_path, context_zip)
38
+ logger.info(f"Context zip created at {context_zip}")
39
+
40
+ logger.info("Serializing payload...")
41
+ packager.save_payload(func, args, kwargs, payload_pkl)
42
+ logger.info(f"Payload pickle created at {payload_pkl}")
43
+
44
+ # Copy remote_runner.py to tmpdir
45
+ this_dir = os.path.dirname(os.path.abspath(__file__))
46
+ shutil.copy(
47
+ os.path.join(this_dir, "remote_runner.py"), remote_runner_py
48
+ )
49
+
50
+ # 2. Ensure TPU VM exists
51
+ if vm_name:
52
+ actual_vm_name = vm_name
53
+ else:
54
+ user = getpass.getuser()
55
+ actual_vm_name = f"remote-{user}-{accelerator}"
56
+ infra.ensure_tpu_vm(actual_vm_name, accelerator, zone=zone, project=project)
57
+
58
+ # 3. Upload artifacts
59
+ # TODO(jeffcarp): Add everything to the same zip file.
60
+ logger.info(f"Uploading files to {actual_vm_name}...")
61
+ infra.scp_to_vm(vm_name, context_zip, remote_context_zip_path, zone=zone, project=project)
62
+ infra.scp_to_vm(vm_name, payload_pkl, '/tmp/payload.pkl', zone=zone, project=project)
63
+ infra.scp_to_vm(vm_name, remote_runner_py, '/tmp/remote_runner.py', zone=zone, project=project)
64
+
65
+ # Find and upload requirements.txt
66
+ requirements_txt = None
67
+ search_dir = caller_path
68
+ while search_dir != "/":
69
+ req_path = os.path.join(search_dir, "requirements.txt")
70
+ if os.path.exists(req_path):
71
+ requirements_txt = req_path
72
+ break
73
+ parent_dir = os.path.dirname(search_dir)
74
+ if parent_dir == search_dir: # Avoid infinite loop at root
75
+ break
76
+ search_dir = parent_dir
77
+
78
+ if requirements_txt:
79
+ logger.info(f"Using requirements.txt: {requirements_txt}")
80
+ infra.scp_to_vm(vm_name, requirements_txt, '/tmp/requirements.txt', zone=zone, project=project)
81
+ use_requirements = True
82
+ else:
83
+ logger.info("No requirements.txt found.")
84
+ use_requirements = False
85
+ logger.info("Upload complete.")
86
+
87
+ # 4. Execute remote_runner.py on the VM
88
+ logger.info("Executing remote script...")
89
+ result = infra.ssh_execute(vm_name, '/tmp/remote_runner.py', context_zip_path=remote_context_zip_path, use_requirements=use_requirements, zone=zone, project=project, accelerator_type=accelerator)
90
+ logger.info("Remote execution finished.")
91
+ # TODO: Return the deserialized result from the remote function.
92
+ return result
93
+
94
+ return wrapper
95
+ return decorator
@@ -0,0 +1,180 @@
1
+ import subprocess
2
+ import sys
3
+ import json
4
+ import os
5
+ import logging
6
+ import shlex
7
+
8
+
9
+ logging.basicConfig(level=logging.INFO, format='%(message)s')
10
+ logger = logging.getLogger("keras_remote")
11
+
12
+
13
+ def get_default_zone():
14
+ return os.environ.get("KERAS_REMOTE_ZONE", "us-central1-a")
15
+
16
+
17
+ def get_default_project():
18
+ return os.environ.get("KERAS_REMOTE_PROJECT")
19
+
20
+
21
+ def run_cmd(cmd, stream=False):
22
+ """Runs a shell command using subprocess.Popen, optionally streaming stdout."""
23
+ logger.info(f"Running command: {' '.join(cmd)}")
24
+ process = subprocess.Popen(cmd, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
25
+
26
+ if stream:
27
+ # Read stdout line by line
28
+ for line in iter(process.stdout.readline, ''):
29
+ if line.startswith('[REMOTE]'):
30
+ sys.stdout.write(line)
31
+ sys.stdout.flush()
32
+ else:
33
+ logger.info(line.strip())
34
+
35
+ # Read stderr after stdout is closed
36
+ stderr_lines = process.stderr.read()
37
+ if stderr_lines:
38
+ logger.error(f"STDERR: {stderr_lines}")
39
+
40
+ stdout, stderr = process.communicate()
41
+
42
+ if process.returncode != 0:
43
+ logger.error(f"Error running command: {' '.join(cmd)}")
44
+ if not stream:
45
+ logger.error(f"STDOUT: {stdout}")
46
+ logger.error(f"STDERR: {stderr}")
47
+ raise subprocess.CalledProcessError(process.returncode, cmd, output=stdout, stderr=stderr)
48
+
49
+ return stdout
50
+
51
+
52
+ def ensure_tpu_vm(name, accelerator_type, zone=None, project=None):
53
+ """Ensures a TPU VM exists, creating it if necessary."""
54
+ if zone is None:
55
+ zone = get_default_zone()
56
+ if project is None:
57
+ project = get_default_project()
58
+
59
+ try:
60
+ list_cmd = ["gcloud", "compute", "tpus", "tpu-vm", "list", f"--zone={zone}", "--format=json"]
61
+ if project:
62
+ list_cmd.append(f"--project={project}")
63
+
64
+ output = run_cmd(list_cmd)
65
+ vms = json.loads(output)
66
+ if any(vm['name'].endswith(name) for vm in vms):
67
+ logger.info(f"TPU VM {name} already exists.")
68
+ return
69
+ except subprocess.CalledProcessError:
70
+ logger.info(f"Failed to list TPU VMs, assuming {name} does not exist.")
71
+ except json.JSONDecodeError:
72
+ logger.info(f"Failed to parse TPU VM list output, assuming {name} does not exist.")
73
+
74
+ logger.info(f"Creating TPU VM {name}...")
75
+ create_cmd = [
76
+ "gcloud", "compute", "tpus", "tpu-vm", "create", name,
77
+ f"--zone={zone}",
78
+ f"--accelerator-type={accelerator_type}",
79
+ "--version=tpu-vm-base"
80
+ ]
81
+ if project:
82
+ create_cmd.append(f"--project={project}")
83
+
84
+ run_cmd(create_cmd, stream=True)
85
+ logger.info(f"TPU VM {name} created.")
86
+
87
+
88
+ def scp_to_vm(name, local, remote, zone=None, project=None):
89
+ """Copies a local file to the remote VM."""
90
+ if zone is None:
91
+ zone = get_default_zone()
92
+ if project is None:
93
+ project = get_default_project()
94
+
95
+ scp_cmd = [
96
+ "gcloud", "compute", "tpus", "tpu-vm", "scp",
97
+ local, f"{name}:{remote}",
98
+ f"--zone={zone}", "--worker=all"
99
+ ]
100
+ if project:
101
+ scp_cmd.append(f"--project={project}")
102
+
103
+ run_cmd(scp_cmd)
104
+
105
+
106
+ def get_device_count(accelerator_type):
107
+ """Determines the number of TPU chips (accel devices) per worker."""
108
+ # Heuristic: Most v2/v3/v4 TPU VMs have 4 chips (8 cores) per worker.
109
+ # Exceptions like v5e (litepod) can vary.
110
+ if "v5litepod-1" in accelerator_type:
111
+ return 1
112
+ if "v5litepod-4" in accelerator_type:
113
+ return 4
114
+ if "v5litepod-8" in accelerator_type:
115
+ return 8
116
+ # Default to 4 for v2-8, v3-8, v4-8 and their pod slices (per worker)
117
+ return 4
118
+
119
+
120
+ def ssh_execute(
121
+ name: str,
122
+ python_main_file: str,
123
+ context_zip_path: str,
124
+ use_requirements: bool = False,
125
+ zone: str | None = None,
126
+ project: str | None = None,
127
+ accelerator_type: str = "v3-8",
128
+ ) -> None:
129
+ """Executes the remote script inside a Docker container on the VM."""
130
+ if zone is None:
131
+ zone = get_default_zone()
132
+ if project is None:
133
+ project = get_default_project()
134
+
135
+ docker_image = "python:3.13-slim"
136
+ num_devices = get_device_count(accelerator_type)
137
+ device_flags = " ".join([f"--device /dev/accel{i}:/dev/accel{i}" for i in range(num_devices)])
138
+ container_cmds = [
139
+ "python3 -m pip install --upgrade pip",
140
+ ]
141
+ if use_requirements:
142
+ container_cmds.append("python3 -m pip install -r /tmp/requirements.txt")
143
+
144
+ container_cmds.extend([
145
+ "python3 -m pip install jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html",
146
+ f"python3 -u {python_main_file} {context_zip_path}",
147
+ ])
148
+
149
+ # Join commands and quote safely for bash -c
150
+ container_command = " && ".join(container_cmds)
151
+ safe_container_command = shlex.quote(container_command)
152
+
153
+ # Docker run command to be executed on the VM
154
+ docker_run_cmd = (
155
+ f"sudo docker run --rm "
156
+ f"-v /tmp:/tmp "
157
+ # Set environment variable
158
+ # TODO: this shouldn't be hard-coded here
159
+ f"-e KERAS_BACKEND=jax "
160
+ # Expose TPU devices to the container
161
+ f"{device_flags} "
162
+ # Often needed for TPU access
163
+ f"--privileged "
164
+ f"{docker_image} "
165
+ f"bash -c {safe_container_command}"
166
+ )
167
+
168
+ ssh_cmd = [
169
+ "gcloud", "compute", "tpus", "tpu-vm", "ssh", name,
170
+ f"--zone={zone}", "--worker=all"
171
+ ]
172
+ if project:
173
+ ssh_cmd.append(f"--project={project}")
174
+
175
+ ssh_cmd.append(f"--command={docker_run_cmd}")
176
+
177
+ logger.info(f"Running script inside Docker container on {name}")
178
+ stdout = run_cmd(ssh_cmd, stream=True)
179
+ # TODO: Parse stdout to extract and deserialize the function result.
180
+ return None
@@ -0,0 +1,26 @@
1
+ import os
2
+ import zipfile
3
+ import cloudpickle
4
+
5
+ def zip_working_dir(base_dir, output_path):
6
+ """Zips the base_dir into output_path, excluding .git and __pycache__."""
7
+ with zipfile.ZipFile(output_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
8
+ for root, dirs, files in os.walk(base_dir):
9
+ # Exclude .git and __pycache__ directories
10
+ dirs[:] = [d for d in dirs if d not in ['.git', '__pycache__']]
11
+
12
+ for file in files:
13
+ file_path = os.path.join(root, file)
14
+ archive_name = os.path.relpath(file_path, base_dir)
15
+ zipf.write(file_path, archive_name)
16
+
17
+
18
+ def save_payload(func, args, kwargs, output_path):
19
+ """Uses cloudpickle to serialize the function, args, kwargs, and dummy env_vars."""
20
+ payload = {
21
+ 'func': func,
22
+ 'args': args,
23
+ 'kwargs': kwargs,
24
+ }
25
+ with open(output_path, 'wb') as f:
26
+ cloudpickle.dump(payload, f)
@@ -0,0 +1,55 @@
1
+ import argparse
2
+ import cloudpickle
3
+ import os
4
+ import shutil
5
+ import sys
6
+ import traceback
7
+ import zipfile
8
+
9
+ WORKSPACE_DIR = '/tmp/workspace'
10
+ PAYLOAD_PKL = '/tmp/payload.pkl'
11
+
12
+ def main():
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument("context_zip", help="Path to the context zip file")
15
+ args = parser.parse_args()
16
+ context_zip_path = args.context_zip
17
+
18
+ print(f"Starting remote execution", flush=True)
19
+
20
+ # 1. Unzip context_zip_path to WORKSPACE_DIR
21
+ print(f"Extracting {context_zip_path} to {WORKSPACE_DIR}", flush=True)
22
+ os.makedirs(WORKSPACE_DIR, exist_ok=True)
23
+ # Clear out old workspace contents if any
24
+ for item in os.listdir(WORKSPACE_DIR):
25
+ item_path = os.path.join(WORKSPACE_DIR, item)
26
+ if os.path.isfile(item_path) or os.path.islink(item_path):
27
+ os.remove(item_path)
28
+ elif os.path.isdir(item_path):
29
+ shutil.rmtree(item_path)
30
+
31
+ with zipfile.ZipFile(context_zip_path, 'r') as zip_ref:
32
+ zip_ref.extractall(WORKSPACE_DIR)
33
+
34
+ # 3. Load payload.pkl
35
+ print(f"Loading payload from {PAYLOAD_PKL}", flush=True)
36
+ with open(PAYLOAD_PKL, 'rb') as f:
37
+ payload = cloudpickle.load(f)
38
+
39
+ func = payload['func']
40
+ args = payload['args']
41
+ kwargs = payload['kwargs']
42
+ # env_vars = payload['env_vars'] # Not used yet
43
+
44
+ # 4. Execute the function
45
+ print(f"Executing function {func.__name__}", flush=True)
46
+ try:
47
+ result = func(*args, **kwargs)
48
+ print(f"Function execution completed. Result: {result}", flush=True)
49
+ # TODO: Serialize result (e.g. base64 cloudpickle) and print to stdout for local capture.
50
+ except Exception as e:
51
+ print(f"Error during function execution:", flush=True)
52
+ traceback.print_exc()
53
+
54
+ if __name__ == "__main__":
55
+ main()
@@ -0,0 +1,34 @@
1
+ [project]
2
+ name = "keras-remote"
3
+ version = "0.0.1"
4
+ authors = [
5
+ { name="Jeff Carpenter", email="code@jeffcarp.com" },
6
+ ]
7
+ description = "Run Keras models remotely on TPU seamlessly."
8
+ readme = "README.md"
9
+ requires-python = ">=3.9"
10
+ classifiers = [
11
+ "Programming Language :: Python :: 3",
12
+ "Operating System :: OS Independent",
13
+ ]
14
+ dependencies = [
15
+ "cloudpickle",
16
+ "numpy",
17
+ "keras",
18
+ ]
19
+ license = "Apache-2.0"
20
+ license-files = ["LICENCSE"]
21
+
22
+ [project.optional-dependencies]
23
+ dev = [
24
+ "build",
25
+ "twine",
26
+ ]
27
+
28
+ [project.urls]
29
+ Homepage = "https://github.com/keras-team/keras-remote"
30
+ Issues = "https://github.com/keras-team/keras-remote/issues"
31
+
32
+ [build-system]
33
+ requires = ["hatchling >= 1.26"]
34
+ build-backend = "hatchling.build"