keras-nightly 3.12.0.dev2025082103__tar.gz → 3.12.0.dev2025082303__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (609) hide show
  1. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/PKG-INFO +1 -1
  2. {keras_nightly-3.12.0.dev2025082103/keras/api → keras_nightly-3.12.0.dev2025082303/keras/api/_tf_keras/keras}/ops/__init__.py +1 -0
  3. {keras_nightly-3.12.0.dev2025082103/keras/api → keras_nightly-3.12.0.dev2025082303/keras/api/_tf_keras/keras}/ops/numpy/__init__.py +1 -0
  4. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/quantizers/__init__.py +1 -0
  5. {keras_nightly-3.12.0.dev2025082103/keras/api/_tf_keras/keras → keras_nightly-3.12.0.dev2025082303/keras/api}/ops/__init__.py +1 -0
  6. {keras_nightly-3.12.0.dev2025082103/keras/api/_tf_keras/keras → keras_nightly-3.12.0.dev2025082303/keras/api}/ops/numpy/__init__.py +1 -0
  7. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/quantizers/__init__.py +1 -0
  8. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/convnext.py +20 -20
  9. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/densenet.py +21 -21
  10. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/efficientnet.py +16 -16
  11. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/efficientnet_v2.py +28 -28
  12. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/inception_resnet_v2.py +7 -7
  13. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/inception_v3.py +5 -5
  14. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/mobilenet_v2.py +13 -20
  15. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/mobilenet_v3.py +15 -15
  16. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/nasnet.py +7 -8
  17. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/resnet.py +32 -32
  18. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/xception.py +10 -10
  19. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/dtypes.py +8 -3
  20. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/variables.py +3 -1
  21. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/export.py +1 -1
  22. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/numpy.py +6 -0
  23. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/trainer.py +1 -1
  24. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/numpy.py +28 -0
  25. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/numpy.py +5 -1
  26. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/numpy.py +22 -0
  27. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/trainer.py +19 -1
  28. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/core.py +6 -9
  29. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/nn.py +1 -2
  30. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/numpy.py +16 -0
  31. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/trainer.py +1 -1
  32. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/backup_and_restore.py +2 -2
  33. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/csv_logger.py +1 -1
  34. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/model_checkpoint.py +1 -1
  35. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/tensorboard.py +6 -6
  36. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/constraints/constraints.py +9 -7
  37. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/boston_housing.py +1 -1
  38. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/california_housing.py +1 -1
  39. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/cifar10.py +1 -1
  40. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/cifar100.py +2 -2
  41. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/imdb.py +2 -2
  42. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/mnist.py +1 -1
  43. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/reuters.py +2 -2
  44. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/dtype_policies/dtype_policy.py +1 -1
  45. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/dtype_policies/dtype_policy_map.py +1 -1
  46. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/export/tf2onnx_lib.py +1 -3
  47. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/initializers/constant_initializers.py +9 -5
  48. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/input_spec.py +6 -6
  49. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/layer.py +1 -1
  50. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/category_encoding.py +3 -3
  51. keras_nightly-3.12.0.dev2025082303/keras/src/layers/preprocessing/data_layer.py +159 -0
  52. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/discretization.py +3 -3
  53. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/feature_space.py +4 -4
  54. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/aug_mix.py +7 -4
  55. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/auto_contrast.py +3 -0
  56. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py +2 -2
  57. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/center_crop.py +1 -1
  58. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/cut_mix.py +6 -3
  59. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/equalization.py +1 -1
  60. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py +3 -0
  61. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/mix_up.py +7 -4
  62. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/rand_augment.py +3 -1
  63. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_brightness.py +1 -1
  64. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py +3 -0
  65. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py +3 -0
  66. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_contrast.py +1 -1
  67. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_crop.py +1 -1
  68. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py +3 -0
  69. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_erasing.py +6 -3
  70. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_flip.py +1 -1
  71. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_gaussian_blur.py +3 -0
  72. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_grayscale.py +1 -1
  73. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_hue.py +3 -0
  74. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_invert.py +3 -0
  75. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_perspective.py +3 -0
  76. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_posterization.py +3 -0
  77. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_rotation.py +1 -1
  78. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_saturation.py +3 -0
  79. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py +3 -0
  80. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_shear.py +3 -0
  81. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_translation.py +3 -3
  82. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/random_zoom.py +3 -3
  83. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/resizing.py +3 -3
  84. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/solarization.py +3 -0
  85. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/mel_spectrogram.py +29 -25
  86. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/normalization.py +5 -2
  87. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/rescaling.py +3 -3
  88. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/bidirectional.py +4 -4
  89. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/backend.py +9 -23
  90. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/preprocessing/image.py +11 -22
  91. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/preprocessing/text.py +1 -1
  92. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/models/functional.py +2 -2
  93. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/models/model.py +21 -3
  94. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/function.py +1 -1
  95. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/numpy.py +49 -5
  96. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/operation.py +3 -2
  97. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/base_optimizer.py +3 -4
  98. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/schedules/learning_rate_schedule.py +16 -9
  99. keras_nightly-3.12.0.dev2025082303/keras/src/quantizers/gptq.py +350 -0
  100. keras_nightly-3.12.0.dev2025082303/keras/src/quantizers/gptq_config.py +169 -0
  101. keras_nightly-3.12.0.dev2025082303/keras/src/quantizers/gptq_core.py +335 -0
  102. keras_nightly-3.12.0.dev2025082303/keras/src/quantizers/gptq_quant.py +133 -0
  103. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/saving/file_editor.py +22 -20
  104. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/saving/object_registration.py +1 -1
  105. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/saving/saving_lib.py +4 -4
  106. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/saving/serialization_lib.py +3 -5
  107. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/compile_utils.py +1 -1
  108. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/array_data_adapter.py +9 -3
  109. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/data_adapter_utils.py +15 -5
  110. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/generator_data_adapter.py +2 -0
  111. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/grain_dataset_adapter.py +8 -2
  112. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/tf_dataset_adapter.py +4 -2
  113. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/torch_data_loader_adapter.py +3 -1
  114. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/tree/dmtree_impl.py +19 -3
  115. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/tree/optree_impl.py +3 -3
  116. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/tree/tree_api.py +5 -2
  117. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/file_utils.py +13 -5
  118. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/io_utils.py +1 -1
  119. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/model_visualization.py +1 -1
  120. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/progbar.py +5 -5
  121. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/summary_utils.py +4 -4
  122. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/version.py +1 -1
  123. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras_nightly.egg-info/PKG-INFO +1 -1
  124. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras_nightly.egg-info/SOURCES.txt +5 -1
  125. keras_nightly-3.12.0.dev2025082103/keras/src/layers/preprocessing/tf_data_layer.py +0 -78
  126. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/README.md +0 -0
  127. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/__init__.py +0 -0
  128. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/__init__.py +0 -0
  129. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/__init__.py +0 -0
  130. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/activations/__init__.py +0 -0
  131. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/__init__.py +0 -0
  132. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/convnext/__init__.py +0 -0
  133. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/densenet/__init__.py +0 -0
  134. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/efficientnet/__init__.py +0 -0
  135. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/efficientnet_v2/__init__.py +0 -0
  136. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/imagenet_utils/__init__.py +0 -0
  137. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/inception_resnet_v2/__init__.py +0 -0
  138. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/inception_v3/__init__.py +0 -0
  139. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/mobilenet/__init__.py +0 -0
  140. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/mobilenet_v2/__init__.py +0 -0
  141. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/mobilenet_v3/__init__.py +0 -0
  142. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/nasnet/__init__.py +0 -0
  143. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/resnet/__init__.py +0 -0
  144. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/resnet50/__init__.py +0 -0
  145. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/resnet_v2/__init__.py +0 -0
  146. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/vgg16/__init__.py +0 -0
  147. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/vgg19/__init__.py +0 -0
  148. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/applications/xception/__init__.py +0 -0
  149. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/backend/__init__.py +0 -0
  150. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/callbacks/__init__.py +0 -0
  151. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/config/__init__.py +0 -0
  152. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/constraints/__init__.py +0 -0
  153. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/datasets/__init__.py +0 -0
  154. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/datasets/boston_housing/__init__.py +0 -0
  155. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/datasets/california_housing/__init__.py +0 -0
  156. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/datasets/cifar10/__init__.py +0 -0
  157. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/datasets/cifar100/__init__.py +0 -0
  158. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/datasets/fashion_mnist/__init__.py +0 -0
  159. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/datasets/imdb/__init__.py +0 -0
  160. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/datasets/mnist/__init__.py +0 -0
  161. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/datasets/reuters/__init__.py +0 -0
  162. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/distribution/__init__.py +0 -0
  163. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/dtype_policies/__init__.py +0 -0
  164. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/export/__init__.py +0 -0
  165. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/initializers/__init__.py +0 -0
  166. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/layers/__init__.py +0 -0
  167. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/legacy/__init__.py +0 -0
  168. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/legacy/saving/__init__.py +0 -0
  169. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/losses/__init__.py +0 -0
  170. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/metrics/__init__.py +0 -0
  171. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/mixed_precision/__init__.py +0 -0
  172. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/models/__init__.py +0 -0
  173. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/ops/image/__init__.py +0 -0
  174. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/ops/linalg/__init__.py +0 -0
  175. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/ops/nn/__init__.py +0 -0
  176. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/optimizers/__init__.py +0 -0
  177. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/optimizers/legacy/__init__.py +0 -0
  178. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/optimizers/schedules/__init__.py +0 -0
  179. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/preprocessing/__init__.py +0 -0
  180. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/preprocessing/image/__init__.py +0 -0
  181. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/preprocessing/sequence/__init__.py +0 -0
  182. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/preprocessing/text/__init__.py +0 -0
  183. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/random/__init__.py +0 -0
  184. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/regularizers/__init__.py +0 -0
  185. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/saving/__init__.py +0 -0
  186. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/tree/__init__.py +0 -0
  187. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/utils/__init__.py +0 -0
  188. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/utils/bounding_boxes/__init__.py +0 -0
  189. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/utils/legacy/__init__.py +0 -0
  190. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/visualization/__init__.py +0 -0
  191. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/_tf_keras/keras/wrappers/__init__.py +0 -0
  192. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/activations/__init__.py +0 -0
  193. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/__init__.py +0 -0
  194. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/convnext/__init__.py +0 -0
  195. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/densenet/__init__.py +0 -0
  196. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/efficientnet/__init__.py +0 -0
  197. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/efficientnet_v2/__init__.py +0 -0
  198. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/imagenet_utils/__init__.py +0 -0
  199. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/inception_resnet_v2/__init__.py +0 -0
  200. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/inception_v3/__init__.py +0 -0
  201. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/mobilenet/__init__.py +0 -0
  202. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/mobilenet_v2/__init__.py +0 -0
  203. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/mobilenet_v3/__init__.py +0 -0
  204. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/nasnet/__init__.py +0 -0
  205. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/resnet/__init__.py +0 -0
  206. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/resnet50/__init__.py +0 -0
  207. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/resnet_v2/__init__.py +0 -0
  208. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/vgg16/__init__.py +0 -0
  209. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/vgg19/__init__.py +0 -0
  210. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/applications/xception/__init__.py +0 -0
  211. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/backend/__init__.py +0 -0
  212. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/callbacks/__init__.py +0 -0
  213. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/config/__init__.py +0 -0
  214. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/constraints/__init__.py +0 -0
  215. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/datasets/__init__.py +0 -0
  216. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/datasets/boston_housing/__init__.py +0 -0
  217. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/datasets/california_housing/__init__.py +0 -0
  218. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/datasets/cifar10/__init__.py +0 -0
  219. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/datasets/cifar100/__init__.py +0 -0
  220. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/datasets/fashion_mnist/__init__.py +0 -0
  221. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/datasets/imdb/__init__.py +0 -0
  222. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/datasets/mnist/__init__.py +0 -0
  223. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/datasets/reuters/__init__.py +0 -0
  224. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/distribution/__init__.py +0 -0
  225. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/dtype_policies/__init__.py +0 -0
  226. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/export/__init__.py +0 -0
  227. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/initializers/__init__.py +0 -0
  228. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/layers/__init__.py +0 -0
  229. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/legacy/__init__.py +0 -0
  230. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/legacy/saving/__init__.py +0 -0
  231. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/losses/__init__.py +0 -0
  232. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/metrics/__init__.py +0 -0
  233. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/mixed_precision/__init__.py +0 -0
  234. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/models/__init__.py +0 -0
  235. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/ops/image/__init__.py +0 -0
  236. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/ops/linalg/__init__.py +0 -0
  237. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/ops/nn/__init__.py +0 -0
  238. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/optimizers/__init__.py +0 -0
  239. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/optimizers/legacy/__init__.py +0 -0
  240. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/optimizers/schedules/__init__.py +0 -0
  241. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/preprocessing/__init__.py +0 -0
  242. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/preprocessing/image/__init__.py +0 -0
  243. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/preprocessing/sequence/__init__.py +0 -0
  244. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/random/__init__.py +0 -0
  245. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/regularizers/__init__.py +0 -0
  246. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/saving/__init__.py +0 -0
  247. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/tree/__init__.py +0 -0
  248. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/utils/__init__.py +0 -0
  249. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/utils/bounding_boxes/__init__.py +0 -0
  250. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/utils/legacy/__init__.py +0 -0
  251. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/visualization/__init__.py +0 -0
  252. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/api/wrappers/__init__.py +0 -0
  253. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/__init__.py +0 -0
  254. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/activations/__init__.py +0 -0
  255. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/activations/activations.py +0 -0
  256. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/api_export.py +0 -0
  257. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/__init__.py +0 -0
  258. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/imagenet_utils.py +0 -0
  259. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/mobilenet.py +0 -0
  260. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/resnet_v2.py +0 -0
  261. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/vgg16.py +0 -0
  262. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/applications/vgg19.py +0 -0
  263. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/__init__.py +0 -0
  264. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/__init__.py +0 -0
  265. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/backend_utils.py +0 -0
  266. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/global_state.py +0 -0
  267. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/keras_tensor.py +0 -0
  268. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/masking.py +0 -0
  269. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/name_scope.py +0 -0
  270. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/remat.py +0 -0
  271. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/stateless_scope.py +0 -0
  272. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/symbolic_scope.py +0 -0
  273. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/common/tensor_attributes.py +0 -0
  274. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/config.py +0 -0
  275. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/__init__.py +0 -0
  276. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/core.py +0 -0
  277. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/distribution_lib.py +0 -0
  278. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/image.py +0 -0
  279. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/layer.py +0 -0
  280. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/linalg.py +0 -0
  281. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/math.py +0 -0
  282. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/nn.py +0 -0
  283. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/optimizer.py +0 -0
  284. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/random.py +0 -0
  285. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/rnn.py +0 -0
  286. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/sparse.py +0 -0
  287. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/jax/tensorboard.py +0 -0
  288. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/__init__.py +0 -0
  289. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/core.py +0 -0
  290. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/export.py +0 -0
  291. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/image.py +0 -0
  292. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/layer.py +0 -0
  293. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/linalg.py +0 -0
  294. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/math.py +0 -0
  295. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/nn.py +0 -0
  296. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/random.py +0 -0
  297. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/rnn.py +0 -0
  298. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/numpy/trainer.py +0 -0
  299. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/__init__.py +0 -0
  300. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/core.py +0 -0
  301. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/export.py +0 -0
  302. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/image.py +0 -0
  303. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/layer.py +0 -0
  304. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/linalg.py +0 -0
  305. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/math.py +0 -0
  306. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/nn.py +0 -0
  307. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/random.py +0 -0
  308. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/rnn.py +0 -0
  309. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/openvino/trainer.py +0 -0
  310. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/__init__.py +0 -0
  311. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/core.py +0 -0
  312. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/distribution_lib.py +0 -0
  313. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/export.py +0 -0
  314. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/image.py +0 -0
  315. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/layer.py +0 -0
  316. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/linalg.py +0 -0
  317. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/math.py +0 -0
  318. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/nn.py +0 -0
  319. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/optimizer.py +0 -0
  320. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/random.py +0 -0
  321. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/rnn.py +0 -0
  322. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/sparse.py +0 -0
  323. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/tensorboard.py +0 -0
  324. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/tensorflow/trackable.py +0 -0
  325. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/__init__.py +0 -0
  326. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/export.py +0 -0
  327. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/image.py +0 -0
  328. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/layer.py +0 -0
  329. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/linalg.py +0 -0
  330. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/math.py +0 -0
  331. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/__init__.py +0 -0
  332. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_adadelta.py +0 -0
  333. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_adagrad.py +0 -0
  334. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_adam.py +0 -0
  335. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_adamax.py +0 -0
  336. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_adamw.py +0 -0
  337. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_lion.py +0 -0
  338. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_nadam.py +0 -0
  339. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_optimizer.py +0 -0
  340. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_parallel_optimizer.py +0 -0
  341. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_rmsprop.py +0 -0
  342. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/optimizers/torch_sgd.py +0 -0
  343. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/random.py +0 -0
  344. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/backend/torch/rnn.py +0 -0
  345. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/__init__.py +0 -0
  346. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/callback.py +0 -0
  347. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/callback_list.py +0 -0
  348. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/early_stopping.py +0 -0
  349. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/history.py +0 -0
  350. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/lambda_callback.py +0 -0
  351. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/learning_rate_scheduler.py +0 -0
  352. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/monitor_callback.py +0 -0
  353. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/progbar_logger.py +0 -0
  354. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/reduce_lr_on_plateau.py +0 -0
  355. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/remote_monitor.py +0 -0
  356. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/swap_ema_weights.py +0 -0
  357. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/callbacks/terminate_on_nan.py +0 -0
  358. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/constraints/__init__.py +0 -0
  359. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/__init__.py +0 -0
  360. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/cifar.py +0 -0
  361. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/datasets/fashion_mnist.py +0 -0
  362. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/distribution/__init__.py +0 -0
  363. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/distribution/distribution_lib.py +0 -0
  364. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/dtype_policies/__init__.py +0 -0
  365. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/export/__init__.py +0 -0
  366. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/export/export_utils.py +0 -0
  367. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/export/onnx.py +0 -0
  368. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/export/openvino.py +0 -0
  369. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/export/saved_model.py +0 -0
  370. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/export/tfsm_layer.py +0 -0
  371. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/initializers/__init__.py +0 -0
  372. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/initializers/initializer.py +0 -0
  373. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/initializers/random_initializers.py +0 -0
  374. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/__init__.py +0 -0
  375. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/activations/__init__.py +0 -0
  376. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/activations/activation.py +0 -0
  377. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/activations/elu.py +0 -0
  378. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/activations/leaky_relu.py +0 -0
  379. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/activations/prelu.py +0 -0
  380. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/activations/relu.py +0 -0
  381. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/activations/softmax.py +0 -0
  382. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/attention/__init__.py +0 -0
  383. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/attention/additive_attention.py +0 -0
  384. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/attention/attention.py +0 -0
  385. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/attention/grouped_query_attention.py +0 -0
  386. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/attention/multi_head_attention.py +0 -0
  387. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/__init__.py +0 -0
  388. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/base_conv.py +0 -0
  389. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/base_conv_transpose.py +0 -0
  390. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/base_depthwise_conv.py +0 -0
  391. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/base_separable_conv.py +0 -0
  392. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/conv1d.py +0 -0
  393. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/conv1d_transpose.py +0 -0
  394. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/conv2d.py +0 -0
  395. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/conv2d_transpose.py +0 -0
  396. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/conv3d.py +0 -0
  397. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/conv3d_transpose.py +0 -0
  398. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/depthwise_conv1d.py +0 -0
  399. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/depthwise_conv2d.py +0 -0
  400. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/separable_conv1d.py +0 -0
  401. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/convolutional/separable_conv2d.py +0 -0
  402. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/core/__init__.py +0 -0
  403. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/core/dense.py +0 -0
  404. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/core/einsum_dense.py +0 -0
  405. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/core/embedding.py +0 -0
  406. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/core/identity.py +0 -0
  407. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/core/input_layer.py +0 -0
  408. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/core/lambda_layer.py +0 -0
  409. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/core/masking.py +0 -0
  410. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/core/wrapper.py +0 -0
  411. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/__init__.py +0 -0
  412. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/add.py +0 -0
  413. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/average.py +0 -0
  414. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/base_merge.py +0 -0
  415. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/concatenate.py +0 -0
  416. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/dot.py +0 -0
  417. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/maximum.py +0 -0
  418. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/minimum.py +0 -0
  419. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/multiply.py +0 -0
  420. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/merging/subtract.py +0 -0
  421. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/normalization/__init__.py +0 -0
  422. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/normalization/batch_normalization.py +0 -0
  423. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/normalization/group_normalization.py +0 -0
  424. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/normalization/layer_normalization.py +0 -0
  425. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/normalization/rms_normalization.py +0 -0
  426. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/normalization/spectral_normalization.py +0 -0
  427. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/normalization/unit_normalization.py +0 -0
  428. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/__init__.py +0 -0
  429. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/average_pooling1d.py +0 -0
  430. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/average_pooling2d.py +0 -0
  431. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/average_pooling3d.py +0 -0
  432. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/base_global_pooling.py +0 -0
  433. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/base_pooling.py +0 -0
  434. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/global_average_pooling1d.py +0 -0
  435. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/global_average_pooling2d.py +0 -0
  436. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/global_average_pooling3d.py +0 -0
  437. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/global_max_pooling1d.py +0 -0
  438. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/global_max_pooling2d.py +0 -0
  439. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/global_max_pooling3d.py +0 -0
  440. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/max_pooling1d.py +0 -0
  441. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/max_pooling2d.py +0 -0
  442. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/pooling/max_pooling3d.py +0 -0
  443. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/__init__.py +0 -0
  444. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/hashed_crossing.py +0 -0
  445. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/hashing.py +0 -0
  446. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/__init__.py +0 -0
  447. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/__init__.py +0 -0
  448. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/bounding_box.py +0 -0
  449. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/converters.py +0 -0
  450. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/formats.py +0 -0
  451. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/iou.py +0 -0
  452. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/validation.py +0 -0
  453. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/index_lookup.py +0 -0
  454. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/integer_lookup.py +0 -0
  455. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/pipeline.py +0 -0
  456. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/stft_spectrogram.py +0 -0
  457. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/string_lookup.py +0 -0
  458. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/preprocessing/text_vectorization.py +0 -0
  459. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/regularization/__init__.py +0 -0
  460. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/regularization/activity_regularization.py +0 -0
  461. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/regularization/alpha_dropout.py +0 -0
  462. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/regularization/dropout.py +0 -0
  463. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/regularization/gaussian_dropout.py +0 -0
  464. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/regularization/gaussian_noise.py +0 -0
  465. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/regularization/spatial_dropout.py +0 -0
  466. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/__init__.py +0 -0
  467. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/cropping1d.py +0 -0
  468. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/cropping2d.py +0 -0
  469. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/cropping3d.py +0 -0
  470. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/flatten.py +0 -0
  471. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/permute.py +0 -0
  472. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/repeat_vector.py +0 -0
  473. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/reshape.py +0 -0
  474. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/up_sampling1d.py +0 -0
  475. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/up_sampling2d.py +0 -0
  476. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/up_sampling3d.py +0 -0
  477. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/zero_padding1d.py +0 -0
  478. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/zero_padding2d.py +0 -0
  479. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/reshaping/zero_padding3d.py +0 -0
  480. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/__init__.py +0 -0
  481. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/conv_lstm.py +0 -0
  482. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/conv_lstm1d.py +0 -0
  483. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/conv_lstm2d.py +0 -0
  484. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/conv_lstm3d.py +0 -0
  485. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/dropout_rnn_cell.py +0 -0
  486. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/gru.py +0 -0
  487. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/lstm.py +0 -0
  488. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/rnn.py +0 -0
  489. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/simple_rnn.py +0 -0
  490. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/stacked_rnn_cells.py +0 -0
  491. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/layers/rnn/time_distributed.py +0 -0
  492. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/__init__.py +0 -0
  493. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/layers.py +0 -0
  494. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/losses.py +0 -0
  495. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/preprocessing/__init__.py +0 -0
  496. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/preprocessing/sequence.py +0 -0
  497. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/saving/__init__.py +0 -0
  498. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/saving/json_utils.py +0 -0
  499. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/saving/legacy_h5_format.py +0 -0
  500. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/saving/saving_options.py +0 -0
  501. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/saving/saving_utils.py +0 -0
  502. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/legacy/saving/serialization.py +0 -0
  503. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/losses/__init__.py +0 -0
  504. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/losses/loss.py +0 -0
  505. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/losses/losses.py +0 -0
  506. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/__init__.py +0 -0
  507. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/accuracy_metrics.py +0 -0
  508. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/confusion_metrics.py +0 -0
  509. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/correlation_metrics.py +0 -0
  510. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/f_score_metrics.py +0 -0
  511. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/hinge_metrics.py +0 -0
  512. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/iou_metrics.py +0 -0
  513. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/metric.py +0 -0
  514. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/metrics_utils.py +0 -0
  515. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/probabilistic_metrics.py +0 -0
  516. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/reduction_metrics.py +0 -0
  517. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/metrics/regression_metrics.py +0 -0
  518. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/models/__init__.py +0 -0
  519. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/models/cloning.py +0 -0
  520. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/models/sequential.py +0 -0
  521. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/models/variable_mapping.py +0 -0
  522. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/__init__.py +0 -0
  523. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/core.py +0 -0
  524. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/einops.py +0 -0
  525. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/image.py +0 -0
  526. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/linalg.py +0 -0
  527. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/math.py +0 -0
  528. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/nn.py +0 -0
  529. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/node.py +0 -0
  530. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/operation_utils.py +0 -0
  531. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/ops/symbolic_arguments.py +0 -0
  532. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/__init__.py +0 -0
  533. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/adadelta.py +0 -0
  534. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/adafactor.py +0 -0
  535. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/adagrad.py +0 -0
  536. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/adam.py +0 -0
  537. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/adamax.py +0 -0
  538. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/adamw.py +0 -0
  539. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/ftrl.py +0 -0
  540. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/lamb.py +0 -0
  541. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/lion.py +0 -0
  542. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/loss_scale_optimizer.py +0 -0
  543. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/muon.py +0 -0
  544. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/nadam.py +0 -0
  545. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/optimizer.py +0 -0
  546. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/rmsprop.py +0 -0
  547. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/schedules/__init__.py +0 -0
  548. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/optimizers/sgd.py +0 -0
  549. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/quantizers/__init__.py +0 -0
  550. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/quantizers/quantizers.py +0 -0
  551. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/random/__init__.py +0 -0
  552. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/random/random.py +0 -0
  553. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/random/seed_generator.py +0 -0
  554. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/regularizers/__init__.py +0 -0
  555. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/regularizers/regularizers.py +0 -0
  556. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/saving/__init__.py +0 -0
  557. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/saving/keras_saveable.py +0 -0
  558. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/saving/saving_api.py +0 -0
  559. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/testing/__init__.py +0 -0
  560. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/testing/test_case.py +0 -0
  561. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/testing/test_utils.py +0 -0
  562. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/__init__.py +0 -0
  563. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/__init__.py +0 -0
  564. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/array_slicing.py +0 -0
  565. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/data_adapter.py +0 -0
  566. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/data_adapters/py_dataset_adapter.py +0 -0
  567. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/epoch_iterator.py +0 -0
  568. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/trainers/trainer.py +0 -0
  569. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/tree/__init__.py +0 -0
  570. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/__init__.py +0 -0
  571. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/argument_validation.py +0 -0
  572. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/audio_dataset_utils.py +0 -0
  573. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/backend_utils.py +0 -0
  574. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/code_stats.py +0 -0
  575. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/config.py +0 -0
  576. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/dataset_utils.py +0 -0
  577. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/dtype_utils.py +0 -0
  578. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/grain_utils.py +0 -0
  579. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/image_dataset_utils.py +0 -0
  580. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/image_utils.py +0 -0
  581. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/jax_layer.py +0 -0
  582. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/jax_utils.py +0 -0
  583. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/module_utils.py +0 -0
  584. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/naming.py +0 -0
  585. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/numerical_utils.py +0 -0
  586. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/python_utils.py +0 -0
  587. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/rng_utils.py +0 -0
  588. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/sequence_utils.py +0 -0
  589. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/text_dataset_utils.py +0 -0
  590. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/tf_utils.py +0 -0
  591. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/timeseries_dataset_utils.py +0 -0
  592. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/torch_utils.py +0 -0
  593. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/traceback_utils.py +0 -0
  594. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/utils/tracking.py +0 -0
  595. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/visualization/__init__.py +0 -0
  596. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/visualization/draw_bounding_boxes.py +0 -0
  597. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/visualization/draw_segmentation_masks.py +0 -0
  598. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/visualization/plot_bounding_box_gallery.py +0 -0
  599. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/visualization/plot_image_gallery.py +0 -0
  600. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/visualization/plot_segmentation_mask_gallery.py +0 -0
  601. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/wrappers/__init__.py +0 -0
  602. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/wrappers/fixes.py +0 -0
  603. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/wrappers/sklearn_wrapper.py +0 -0
  604. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras/src/wrappers/utils.py +0 -0
  605. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras_nightly.egg-info/dependency_links.txt +0 -0
  606. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras_nightly.egg-info/requires.txt +0 -0
  607. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/keras_nightly.egg-info/top_level.txt +0 -0
  608. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/pyproject.toml +0 -0
  609. {keras_nightly-3.12.0.dev2025082103 → keras_nightly-3.12.0.dev2025082303}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-nightly
3
- Version: 3.12.0.dev2025082103
3
+ Version: 3.12.0.dev2025082303
4
4
  Summary: Multi-backend Keras
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License: Apache License 2.0
@@ -195,6 +195,7 @@ from keras.src.ops.numpy import hanning as hanning
195
195
  from keras.src.ops.numpy import heaviside as heaviside
196
196
  from keras.src.ops.numpy import histogram as histogram
197
197
  from keras.src.ops.numpy import hstack as hstack
198
+ from keras.src.ops.numpy import hypot as hypot
198
199
  from keras.src.ops.numpy import identity as identity
199
200
  from keras.src.ops.numpy import imag as imag
200
201
  from keras.src.ops.numpy import inner as inner
@@ -83,6 +83,7 @@ from keras.src.ops.numpy import hanning as hanning
83
83
  from keras.src.ops.numpy import heaviside as heaviside
84
84
  from keras.src.ops.numpy import histogram as histogram
85
85
  from keras.src.ops.numpy import hstack as hstack
86
+ from keras.src.ops.numpy import hypot as hypot
86
87
  from keras.src.ops.numpy import identity as identity
87
88
  from keras.src.ops.numpy import imag as imag
88
89
  from keras.src.ops.numpy import inner as inner
@@ -7,6 +7,7 @@ since your modifications would be overwritten.
7
7
  from keras.src.quantizers import deserialize as deserialize
8
8
  from keras.src.quantizers import get as get
9
9
  from keras.src.quantizers import serialize as serialize
10
+ from keras.src.quantizers.gptq_config import GPTQConfig as GPTQConfig
10
11
  from keras.src.quantizers.quantizers import AbsMaxQuantizer as AbsMaxQuantizer
11
12
  from keras.src.quantizers.quantizers import Quantizer as Quantizer
12
13
  from keras.src.quantizers.quantizers import abs_max_quantize as abs_max_quantize
@@ -195,6 +195,7 @@ from keras.src.ops.numpy import hanning as hanning
195
195
  from keras.src.ops.numpy import heaviside as heaviside
196
196
  from keras.src.ops.numpy import histogram as histogram
197
197
  from keras.src.ops.numpy import hstack as hstack
198
+ from keras.src.ops.numpy import hypot as hypot
198
199
  from keras.src.ops.numpy import identity as identity
199
200
  from keras.src.ops.numpy import imag as imag
200
201
  from keras.src.ops.numpy import inner as inner
@@ -83,6 +83,7 @@ from keras.src.ops.numpy import hanning as hanning
83
83
  from keras.src.ops.numpy import heaviside as heaviside
84
84
  from keras.src.ops.numpy import histogram as histogram
85
85
  from keras.src.ops.numpy import hstack as hstack
86
+ from keras.src.ops.numpy import hypot as hypot
86
87
  from keras.src.ops.numpy import identity as identity
87
88
  from keras.src.ops.numpy import imag as imag
88
89
  from keras.src.ops.numpy import inner as inner
@@ -7,6 +7,7 @@ since your modifications would be overwritten.
7
7
  from keras.src.quantizers import deserialize as deserialize
8
8
  from keras.src.quantizers import get as get
9
9
  from keras.src.quantizers import serialize as serialize
10
+ from keras.src.quantizers.gptq_config import GPTQConfig as GPTQConfig
10
11
  from keras.src.quantizers.quantizers import AbsMaxQuantizer as AbsMaxQuantizer
11
12
  from keras.src.quantizers.quantizers import Quantizer as Quantizer
12
13
  from keras.src.quantizers.quantizers import abs_max_quantize as abs_max_quantize
@@ -244,7 +244,7 @@ def ConvNeXtBlock(
244
244
  A function representing a ConvNeXtBlock block.
245
245
  """
246
246
  if name is None:
247
- name = "prestem" + str(backend.get_uid("prestem"))
247
+ name = f"prestem{str(backend.get_uid('prestem'))}"
248
248
 
249
249
  def apply(inputs):
250
250
  x = inputs
@@ -254,25 +254,25 @@ def ConvNeXtBlock(
254
254
  kernel_size=7,
255
255
  padding="same",
256
256
  groups=projection_dim,
257
- name=name + "_depthwise_conv",
257
+ name=f"{name}_depthwise_conv",
258
258
  )(x)
259
- x = layers.LayerNormalization(epsilon=1e-6, name=name + "_layernorm")(x)
260
- x = layers.Dense(4 * projection_dim, name=name + "_pointwise_conv_1")(x)
261
- x = layers.Activation("gelu", name=name + "_gelu")(x)
262
- x = layers.Dense(projection_dim, name=name + "_pointwise_conv_2")(x)
259
+ x = layers.LayerNormalization(epsilon=1e-6, name=f"{name}_layernorm")(x)
260
+ x = layers.Dense(4 * projection_dim, name=f"{name}_pointwise_conv_1")(x)
261
+ x = layers.Activation("gelu", name=f"{name}_gelu")(x)
262
+ x = layers.Dense(projection_dim, name=f"{name}_pointwise_conv_2")(x)
263
263
 
264
264
  if layer_scale_init_value is not None:
265
265
  x = LayerScale(
266
266
  layer_scale_init_value,
267
267
  projection_dim,
268
- name=name + "_layer_scale",
268
+ name=f"{name}_layer_scale",
269
269
  )(x)
270
270
  if drop_path_rate:
271
271
  layer = StochasticDepth(
272
- drop_path_rate, name=name + "_stochastic_depth"
272
+ drop_path_rate, name=f"{name}_stochastic_depth"
273
273
  )
274
274
  else:
275
- layer = layers.Activation("linear", name=name + "_identity")
275
+ layer = layers.Activation("linear", name=f"{name}_identity")
276
276
 
277
277
  return inputs + layer(x)
278
278
 
@@ -282,7 +282,7 @@ def ConvNeXtBlock(
282
282
  def PreStem(name=None):
283
283
  """Normalizes inputs with ImageNet-1k mean and std."""
284
284
  if name is None:
285
- name = "prestem" + str(backend.get_uid("prestem"))
285
+ name = "prestem{0}".format(str(backend.get_uid("prestem")))
286
286
 
287
287
  def apply(x):
288
288
  x = layers.Normalization(
@@ -292,7 +292,7 @@ def PreStem(name=None):
292
292
  (0.224 * 255) ** 2,
293
293
  (0.225 * 255) ** 2,
294
294
  ],
295
- name=name + "_prestem_normalization",
295
+ name=f"{name}_prestem_normalization",
296
296
  )(x)
297
297
  return x
298
298
 
@@ -314,14 +314,14 @@ def Head(num_classes=1000, classifier_activation=None, name=None):
314
314
  name = str(backend.get_uid("head"))
315
315
 
316
316
  def apply(x):
317
- x = layers.GlobalAveragePooling2D(name=name + "_head_gap")(x)
317
+ x = layers.GlobalAveragePooling2D(name=f"{name}_head_gap")(x)
318
318
  x = layers.LayerNormalization(
319
- epsilon=1e-6, name=name + "_head_layernorm"
319
+ epsilon=1e-6, name=f"{name}_head_layernorm"
320
320
  )(x)
321
321
  x = layers.Dense(
322
322
  num_classes,
323
323
  activation=classifier_activation,
324
- name=name + "_head_dense",
324
+ name=f"{name}_head_dense",
325
325
  )(x)
326
326
  return x
327
327
 
@@ -452,13 +452,13 @@ def ConvNeXt(
452
452
  projection_dims[0],
453
453
  kernel_size=4,
454
454
  strides=4,
455
- name=name + "_stem_conv",
455
+ name=f"{name}_stem_conv",
456
456
  ),
457
457
  layers.LayerNormalization(
458
- epsilon=1e-6, name=name + "_stem_layernorm"
458
+ epsilon=1e-6, name=f"{name}_stem_layernorm"
459
459
  ),
460
460
  ],
461
- name=name + "_stem",
461
+ name=f"{name}_stem",
462
462
  )
463
463
 
464
464
  # Downsampling blocks.
@@ -471,16 +471,16 @@ def ConvNeXt(
471
471
  [
472
472
  layers.LayerNormalization(
473
473
  epsilon=1e-6,
474
- name=name + "_downsampling_layernorm_" + str(i),
474
+ name=f"{name}_downsampling_layernorm_{i}",
475
475
  ),
476
476
  layers.Conv2D(
477
477
  projection_dims[i + 1],
478
478
  kernel_size=2,
479
479
  strides=2,
480
- name=name + "_downsampling_conv_" + str(i),
480
+ name=f"{name}_downsampling_conv_{i}",
481
481
  ),
482
482
  ],
483
- name=name + "_downsampling_block_" + str(i),
483
+ name=f"{name}_downsampling_block_{i}",
484
484
  )
485
485
  downsample_layers.append(downsample_layer)
486
486
 
@@ -10,25 +10,25 @@ BASE_WEIGHTS_PATH = (
10
10
  "https://storage.googleapis.com/tensorflow/keras-applications/densenet/"
11
11
  )
12
12
  DENSENET121_WEIGHT_PATH = (
13
- BASE_WEIGHTS_PATH + "densenet121_weights_tf_dim_ordering_tf_kernels.h5"
13
+ f"{BASE_WEIGHTS_PATH}densenet121_weights_tf_dim_ordering_tf_kernels.h5"
14
14
  )
15
15
  DENSENET121_WEIGHT_PATH_NO_TOP = (
16
- BASE_WEIGHTS_PATH
17
- + "densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5"
16
+ f"{BASE_WEIGHTS_PATH}"
17
+ "densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5"
18
18
  )
19
19
  DENSENET169_WEIGHT_PATH = (
20
- BASE_WEIGHTS_PATH + "densenet169_weights_tf_dim_ordering_tf_kernels.h5"
20
+ f"{BASE_WEIGHTS_PATH}densenet169_weights_tf_dim_ordering_tf_kernels.h5"
21
21
  )
22
22
  DENSENET169_WEIGHT_PATH_NO_TOP = (
23
- BASE_WEIGHTS_PATH
24
- + "densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5"
23
+ f"{BASE_WEIGHTS_PATH}"
24
+ "densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5"
25
25
  )
26
26
  DENSENET201_WEIGHT_PATH = (
27
- BASE_WEIGHTS_PATH + "densenet201_weights_tf_dim_ordering_tf_kernels.h5"
27
+ f"{BASE_WEIGHTS_PATH}densenet201_weights_tf_dim_ordering_tf_kernels.h5"
28
28
  )
29
29
  DENSENET201_WEIGHT_PATH_NO_TOP = (
30
- BASE_WEIGHTS_PATH
31
- + "densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5"
30
+ f"{BASE_WEIGHTS_PATH}"
31
+ "densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5"
32
32
  )
33
33
 
34
34
 
@@ -44,7 +44,7 @@ def dense_block(x, blocks, name):
44
44
  Output tensor for the block.
45
45
  """
46
46
  for i in range(blocks):
47
- x = conv_block(x, 32, name=name + "_block" + str(i + 1))
47
+ x = conv_block(x, 32, name=f"{name}_block{i + 1}")
48
48
  return x
49
49
 
50
50
 
@@ -61,16 +61,16 @@ def transition_block(x, reduction, name):
61
61
  """
62
62
  bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
63
63
  x = layers.BatchNormalization(
64
- axis=bn_axis, epsilon=1.001e-5, name=name + "_bn"
64
+ axis=bn_axis, epsilon=1.001e-5, name=f"{name}_bn"
65
65
  )(x)
66
- x = layers.Activation("relu", name=name + "_relu")(x)
66
+ x = layers.Activation("relu", name=f"{name}_relu")(x)
67
67
  x = layers.Conv2D(
68
68
  int(x.shape[bn_axis] * reduction),
69
69
  1,
70
70
  use_bias=False,
71
- name=name + "_conv",
71
+ name=f"{name}_conv",
72
72
  )(x)
73
- x = layers.AveragePooling2D(2, strides=2, name=name + "_pool")(x)
73
+ x = layers.AveragePooling2D(2, strides=2, name=f"{name}_pool")(x)
74
74
  return x
75
75
 
76
76
 
@@ -87,20 +87,20 @@ def conv_block(x, growth_rate, name):
87
87
  """
88
88
  bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
89
89
  x1 = layers.BatchNormalization(
90
- axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn"
90
+ axis=bn_axis, epsilon=1.001e-5, name=f"{name}_0_bn"
91
91
  )(x)
92
- x1 = layers.Activation("relu", name=name + "_0_relu")(x1)
92
+ x1 = layers.Activation("relu", name=f"{name}_0_relu")(x1)
93
93
  x1 = layers.Conv2D(
94
- 4 * growth_rate, 1, use_bias=False, name=name + "_1_conv"
94
+ 4 * growth_rate, 1, use_bias=False, name=f"{name}_1_conv"
95
95
  )(x1)
96
96
  x1 = layers.BatchNormalization(
97
- axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn"
97
+ axis=bn_axis, epsilon=1.001e-5, name=f"{name}_1_bn"
98
98
  )(x1)
99
- x1 = layers.Activation("relu", name=name + "_1_relu")(x1)
99
+ x1 = layers.Activation("relu", name=f"{name}_1_relu")(x1)
100
100
  x1 = layers.Conv2D(
101
- growth_rate, 3, padding="same", use_bias=False, name=name + "_2_conv"
101
+ growth_rate, 3, padding="same", use_bias=False, name=f"{name}_2_conv"
102
102
  )(x1)
103
- x = layers.Concatenate(axis=bn_axis, name=name + "_concat")([x, x1])
103
+ x = layers.Concatenate(axis=bn_axis, name=f"{name}_concat")([x, x1])
104
104
  return x
105
105
 
106
106
 
@@ -479,10 +479,10 @@ def block(
479
479
  padding="same",
480
480
  use_bias=False,
481
481
  kernel_initializer=CONV_KERNEL_INITIALIZER,
482
- name=name + "expand_conv",
482
+ name=f"{name}expand_conv",
483
483
  )(inputs)
484
- x = layers.BatchNormalization(axis=bn_axis, name=name + "expand_bn")(x)
485
- x = layers.Activation(activation, name=name + "expand_activation")(x)
484
+ x = layers.BatchNormalization(axis=bn_axis, name=f"{name}expand_bn")(x)
485
+ x = layers.Activation(activation, name=f"{name}expand_activation")(x)
486
486
  else:
487
487
  x = inputs
488
488
 
@@ -490,7 +490,7 @@ def block(
490
490
  if strides == 2:
491
491
  x = layers.ZeroPadding2D(
492
492
  padding=imagenet_utils.correct_pad(x, kernel_size),
493
- name=name + "dwconv_pad",
493
+ name=f"{name}dwconv_pad",
494
494
  )(x)
495
495
  conv_pad = "valid"
496
496
  else:
@@ -501,27 +501,27 @@ def block(
501
501
  padding=conv_pad,
502
502
  use_bias=False,
503
503
  depthwise_initializer=CONV_KERNEL_INITIALIZER,
504
- name=name + "dwconv",
504
+ name=f"{name}dwconv",
505
505
  )(x)
506
- x = layers.BatchNormalization(axis=bn_axis, name=name + "bn")(x)
507
- x = layers.Activation(activation, name=name + "activation")(x)
506
+ x = layers.BatchNormalization(axis=bn_axis, name=f"{name}bn")(x)
507
+ x = layers.Activation(activation, name=f"{name}activation")(x)
508
508
 
509
509
  # Squeeze and Excitation phase
510
510
  if 0 < se_ratio <= 1:
511
511
  filters_se = max(1, int(filters_in * se_ratio))
512
- se = layers.GlobalAveragePooling2D(name=name + "se_squeeze")(x)
512
+ se = layers.GlobalAveragePooling2D(name=f"{name}se_squeeze")(x)
513
513
  if bn_axis == 1:
514
514
  se_shape = (filters, 1, 1)
515
515
  else:
516
516
  se_shape = (1, 1, filters)
517
- se = layers.Reshape(se_shape, name=name + "se_reshape")(se)
517
+ se = layers.Reshape(se_shape, name=f"{name}se_reshape")(se)
518
518
  se = layers.Conv2D(
519
519
  filters_se,
520
520
  1,
521
521
  padding="same",
522
522
  activation=activation,
523
523
  kernel_initializer=CONV_KERNEL_INITIALIZER,
524
- name=name + "se_reduce",
524
+ name=f"{name}se_reduce",
525
525
  )(se)
526
526
  se = layers.Conv2D(
527
527
  filters,
@@ -529,9 +529,9 @@ def block(
529
529
  padding="same",
530
530
  activation="sigmoid",
531
531
  kernel_initializer=CONV_KERNEL_INITIALIZER,
532
- name=name + "se_expand",
532
+ name=f"{name}se_expand",
533
533
  )(se)
534
- x = layers.multiply([x, se], name=name + "se_excite")
534
+ x = layers.multiply([x, se], name=f"{name}se_excite")
535
535
 
536
536
  # Output phase
537
537
  x = layers.Conv2D(
@@ -540,15 +540,15 @@ def block(
540
540
  padding="same",
541
541
  use_bias=False,
542
542
  kernel_initializer=CONV_KERNEL_INITIALIZER,
543
- name=name + "project_conv",
543
+ name=f"{name}project_conv",
544
544
  )(x)
545
- x = layers.BatchNormalization(axis=bn_axis, name=name + "project_bn")(x)
545
+ x = layers.BatchNormalization(axis=bn_axis, name=f"{name}project_bn")(x)
546
546
  if id_skip and strides == 1 and filters_in == filters_out:
547
547
  if drop_rate > 0:
548
548
  x = layers.Dropout(
549
- drop_rate, noise_shape=(None, 1, 1, 1), name=name + "drop"
549
+ drop_rate, noise_shape=(None, 1, 1, 1), name=f"{name}drop"
550
550
  )(x)
551
- x = layers.add([x, inputs], name=name + "add")
551
+ x = layers.add([x, inputs], name=f"{name}add")
552
552
  return x
553
553
 
554
554
 
@@ -632,14 +632,14 @@ def MBConvBlock(
632
632
  padding="same",
633
633
  data_format=backend.image_data_format(),
634
634
  use_bias=False,
635
- name=name + "expand_conv",
635
+ name=f"{name}expand_conv",
636
636
  )(inputs)
637
637
  x = layers.BatchNormalization(
638
638
  axis=bn_axis,
639
639
  momentum=bn_momentum,
640
- name=name + "expand_bn",
640
+ name=f"{name}expand_bn",
641
641
  )(x)
642
- x = layers.Activation(activation, name=name + "expand_activation")(
642
+ x = layers.Activation(activation, name=f"{name}expand_activation")(
643
643
  x
644
644
  )
645
645
  else:
@@ -653,22 +653,22 @@ def MBConvBlock(
653
653
  padding="same",
654
654
  data_format=backend.image_data_format(),
655
655
  use_bias=False,
656
- name=name + "dwconv2",
656
+ name=f"{name}dwconv2",
657
657
  )(x)
658
658
  x = layers.BatchNormalization(
659
- axis=bn_axis, momentum=bn_momentum, name=name + "bn"
659
+ axis=bn_axis, momentum=bn_momentum, name=f"{name}bn"
660
660
  )(x)
661
- x = layers.Activation(activation, name=name + "activation")(x)
661
+ x = layers.Activation(activation, name=f"{name}activation")(x)
662
662
 
663
663
  # Squeeze and excite
664
664
  if 0 < se_ratio <= 1:
665
665
  filters_se = max(1, int(input_filters * se_ratio))
666
- se = layers.GlobalAveragePooling2D(name=name + "se_squeeze")(x)
666
+ se = layers.GlobalAveragePooling2D(name=f"{name}se_squeeze")(x)
667
667
  if bn_axis == 1:
668
668
  se_shape = (filters, 1, 1)
669
669
  else:
670
670
  se_shape = (1, 1, filters)
671
- se = layers.Reshape(se_shape, name=name + "se_reshape")(se)
671
+ se = layers.Reshape(se_shape, name=f"{name}se_reshape")(se)
672
672
 
673
673
  se = layers.Conv2D(
674
674
  filters_se,
@@ -676,7 +676,7 @@ def MBConvBlock(
676
676
  padding="same",
677
677
  activation=activation,
678
678
  kernel_initializer=CONV_KERNEL_INITIALIZER,
679
- name=name + "se_reduce",
679
+ name=f"{name}se_reduce",
680
680
  )(se)
681
681
  se = layers.Conv2D(
682
682
  filters,
@@ -684,10 +684,10 @@ def MBConvBlock(
684
684
  padding="same",
685
685
  activation="sigmoid",
686
686
  kernel_initializer=CONV_KERNEL_INITIALIZER,
687
- name=name + "se_expand",
687
+ name=f"{name}se_expand",
688
688
  )(se)
689
689
 
690
- x = layers.multiply([x, se], name=name + "se_excite")
690
+ x = layers.multiply([x, se], name=f"{name}se_excite")
691
691
 
692
692
  # Output phase
693
693
  x = layers.Conv2D(
@@ -698,10 +698,10 @@ def MBConvBlock(
698
698
  padding="same",
699
699
  data_format=backend.image_data_format(),
700
700
  use_bias=False,
701
- name=name + "project_conv",
701
+ name=f"{name}project_conv",
702
702
  )(x)
703
703
  x = layers.BatchNormalization(
704
- axis=bn_axis, momentum=bn_momentum, name=name + "project_bn"
704
+ axis=bn_axis, momentum=bn_momentum, name=f"{name}project_bn"
705
705
  )(x)
706
706
 
707
707
  if strides == 1 and input_filters == output_filters:
@@ -709,9 +709,9 @@ def MBConvBlock(
709
709
  x = layers.Dropout(
710
710
  survival_probability,
711
711
  noise_shape=(None, 1, 1, 1),
712
- name=name + "drop",
712
+ name=f"{name}drop",
713
713
  )(x)
714
- x = layers.add([x, inputs], name=name + "add")
714
+ x = layers.add([x, inputs], name=f"{name}add")
715
715
 
716
716
  return x
717
717
 
@@ -747,13 +747,13 @@ def FusedMBConvBlock(
747
747
  data_format=backend.image_data_format(),
748
748
  padding="same",
749
749
  use_bias=False,
750
- name=name + "expand_conv",
750
+ name=f"{name}expand_conv",
751
751
  )(inputs)
752
752
  x = layers.BatchNormalization(
753
- axis=bn_axis, momentum=bn_momentum, name=name + "expand_bn"
753
+ axis=bn_axis, momentum=bn_momentum, name=f"{name}expand_bn"
754
754
  )(x)
755
755
  x = layers.Activation(
756
- activation=activation, name=name + "expand_activation"
756
+ activation=activation, name=f"{name}expand_activation"
757
757
  )(x)
758
758
  else:
759
759
  x = inputs
@@ -761,13 +761,13 @@ def FusedMBConvBlock(
761
761
  # Squeeze and excite
762
762
  if 0 < se_ratio <= 1:
763
763
  filters_se = max(1, int(input_filters * se_ratio))
764
- se = layers.GlobalAveragePooling2D(name=name + "se_squeeze")(x)
764
+ se = layers.GlobalAveragePooling2D(name=f"{name}se_squeeze")(x)
765
765
  if bn_axis == 1:
766
766
  se_shape = (filters, 1, 1)
767
767
  else:
768
768
  se_shape = (1, 1, filters)
769
769
 
770
- se = layers.Reshape(se_shape, name=name + "se_reshape")(se)
770
+ se = layers.Reshape(se_shape, name=f"{name}se_reshape")(se)
771
771
 
772
772
  se = layers.Conv2D(
773
773
  filters_se,
@@ -775,7 +775,7 @@ def FusedMBConvBlock(
775
775
  padding="same",
776
776
  activation=activation,
777
777
  kernel_initializer=CONV_KERNEL_INITIALIZER,
778
- name=name + "se_reduce",
778
+ name=f"{name}se_reduce",
779
779
  )(se)
780
780
  se = layers.Conv2D(
781
781
  filters,
@@ -783,10 +783,10 @@ def FusedMBConvBlock(
783
783
  padding="same",
784
784
  activation="sigmoid",
785
785
  kernel_initializer=CONV_KERNEL_INITIALIZER,
786
- name=name + "se_expand",
786
+ name=f"{name}se_expand",
787
787
  )(se)
788
788
 
789
- x = layers.multiply([x, se], name=name + "se_excite")
789
+ x = layers.multiply([x, se], name=f"{name}se_excite")
790
790
 
791
791
  # Output phase:
792
792
  x = layers.Conv2D(
@@ -796,14 +796,14 @@ def FusedMBConvBlock(
796
796
  kernel_initializer=CONV_KERNEL_INITIALIZER,
797
797
  padding="same",
798
798
  use_bias=False,
799
- name=name + "project_conv",
799
+ name=f"{name}project_conv",
800
800
  )(x)
801
801
  x = layers.BatchNormalization(
802
- axis=bn_axis, momentum=bn_momentum, name=name + "project_bn"
802
+ axis=bn_axis, momentum=bn_momentum, name=f"{name}project_bn"
803
803
  )(x)
804
804
  if expand_ratio == 1:
805
805
  x = layers.Activation(
806
- activation=activation, name=name + "project_activation"
806
+ activation=activation, name=f"{name}project_activation"
807
807
  )(x)
808
808
 
809
809
  # Residual:
@@ -812,9 +812,9 @@ def FusedMBConvBlock(
812
812
  x = layers.Dropout(
813
813
  survival_probability,
814
814
  noise_shape=(None, 1, 1, 1),
815
- name=name + "drop",
815
+ name=f"{name}drop",
816
816
  )(x)
817
- x = layers.add([x, inputs], name=name + "add")
817
+ x = layers.add([x, inputs], name=f"{name}add")
818
818
  return x
819
819
 
820
820
  return apply
@@ -281,12 +281,12 @@ def conv2d_bn(
281
281
  )(x)
282
282
  if not use_bias:
283
283
  bn_axis = 1 if backend.image_data_format() == "channels_first" else 3
284
- bn_name = None if name is None else name + "_bn"
284
+ bn_name = None if name is None else f"{name}_bn"
285
285
  x = layers.BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(
286
286
  x
287
287
  )
288
288
  if activation is not None:
289
- ac_name = None if name is None else name + "_ac"
289
+ ac_name = None if name is None else f"{name}_ac"
290
290
  x = layers.Activation(activation, name=ac_name)(x)
291
291
  return x
292
292
 
@@ -353,12 +353,12 @@ def inception_resnet_block(x, scale, block_type, block_idx, activation="relu"):
353
353
  raise ValueError(
354
354
  "Unknown Inception-ResNet block type. "
355
355
  'Expects "block35", "block17" or "block8", '
356
- "but got: " + str(block_type)
356
+ f"but got: {block_type}"
357
357
  )
358
358
 
359
- block_name = block_type + "_" + str(block_idx)
359
+ block_name = f"{block_type}_{block_idx}"
360
360
  channel_axis = 1 if backend.image_data_format() == "channels_first" else 3
361
- mixed = layers.Concatenate(axis=channel_axis, name=block_name + "_mixed")(
361
+ mixed = layers.Concatenate(axis=channel_axis, name=f"{block_name}_mixed")(
362
362
  branches
363
363
  )
364
364
  up = conv2d_bn(
@@ -367,12 +367,12 @@ def inception_resnet_block(x, scale, block_type, block_idx, activation="relu"):
367
367
  1,
368
368
  activation=None,
369
369
  use_bias=True,
370
- name=block_name + "_conv",
370
+ name=f"{block_name}_conv",
371
371
  )
372
372
 
373
373
  x = CustomScaleLayer(scale)([x, up])
374
374
  if activation is not None:
375
- x = layers.Activation(activation, name=block_name + "_ac")(x)
375
+ x = layers.Activation(activation, name=f"{block_name}_ac")(x)
376
376
  return x
377
377
 
378
378
 
@@ -263,7 +263,7 @@ def InceptionV3(
263
263
  x = layers.concatenate(
264
264
  [branch1x1, branch7x7, branch7x7dbl, branch_pool],
265
265
  axis=channel_axis,
266
- name="mixed" + str(5 + i),
266
+ name="mixed{0}".format(5 + i),
267
267
  )
268
268
 
269
269
  # mixed 7: 17 x 17 x 768
@@ -315,7 +315,7 @@ def InceptionV3(
315
315
  branch3x3 = layers.concatenate(
316
316
  [branch3x3_1, branch3x3_2],
317
317
  axis=channel_axis,
318
- name="mixed9_" + str(i),
318
+ name=f"mixed9_{i}",
319
319
  )
320
320
 
321
321
  branch3x3dbl = conv2d_bn(x, 448, 1, 1)
@@ -333,7 +333,7 @@ def InceptionV3(
333
333
  x = layers.concatenate(
334
334
  [branch1x1, branch3x3, branch3x3dbl, branch_pool],
335
335
  axis=channel_axis,
336
- name="mixed" + str(9 + i),
336
+ name=f"mixed{9 + i}",
337
337
  )
338
338
  if include_top:
339
339
  # Classification block
@@ -400,8 +400,8 @@ def conv2d_bn(
400
400
  Output tensor after applying `Conv2D` and `BatchNormalization`.
401
401
  """
402
402
  if name is not None:
403
- bn_name = name + "_bn"
404
- conv_name = name + "_conv"
403
+ bn_name = f"{name}_bn"
404
+ conv_name = f"{name}_conv"
405
405
  else:
406
406
  bn_name = None
407
407
  conv_name = None