keras-hub 0.24.0.dev0__tar.gz → 0.25.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/PKG-INFO +1 -1
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/README.md +1 -1
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/api/models/__init__.py +12 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/api/tokenizers/__init__.py +3 -0
- keras_hub-0.25.0/keras_hub/src/layers/modeling/rotary_embedding.py +340 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/esm_attention.py +11 -4
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +8 -3
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_presets.py +12 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +20 -8
- keras_hub-0.25.0/keras_hub/src/models/gpt_oss/__init__.py +5 -0
- keras_hub-0.25.0/keras_hub/src/models/gpt_oss/gpt_oss_attention.py +330 -0
- keras_hub-0.25.0/keras_hub/src/models/gpt_oss/gpt_oss_backbone.py +221 -0
- keras_hub-0.25.0/keras_hub/src/models/gpt_oss/gpt_oss_causal_lm.py +284 -0
- keras_hub-0.25.0/keras_hub/src/models/gpt_oss/gpt_oss_causal_lm_preprocessor.py +79 -0
- keras_hub-0.25.0/keras_hub/src/models/gpt_oss/gpt_oss_decoder.py +444 -0
- keras_hub-0.25.0/keras_hub/src/models/gpt_oss/gpt_oss_layer_norm.py +34 -0
- keras_hub-0.25.0/keras_hub/src/models/gpt_oss/gpt_oss_presets.py +51 -0
- keras_hub-0.25.0/keras_hub/src/models/gpt_oss/gpt_oss_tokenizer.py +39 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama3/llama3_presets.py +1 -1
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/parseq/parseq_decoder.py +21 -9
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +1 -1
- keras_hub-0.25.0/keras_hub/src/utils/transformers/convert_gemma3.py +353 -0
- keras_hub-0.25.0/keras_hub/src/utils/transformers/convert_gpt_oss.py +302 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/preset_loader.py +12 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/version.py +1 -1
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub.egg-info/PKG-INFO +1 -1
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub.egg-info/SOURCES.txt +11 -0
- keras_hub-0.24.0.dev0/keras_hub/src/layers/modeling/rotary_embedding.py +0 -166
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/api/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/api/layers/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/api_export.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/audio_to_text.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/basnet/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/basnet/basnet.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/clip/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/clip/clip_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/clip/clip_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/clip/clip_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/cspnet/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_loss.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_object_detector.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/d_fine/d_fine_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deit/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deit/deit_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deit/deit_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deit/deit_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deit/deit_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/deit/deit_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_anything/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_anything/depth_anything_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_anything/depth_anything_depth_estimator.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_anything/depth_anything_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_anything/depth_anything_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_anything/depth_anything_loss.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_anything/depth_anything_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_anything/interpolate.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_estimator.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/depth_estimator_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov2/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov2/dinov2_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov2/dinov2_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov2/dinov2_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov2/dinov2_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov3/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov3/dinov3_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov3/dinov3_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov3/dinov3_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/dinov3/dinov3_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/efficientnet/cba.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/esm_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/esm_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/esm_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/esm_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/esm_masked_plm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/esm_masked_plm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/esm_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/esm/esm_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/flux/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/flux/flux_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/flux/flux_maths.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/flux/flux_model.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/flux/flux_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/hgnetv2/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/hgnetv2/hgnetv2_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/hgnetv2/hgnetv2_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/image_segmenter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/image_to_image.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/inpaint.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mit/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mit/mit_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mit/mit_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mit/mit_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mixtral/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenet/util.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/object_detector.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/parseq/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/parseq/parseq_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/parseq/parseq_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/parseq/parseq_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/parseq/parseq_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/parseq/parseq_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3/qwen3_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3/qwen3_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3/qwen3_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3_moe/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/retinanet/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/sam_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/sam_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/sam_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/sam/sam_transformer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/segformer/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/smollm3/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/smollm3/smollm3_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/smollm3/smollm3_causal_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/smollm3/smollm3_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/smollm3/smollm3_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/smollm3/smollm3_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/smollm3/smollm3_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/t5gemma_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/t5gemma_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/t5gemma_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/t5gemma_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/t5gemma_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/t5gemma_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/task.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/text_to_image.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vae/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vae/vae_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vae/vae_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vgg/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit/vit_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit/vit_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit/vit_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit_det/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xception/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xception/xception_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xception/xception_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlnet/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/samplers/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tests/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tests/test_case.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tokenizers/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tokenizers/tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/coco/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/coco/coco_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/imagenet/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/openvino_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/preset_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/tensor_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/timm/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/timm/convert_mobilenetv5.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/timm/preset_loader.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/__init__.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_deit.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_dinov2.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_dinov3.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_esm.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_qwen3_moe.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_smollm3.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_t5gemma.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/export/gemma.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/export/hf_exporter.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub.egg-info/dependency_links.txt +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub.egg-info/requires.txt +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/keras_hub.egg-info/top_level.txt +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/pyproject.toml +0 -0
- {keras_hub-0.24.0.dev0 → keras_hub-0.25.0}/setup.cfg +0 -0
|
@@ -340,6 +340,18 @@ from keras_hub.src.models.gpt_neo_x.gpt_neo_x_causal_lm_preprocessor import (
|
|
|
340
340
|
from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import (
|
|
341
341
|
GPTNeoXTokenizer as GPTNeoXTokenizer,
|
|
342
342
|
)
|
|
343
|
+
from keras_hub.src.models.gpt_oss.gpt_oss_backbone import (
|
|
344
|
+
GptOssBackbone as GptOssBackbone,
|
|
345
|
+
)
|
|
346
|
+
from keras_hub.src.models.gpt_oss.gpt_oss_causal_lm import (
|
|
347
|
+
GptOssCausalLM as GptOssCausalLM,
|
|
348
|
+
)
|
|
349
|
+
from keras_hub.src.models.gpt_oss.gpt_oss_causal_lm_preprocessor import (
|
|
350
|
+
GptOssCausalLMPreprocessor as GptOssCausalLMPreprocessor,
|
|
351
|
+
)
|
|
352
|
+
from keras_hub.src.models.gpt_oss.gpt_oss_tokenizer import (
|
|
353
|
+
GptOssTokenizer as GptOssTokenizer,
|
|
354
|
+
)
|
|
343
355
|
from keras_hub.src.models.hgnetv2.hgnetv2_backbone import (
|
|
344
356
|
HGNetV2Backbone as HGNetV2Backbone,
|
|
345
357
|
)
|
|
@@ -47,6 +47,9 @@ from keras_hub.src.models.gpt2.gpt2_tokenizer import (
|
|
|
47
47
|
from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import (
|
|
48
48
|
GPTNeoXTokenizer as GPTNeoXTokenizer,
|
|
49
49
|
)
|
|
50
|
+
from keras_hub.src.models.gpt_oss.gpt_oss_tokenizer import (
|
|
51
|
+
GptOssTokenizer as GptOssTokenizer,
|
|
52
|
+
)
|
|
50
53
|
from keras_hub.src.models.llama.llama_tokenizer import (
|
|
51
54
|
LlamaTokenizer as LlamaTokenizer,
|
|
52
55
|
)
|
|
@@ -0,0 +1,340 @@
|
|
|
1
|
+
import keras
|
|
2
|
+
import numpy as np
|
|
3
|
+
from keras import ops
|
|
4
|
+
|
|
5
|
+
from keras_hub.src.api_export import keras_hub_export
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@keras_hub_export("keras_hub.layers.RotaryEmbedding")
|
|
9
|
+
class RotaryEmbedding(keras.layers.Layer):
|
|
10
|
+
"""Rotary positional encoding layer.
|
|
11
|
+
|
|
12
|
+
This layer encodes absolute positional information with a rotation
|
|
13
|
+
matrix. It calculates the rotary encoding with a mix of sine and
|
|
14
|
+
cosine functions with geometrically increasing wavelengths.
|
|
15
|
+
Defined and formulated in
|
|
16
|
+
[RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864v4).
|
|
17
|
+
The input must be a tensor with shape a sequence dimension and a feature
|
|
18
|
+
dimension. Typically, this will either an input with shape
|
|
19
|
+
`(batch_size, sequence_length, feature_length)` or
|
|
20
|
+
`(batch_size, sequence_length, num_heads, feature_length)`.
|
|
21
|
+
This layer will return a new tensor with the rotary embedding applied to
|
|
22
|
+
the input tensor.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
max_wavelength: int. The maximum angular wavelength of the sine/cosine
|
|
26
|
+
curves.
|
|
27
|
+
scaling_factor: float. The scaling factor used to scale positions of
|
|
28
|
+
the tokens.
|
|
29
|
+
rope_type: str. The type of RoPE scaling to apply. Supported types:
|
|
30
|
+
"linear", "dynamic", "yarn". Defaults to "linear".
|
|
31
|
+
beta_fast: float. Beta fast parameter for YaRN scaling. Only used
|
|
32
|
+
when rope_type="yarn". Defaults to 32.0.
|
|
33
|
+
beta_slow: float. Beta slow parameter for YaRN scaling. Only used
|
|
34
|
+
when rope_type="yarn". Defaults to 1.0.
|
|
35
|
+
original_max_position_embeddings: int. Original maximum position
|
|
36
|
+
embeddings for YaRN scaling. Only used when rope_type="yarn".
|
|
37
|
+
Defaults to 4096.
|
|
38
|
+
truncate: bool. Whether to apply truncation for YaRN scaling. Only used
|
|
39
|
+
when rope_type="yarn". Defaults to False.
|
|
40
|
+
sequence_axis: int. Sequence axis in the input tensor.
|
|
41
|
+
feature_axis: int. Feature axis in the input tensor.
|
|
42
|
+
**kwargs: other keyword arguments passed to `keras.layers.Layer`,
|
|
43
|
+
including `name`, `trainable`, `dtype` etc.
|
|
44
|
+
|
|
45
|
+
Call arguments:
|
|
46
|
+
inputs: The tensor inputs to apply the embedding to. This can have
|
|
47
|
+
any shape, but must contain both a sequence and feature axis. The
|
|
48
|
+
rotary embedding will be applied to `inputs` and returned.
|
|
49
|
+
start_index: An integer or integer tensor. The starting position to
|
|
50
|
+
compute the rotary embedding from. This is useful during cached
|
|
51
|
+
decoding, where each position is predicted separately in a loop.
|
|
52
|
+
positions: Tensor of shape `(sequence_length,)` or
|
|
53
|
+
`(batch_size, sequence_length)`. Custom positions for the input
|
|
54
|
+
sequence. If specified, this tensor will be used to
|
|
55
|
+
compute the rotary embedding, and the `start_index` argument will
|
|
56
|
+
be ignored. This is useful for cases with non-standard positions.
|
|
57
|
+
|
|
58
|
+
Examples:
|
|
59
|
+
|
|
60
|
+
```python
|
|
61
|
+
batch_size = 16
|
|
62
|
+
feature_length = 18
|
|
63
|
+
sequence_length = 256
|
|
64
|
+
num_heads = 8
|
|
65
|
+
|
|
66
|
+
# No multi-head dimension.
|
|
67
|
+
tensor = np.ones((batch_size, sequence_length, feature_length))
|
|
68
|
+
rot_emb_layer = RotaryEmbedding()
|
|
69
|
+
tensor_rot = rot_emb_layer(tensor)
|
|
70
|
+
|
|
71
|
+
# With multi-head dimension.
|
|
72
|
+
tensor = np.ones((batch_size, sequence_length, num_heads, feature_length))
|
|
73
|
+
tensor_rot = rot_emb_layer(tensor)
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
References:
|
|
77
|
+
- [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864v4)
|
|
78
|
+
"""
|
|
79
|
+
|
|
80
|
+
def __init__(
|
|
81
|
+
self,
|
|
82
|
+
max_wavelength=10000,
|
|
83
|
+
scaling_factor=1.0,
|
|
84
|
+
rope_type="linear",
|
|
85
|
+
beta_fast=32.0,
|
|
86
|
+
beta_slow=1.0,
|
|
87
|
+
original_max_position_embeddings=4096,
|
|
88
|
+
truncate=False,
|
|
89
|
+
sequence_axis=1,
|
|
90
|
+
feature_axis=-1,
|
|
91
|
+
**kwargs,
|
|
92
|
+
):
|
|
93
|
+
super().__init__(**kwargs)
|
|
94
|
+
self.max_wavelength = max_wavelength
|
|
95
|
+
self.sequence_axis = sequence_axis
|
|
96
|
+
self.feature_axis = feature_axis
|
|
97
|
+
self.scaling_factor = scaling_factor
|
|
98
|
+
self.rope_type = rope_type
|
|
99
|
+
|
|
100
|
+
# YaRN-specific parameters (only used when rope_type="yarn")
|
|
101
|
+
self.beta_fast = beta_fast
|
|
102
|
+
self.beta_slow = beta_slow
|
|
103
|
+
self.original_max_position_embeddings = original_max_position_embeddings
|
|
104
|
+
self.truncate = truncate
|
|
105
|
+
self.built = True
|
|
106
|
+
|
|
107
|
+
def _normalize_axes(self, input_shape):
|
|
108
|
+
"""Normalize and validate axis indices for the given input shape."""
|
|
109
|
+
rank = len(input_shape)
|
|
110
|
+
|
|
111
|
+
# Normalize negative indices
|
|
112
|
+
sequence_axis = self.sequence_axis
|
|
113
|
+
feature_axis = self.feature_axis
|
|
114
|
+
|
|
115
|
+
if sequence_axis < 0:
|
|
116
|
+
sequence_axis += rank
|
|
117
|
+
if feature_axis < 0:
|
|
118
|
+
feature_axis += rank
|
|
119
|
+
|
|
120
|
+
if sequence_axis < 0 or sequence_axis >= rank:
|
|
121
|
+
raise ValueError(
|
|
122
|
+
f"sequence_axis {self.sequence_axis} "
|
|
123
|
+
f"is out of range for input with rank {rank}"
|
|
124
|
+
)
|
|
125
|
+
if feature_axis < 0 or feature_axis >= rank:
|
|
126
|
+
raise ValueError(
|
|
127
|
+
f"feature_axis {self.feature_axis} "
|
|
128
|
+
f"is out of range for input with rank {rank}"
|
|
129
|
+
)
|
|
130
|
+
if sequence_axis == feature_axis:
|
|
131
|
+
raise ValueError("sequence_axis and feature_axis must be different")
|
|
132
|
+
|
|
133
|
+
return sequence_axis, feature_axis
|
|
134
|
+
|
|
135
|
+
def _validate_rotary_dimension(self, rotary_dim):
|
|
136
|
+
if rotary_dim % 2 != 0:
|
|
137
|
+
raise ValueError(
|
|
138
|
+
f"Rotary dimension must be even, got {rotary_dim}."
|
|
139
|
+
"The rotary embedding splits the feature dimension "
|
|
140
|
+
"into two halves. Consider using a different feature "
|
|
141
|
+
"dimension or padding."
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
def call(self, inputs, start_index=0, positions=None):
|
|
145
|
+
input_shape = ops.shape(inputs)
|
|
146
|
+
sequence_axis, feature_axis = self._normalize_axes(input_shape)
|
|
147
|
+
|
|
148
|
+
rotary_dim = input_shape[feature_axis]
|
|
149
|
+
self._validate_rotary_dimension(rotary_dim)
|
|
150
|
+
|
|
151
|
+
# Take care of unbatched `positions`.
|
|
152
|
+
if positions is not None:
|
|
153
|
+
if len(ops.shape(positions)) == 1:
|
|
154
|
+
positions = ops.expand_dims(positions, axis=0)
|
|
155
|
+
|
|
156
|
+
inputs = ops.moveaxis(inputs, (feature_axis, sequence_axis), (-1, 1))
|
|
157
|
+
cos_emb, sin_emb = self._compute_cos_sin_embedding(
|
|
158
|
+
inputs, start_index, positions
|
|
159
|
+
)
|
|
160
|
+
output = self._apply_rotary_pos_emb(inputs, cos_emb, sin_emb)
|
|
161
|
+
return ops.moveaxis(output, (-1, 1), (feature_axis, sequence_axis))
|
|
162
|
+
|
|
163
|
+
def _apply_rotary_pos_emb(self, tensor, cos_emb, sin_emb):
|
|
164
|
+
x1, x2 = ops.split(tensor, 2, axis=-1)
|
|
165
|
+
# Avoid `ops.concatenate` for now, to avoid a obscure bug with XLA
|
|
166
|
+
# compilation on jax. We should be able to remove this once the
|
|
167
|
+
# following PR is in all jax releases we care about:
|
|
168
|
+
# https://github.com/openxla/xla/pull/7875
|
|
169
|
+
half_rot_tensor = ops.stack((-x2, x1), axis=-2)
|
|
170
|
+
half_rot_tensor = ops.reshape(half_rot_tensor, ops.shape(tensor))
|
|
171
|
+
return (tensor * cos_emb) + (half_rot_tensor * sin_emb)
|
|
172
|
+
|
|
173
|
+
def _compute_positions(self, inputs, start_index=0):
|
|
174
|
+
seq_len = ops.shape(inputs)[1]
|
|
175
|
+
positions = ops.arange(seq_len, dtype="float32")
|
|
176
|
+
return positions + ops.cast(start_index, dtype="float32")
|
|
177
|
+
|
|
178
|
+
def _compute_cos_sin_embedding(self, inputs, start_index=0, positions=None):
|
|
179
|
+
"""Compute cos & sin RoPE embeddings with optional YaRN scaling.
|
|
180
|
+
Uses tensor ops only to remain JIT/backends friendly.
|
|
181
|
+
"""
|
|
182
|
+
batch_axis = 0
|
|
183
|
+
sequence_axis = 1
|
|
184
|
+
feature_axis = len(inputs.shape) - 1
|
|
185
|
+
|
|
186
|
+
rotary_dim = ops.shape(inputs)[feature_axis]
|
|
187
|
+
inverse_freq = self._get_inverse_freq(rotary_dim)
|
|
188
|
+
|
|
189
|
+
if positions is None:
|
|
190
|
+
positions = self._compute_positions(inputs, start_index)
|
|
191
|
+
positions = ops.expand_dims(
|
|
192
|
+
positions, axis=batch_axis
|
|
193
|
+
) # shape (1, seq_len)
|
|
194
|
+
else:
|
|
195
|
+
positions = ops.cast(positions, "float32")
|
|
196
|
+
if len(ops.shape(positions)) == 1:
|
|
197
|
+
positions = ops.expand_dims(positions, axis=batch_axis)
|
|
198
|
+
|
|
199
|
+
if (
|
|
200
|
+
self.rope_type == "yarn"
|
|
201
|
+
and self.truncate
|
|
202
|
+
and self.original_max_position_embeddings is not None
|
|
203
|
+
):
|
|
204
|
+
positions = ops.minimum(
|
|
205
|
+
positions,
|
|
206
|
+
ops.cast(self.original_max_position_embeddings, "float32"),
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
freq = ops.einsum("bi,j->bij", positions, inverse_freq)
|
|
210
|
+
|
|
211
|
+
embedding = ops.stack((freq, freq), axis=-2)
|
|
212
|
+
embedding = ops.reshape(
|
|
213
|
+
embedding, (*ops.shape(freq)[:-1], ops.shape(freq)[-1] * 2)
|
|
214
|
+
)
|
|
215
|
+
|
|
216
|
+
for axis in range(len(inputs.shape)):
|
|
217
|
+
if axis not in (batch_axis, sequence_axis, feature_axis):
|
|
218
|
+
embedding = ops.expand_dims(embedding, axis)
|
|
219
|
+
|
|
220
|
+
cos_emb = ops.cast(ops.cos(embedding), self.compute_dtype)
|
|
221
|
+
sin_emb = ops.cast(ops.sin(embedding), self.compute_dtype)
|
|
222
|
+
|
|
223
|
+
if self.rope_type == "yarn":
|
|
224
|
+
# YaRN temperature scaling
|
|
225
|
+
factor = ops.add(
|
|
226
|
+
ops.multiply(
|
|
227
|
+
ops.cast(0.1, self.compute_dtype),
|
|
228
|
+
ops.log(ops.cast(self.scaling_factor, self.compute_dtype)),
|
|
229
|
+
),
|
|
230
|
+
ops.cast(1.0, self.compute_dtype),
|
|
231
|
+
)
|
|
232
|
+
cos_emb = cos_emb * factor
|
|
233
|
+
sin_emb = sin_emb * factor
|
|
234
|
+
return cos_emb, sin_emb
|
|
235
|
+
|
|
236
|
+
def _get_inverse_freq(self, rotary_dim):
|
|
237
|
+
"""Return inverse frequencies."""
|
|
238
|
+
idx = ops.arange(0, rotary_dim, 2, dtype="float32")
|
|
239
|
+
denom = ops.cast(rotary_dim, "float32")
|
|
240
|
+
freq_range = idx / denom
|
|
241
|
+
inv = ops.power(ops.cast(self.max_wavelength, "float32"), -freq_range)
|
|
242
|
+
|
|
243
|
+
if self.rope_type == "linear":
|
|
244
|
+
return inv / ops.cast(self.scaling_factor, "float32")
|
|
245
|
+
elif self.rope_type == "dynamic":
|
|
246
|
+
exponent = ops.cast(rotary_dim, "float32") / ops.cast(
|
|
247
|
+
max(1, rotary_dim - 2), "float32"
|
|
248
|
+
)
|
|
249
|
+
return inv / ops.power(
|
|
250
|
+
ops.cast(self.scaling_factor, "float32"), exponent
|
|
251
|
+
)
|
|
252
|
+
elif self.rope_type == "yarn":
|
|
253
|
+
return self._get_yarn_inverse_freq(rotary_dim)
|
|
254
|
+
else:
|
|
255
|
+
return inv
|
|
256
|
+
|
|
257
|
+
def _get_yarn_inverse_freq(self, rotary_dim):
|
|
258
|
+
# Get the base (rope_theta equivalent) from max_wavelength
|
|
259
|
+
base = ops.cast(self.max_wavelength, "float32")
|
|
260
|
+
|
|
261
|
+
# Compute base frequencies: base ** (idx / dim)
|
|
262
|
+
idx = ops.arange(0, rotary_dim, 2, dtype="float32")
|
|
263
|
+
pos_freqs = ops.power(base, idx / ops.cast(rotary_dim, "float32"))
|
|
264
|
+
|
|
265
|
+
# Compute interpolation and extrapolation frequencies
|
|
266
|
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
|
267
|
+
inv_freq_interpolation = 1.0 / (
|
|
268
|
+
ops.cast(self.scaling_factor, "float32") * pos_freqs
|
|
269
|
+
)
|
|
270
|
+
|
|
271
|
+
# Find correction range
|
|
272
|
+
beta_fast = ops.cast(self.beta_fast, "float32")
|
|
273
|
+
beta_slow = ops.cast(self.beta_slow, "float32")
|
|
274
|
+
|
|
275
|
+
# Find correction dimensions for beta_fast and beta_slow
|
|
276
|
+
def find_correction_dim_tensor(num_rotations, dim):
|
|
277
|
+
max_pos = ops.cast(self.original_max_position_embeddings, "float32")
|
|
278
|
+
return (dim * ops.log(max_pos / (num_rotations * 2 * np.pi))) / (
|
|
279
|
+
2 * ops.log(base)
|
|
280
|
+
)
|
|
281
|
+
|
|
282
|
+
low = find_correction_dim_tensor(
|
|
283
|
+
beta_fast, ops.cast(rotary_dim, "float32")
|
|
284
|
+
)
|
|
285
|
+
high = find_correction_dim_tensor(
|
|
286
|
+
beta_slow, ops.cast(rotary_dim, "float32")
|
|
287
|
+
)
|
|
288
|
+
|
|
289
|
+
# Apply truncation if specified
|
|
290
|
+
if self.truncate:
|
|
291
|
+
low = ops.floor(low)
|
|
292
|
+
high = ops.ceil(high)
|
|
293
|
+
|
|
294
|
+
# Clamp to valid range
|
|
295
|
+
low = ops.maximum(low, ops.cast(0, "float32"))
|
|
296
|
+
high = ops.minimum(high, ops.cast(rotary_dim // 2 - 1, "float32"))
|
|
297
|
+
|
|
298
|
+
# Linear ramp function
|
|
299
|
+
dim_half = rotary_dim // 2
|
|
300
|
+
idx_half = ops.arange(0, dim_half, dtype="float32")
|
|
301
|
+
|
|
302
|
+
# Prevent singularity
|
|
303
|
+
diff = high - low
|
|
304
|
+
diff = ops.maximum(diff, ops.cast(0.001, "float32"))
|
|
305
|
+
|
|
306
|
+
linear_func = (idx_half - low) / diff
|
|
307
|
+
ramp_func = ops.clip(linear_func, 0, 1)
|
|
308
|
+
|
|
309
|
+
# Apply the ramp to get extrapolation factor
|
|
310
|
+
inv_freq_extrapolation_factor = 1 - ramp_func
|
|
311
|
+
|
|
312
|
+
# Combine interpolation and extrapolation
|
|
313
|
+
scaled_inverse_freq = (
|
|
314
|
+
inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
|
|
315
|
+
+ inv_freq_extrapolation * inv_freq_extrapolation_factor
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
return scaled_inverse_freq
|
|
319
|
+
|
|
320
|
+
def get_config(self):
|
|
321
|
+
config = super().get_config()
|
|
322
|
+
config.update(
|
|
323
|
+
{
|
|
324
|
+
"max_wavelength": self.max_wavelength,
|
|
325
|
+
"scaling_factor": self.scaling_factor,
|
|
326
|
+
"rope_type": self.rope_type,
|
|
327
|
+
"beta_fast": self.beta_fast,
|
|
328
|
+
"beta_slow": self.beta_slow,
|
|
329
|
+
"original_max_position_embeddings": (
|
|
330
|
+
self.original_max_position_embeddings
|
|
331
|
+
),
|
|
332
|
+
"truncate": self.truncate,
|
|
333
|
+
"sequence_axis": self.sequence_axis,
|
|
334
|
+
"feature_axis": self.feature_axis,
|
|
335
|
+
}
|
|
336
|
+
)
|
|
337
|
+
return config
|
|
338
|
+
|
|
339
|
+
def compute_output_shape(self, input_shape):
|
|
340
|
+
return input_shape
|
|
@@ -14,7 +14,8 @@ class ESMRotaryEmbedding(RotaryEmbedding):
|
|
|
14
14
|
inv_freq = self.scaling_factor / (
|
|
15
15
|
self.max_wavelength ** (ops.arange(0, dim, 2, dtype=x.dtype) / dim)
|
|
16
16
|
)
|
|
17
|
-
|
|
17
|
+
# Use ops.shape for dynamic shape compatibility with TFLite
|
|
18
|
+
t = ops.arange(ops.shape(x)[position], dtype=x.dtype)
|
|
18
19
|
freqs = ops.outer(t, inv_freq)
|
|
19
20
|
emb = ops.concatenate((freqs, freqs), axis=-1)
|
|
20
21
|
|
|
@@ -32,11 +33,17 @@ class ESMRotaryEmbedding(RotaryEmbedding):
|
|
|
32
33
|
|
|
33
34
|
def rotate_half(self, x):
|
|
34
35
|
x1, x2 = ops.split(x, 2, -1)
|
|
35
|
-
|
|
36
|
+
# Avoid `ops.concatenate` to prevent XLA compilation issues on JAX
|
|
37
|
+
# backend. Use stack + reshape approach from base RotaryEmbedding.
|
|
38
|
+
half_rot_x = ops.stack((-x2, x1), axis=-2)
|
|
39
|
+
half_rot_x = ops.reshape(half_rot_x, ops.shape(x))
|
|
40
|
+
return half_rot_x
|
|
36
41
|
|
|
37
42
|
def apply_rotary_pos_emb(self, x, cos, sin):
|
|
38
|
-
|
|
39
|
-
|
|
43
|
+
# Use ops.shape for dynamic shape compatibility with TFLite
|
|
44
|
+
seq_len = ops.shape(x)[1]
|
|
45
|
+
cos = cos[:, :seq_len, :, :]
|
|
46
|
+
sin = sin[:, :seq_len, :, :]
|
|
40
47
|
|
|
41
48
|
return (x * cos) + (self.rotate_half(x) * sin)
|
|
42
49
|
|
|
@@ -283,9 +283,14 @@ class Gemma3CausalLMPreprocessor(CausalLMPreprocessor):
|
|
|
283
283
|
# is `None`.
|
|
284
284
|
self.text_only_model = self.image_converter is None
|
|
285
285
|
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
286
|
+
if self.text_only_model:
|
|
287
|
+
self.image_placeholder = None
|
|
288
|
+
self.start_of_image_token = None
|
|
289
|
+
self.end_of_image_token = None
|
|
290
|
+
else:
|
|
291
|
+
self.image_placeholder = self.tokenizer.image_placeholder
|
|
292
|
+
self.start_of_image_token = self.tokenizer.start_of_image_token
|
|
293
|
+
self.end_of_image_token = self.tokenizer.end_of_image_token
|
|
289
294
|
|
|
290
295
|
def build(self, input_shape):
|
|
291
296
|
# Defer packer creation to `build()` so that we can be sure tokenizer
|
|
@@ -220,4 +220,16 @@ backbone_presets = {
|
|
|
220
220
|
},
|
|
221
221
|
"kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_27b_text/1",
|
|
222
222
|
},
|
|
223
|
+
"function_gemma_instruct_270m": {
|
|
224
|
+
"metadata": {
|
|
225
|
+
"description": (
|
|
226
|
+
"A 270M Million parameter text-only model based on Gemma 3. "
|
|
227
|
+
"This model is trained specifically for function calling "
|
|
228
|
+
"improvements."
|
|
229
|
+
),
|
|
230
|
+
"params": 268098176,
|
|
231
|
+
"path": "gemma3",
|
|
232
|
+
},
|
|
233
|
+
"kaggle_handle": "kaggle://keras/function-gemma/keras/function_gemma_instruct_270m/1",
|
|
234
|
+
},
|
|
223
235
|
}
|
|
@@ -77,20 +77,32 @@ class Gemma3Tokenizer(SentencePieceTokenizer):
|
|
|
77
77
|
|
|
78
78
|
backbone_cls = Gemma3Backbone
|
|
79
79
|
|
|
80
|
-
def __init__(self, proto, **kwargs):
|
|
80
|
+
def __init__(self, proto, has_vision_tokens=True, **kwargs):
|
|
81
81
|
# Add special tokens.
|
|
82
82
|
|
|
83
|
+
self.has_vision_tokens = has_vision_tokens
|
|
83
84
|
# The usual tokens.
|
|
84
85
|
self._add_special_token("<bos>", "start_token")
|
|
85
86
|
self._add_special_token("<eos>", "end_token")
|
|
86
87
|
self._add_special_token("<pad>", "pad_token")
|
|
87
88
|
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
89
|
+
if has_vision_tokens:
|
|
90
|
+
# Image placeholder token.
|
|
91
|
+
self._add_special_token("<img>", "image_placeholder")
|
|
92
|
+
# Some tokens which are used in the preprocessor.
|
|
93
|
+
# We need to keep them
|
|
94
|
+
# here so that the preprocessor works with tf.data.
|
|
95
|
+
self._add_special_token("<start_of_image>", "start_of_image_token")
|
|
96
|
+
self._add_special_token("<end_of_image>", "end_of_image_token")
|
|
97
|
+
else:
|
|
98
|
+
# For text-only, skip assigning token IDs or set to -1
|
|
99
|
+
self.start_of_image_token_id = -1
|
|
100
|
+
self.image_placeholder_token_id = -1
|
|
101
|
+
self.end_of_image_token_id = -1
|
|
95
102
|
|
|
96
103
|
super().__init__(proto=proto, **kwargs)
|
|
104
|
+
|
|
105
|
+
def get_config(self):
|
|
106
|
+
config = super().get_config()
|
|
107
|
+
config.update({"has_vision_tokens": self.has_vision_tokens})
|
|
108
|
+
return config
|