keras-hub-nightly 0.23.0.dev202510170417__tar.gz → 0.23.0.dev202510190425__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (628) hide show
  1. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/api/models/__init__.py +24 -0
  3. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/api/tokenizers/__init__.py +6 -0
  4. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma/gemma_presets.py +22 -0
  5. keras_hub_nightly-0.23.0.dev202510190425/keras_hub/src/models/smollm3/smollm3_backbone.py +211 -0
  6. keras_hub_nightly-0.23.0.dev202510190425/keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
  7. keras_hub_nightly-0.23.0.dev202510190425/keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
  8. keras_hub_nightly-0.23.0.dev202510190425/keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
  9. keras_hub_nightly-0.23.0.dev202510190425/keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
  10. keras_hub_nightly-0.23.0.dev202510190425/keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
  11. keras_hub_nightly-0.23.0.dev202510190425/keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
  12. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/preset_loader.py +3 -0
  13. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/version.py +1 -1
  14. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  15. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub_nightly.egg-info/SOURCES.txt +7 -0
  16. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/README.md +0 -0
  17. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/api/__init__.py +0 -0
  18. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/api/layers/__init__.py +0 -0
  19. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/api/metrics/__init__.py +0 -0
  20. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/api/samplers/__init__.py +0 -0
  21. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/api/utils/__init__.py +0 -0
  22. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/__init__.py +0 -0
  23. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/api_export.py +0 -0
  24. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/__init__.py +0 -0
  25. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/__init__.py +0 -0
  26. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  27. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  28. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  29. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  30. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  31. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  32. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  33. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  34. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  35. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  36. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  37. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  38. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  39. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  40. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  41. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  42. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  43. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  44. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  45. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  46. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  47. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  48. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  49. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  50. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  51. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/metrics/__init__.py +0 -0
  52. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/metrics/bleu.py +0 -0
  53. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/metrics/edit_distance.py +0 -0
  54. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/metrics/perplexity.py +0 -0
  55. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/metrics/rouge_base.py +0 -0
  56. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/metrics/rouge_l.py +0 -0
  57. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/metrics/rouge_n.py +0 -0
  58. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/__init__.py +0 -0
  59. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/albert/__init__.py +0 -0
  60. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  61. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  62. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  63. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/albert/albert_presets.py +0 -0
  64. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  65. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  66. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  67. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/audio_to_text.py +0 -0
  68. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  69. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/backbone.py +0 -0
  70. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bart/__init__.py +0 -0
  71. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  72. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bart/bart_presets.py +0 -0
  73. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  74. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  75. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  76. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/basnet/__init__.py +0 -0
  77. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/basnet/basnet.py +0 -0
  78. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  79. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  80. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  81. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  82. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bert/__init__.py +0 -0
  83. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  84. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  85. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  86. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bert/bert_presets.py +0 -0
  87. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  88. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  89. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  90. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bloom/__init__.py +0 -0
  91. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  92. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  93. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  94. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  95. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  96. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  97. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  98. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/causal_lm.py +0 -0
  99. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  100. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/clip/__init__.py +0 -0
  101. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  102. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  103. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/clip/clip_layers.py +0 -0
  104. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  105. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/clip/clip_presets.py +0 -0
  106. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  107. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  108. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  109. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/cspnet/__init__.py +0 -0
  110. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  111. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  112. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  113. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  114. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  115. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/__init__.py +0 -0
  116. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_attention.py +0 -0
  117. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_backbone.py +0 -0
  118. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_decoder.py +0 -0
  119. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_encoder.py +0 -0
  120. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +0 -0
  121. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_image_converter.py +0 -0
  122. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_layers.py +0 -0
  123. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_loss.py +0 -0
  124. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_object_detector.py +0 -0
  125. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +0 -0
  126. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_presets.py +0 -0
  127. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/d_fine/d_fine_utils.py +0 -0
  128. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  129. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  130. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  131. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  132. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  133. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  134. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  135. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  136. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  137. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  138. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  139. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  140. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  141. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  142. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  143. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  144. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  145. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  146. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deit/__init__.py +0 -0
  147. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deit/deit_backbone.py +0 -0
  148. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deit/deit_image_classifier.py +0 -0
  149. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +0 -0
  150. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deit/deit_image_converter.py +0 -0
  151. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deit/deit_layers.py +0 -0
  152. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/deit/deit_presets.py +0 -0
  153. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/densenet/__init__.py +0 -0
  154. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  155. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  156. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  157. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  158. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  159. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_anything/__init__.py +0 -0
  160. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_anything/depth_anything_backbone.py +0 -0
  161. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_anything/depth_anything_depth_estimator.py +0 -0
  162. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.py +0 -0
  163. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_anything/depth_anything_image_converter.py +0 -0
  164. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_anything/depth_anything_layers.py +0 -0
  165. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_anything/depth_anything_loss.py +0 -0
  166. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_anything/depth_anything_presets.py +0 -0
  167. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_anything/interpolate.py +0 -0
  168. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_estimator.py +0 -0
  169. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/depth_estimator_preprocessor.py +0 -0
  170. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/dinov2/__init__.py +0 -0
  171. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/dinov2/dinov2_backbone.py +0 -0
  172. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/dinov2/dinov2_image_converter.py +0 -0
  173. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/dinov2/dinov2_layers.py +0 -0
  174. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/dinov2/dinov2_presets.py +0 -0
  175. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  176. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  177. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  178. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  179. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  180. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  181. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  182. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  183. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  184. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/efficientnet/cba.py +0 -0
  185. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  186. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  187. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  188. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  189. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  190. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  191. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  192. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/electra/__init__.py +0 -0
  193. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  194. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/electra/electra_presets.py +0 -0
  195. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  196. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/__init__.py +0 -0
  197. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/esm_attention.py +0 -0
  198. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/esm_backbone.py +0 -0
  199. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/esm_classifier.py +0 -0
  200. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/esm_classifier_preprocessor.py +0 -0
  201. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/esm_encoder.py +0 -0
  202. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/esm_masked_plm.py +0 -0
  203. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/esm_masked_plm_preprocessor.py +0 -0
  204. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/esm_presets.py +0 -0
  205. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/esm/esm_tokenizer.py +0 -0
  206. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/f_net/__init__.py +0 -0
  207. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  208. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  209. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  210. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  211. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  212. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  213. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  214. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/falcon/__init__.py +0 -0
  215. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  216. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  217. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  218. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  219. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  220. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  221. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  222. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  223. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/flux/__init__.py +0 -0
  224. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/flux/flux_layers.py +0 -0
  225. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/flux/flux_maths.py +0 -0
  226. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/flux/flux_model.py +0 -0
  227. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/flux/flux_presets.py +0 -0
  228. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  229. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  230. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma/__init__.py +0 -0
  231. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  232. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  233. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  234. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  235. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  236. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  237. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  238. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/__init__.py +0 -0
  239. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  240. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  241. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  242. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  243. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  244. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  245. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  246. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  247. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  248. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  249. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  250. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt2/__init__.py +0 -0
  251. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  252. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  253. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  254. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  255. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  256. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  257. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  258. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  259. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  260. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  261. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  262. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  263. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  264. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/hgnetv2/__init__.py +0 -0
  265. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +0 -0
  266. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +0 -0
  267. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +0 -0
  268. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +0 -0
  269. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +0 -0
  270. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/hgnetv2/hgnetv2_layers.py +0 -0
  271. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/hgnetv2/hgnetv2_presets.py +0 -0
  272. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/image_classifier.py +0 -0
  273. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  274. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/image_segmenter.py +0 -0
  275. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  276. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/image_to_image.py +0 -0
  277. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/inpaint.py +0 -0
  278. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/__init__.py +0 -0
  279. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/llama_attention.py +0 -0
  280. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  281. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  282. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  283. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  284. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  285. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/llama_presets.py +0 -0
  286. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  287. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  288. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama3/__init__.py +0 -0
  289. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  290. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  291. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  292. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  293. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  294. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/masked_lm.py +0 -0
  295. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  296. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mistral/__init__.py +0 -0
  297. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  298. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  299. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  300. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  301. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  302. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  303. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  304. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  305. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mit/__init__.py +0 -0
  306. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  307. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  308. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  309. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  310. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mit/mit_layers.py +0 -0
  311. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mit/mit_presets.py +0 -0
  312. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mixtral/__init__.py +0 -0
  313. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  314. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  315. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  316. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  317. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  318. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  319. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
  320. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  321. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  322. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  323. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  324. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  325. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  326. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  327. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenet/util.py +0 -0
  328. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/__init__.py +0 -0
  329. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py +0 -0
  330. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py +0 -0
  331. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py +0 -0
  332. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py +0 -0
  333. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py +0 -0
  334. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py +0 -0
  335. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py +0 -0
  336. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py +0 -0
  337. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py +0 -0
  338. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/__init__.py +0 -0
  339. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  340. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  341. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  342. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
  343. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  344. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  345. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  346. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  347. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  348. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  349. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/object_detector.py +0 -0
  350. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  351. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/opt/__init__.py +0 -0
  352. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  353. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  354. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  355. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/opt/opt_presets.py +0 -0
  356. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  357. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  358. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  359. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  360. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  361. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  362. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  363. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  364. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  365. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  366. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/parseq/__init__.py +0 -0
  367. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/parseq/parseq_backbone.py +0 -0
  368. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/parseq/parseq_causal_lm.py +0 -0
  369. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +0 -0
  370. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/parseq/parseq_decoder.py +0 -0
  371. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/parseq/parseq_image_converter.py +0 -0
  372. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/parseq/parseq_tokenizer.py +0 -0
  373. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/__init__.py +0 -0
  374. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  375. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  376. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  377. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  378. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  379. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  380. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  381. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  382. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  383. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/preprocessor.py +0 -0
  384. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen/__init__.py +0 -0
  385. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  386. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  387. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  388. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  389. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  390. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  391. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  392. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  393. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3/__init__.py +0 -0
  394. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
  395. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3/qwen3_backbone.py +0 -0
  396. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3/qwen3_causal_lm.py +0 -0
  397. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
  398. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
  399. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
  400. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3/qwen3_presets.py +0 -0
  401. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
  402. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3_moe/__init__.py +0 -0
  403. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py +0 -0
  404. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +0 -0
  405. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py +0 -0
  406. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py +0 -0
  407. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py +0 -0
  408. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py +0 -0
  409. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +0 -0
  410. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py +0 -0
  411. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  412. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  413. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  414. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  415. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  416. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  417. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  418. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
  419. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  420. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/resnet/__init__.py +0 -0
  421. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  422. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  423. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  424. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  425. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  426. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/retinanet/__init__.py +0 -0
  427. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  428. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  429. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  430. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  431. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  432. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  433. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  434. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  435. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roberta/__init__.py +0 -0
  436. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  437. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  438. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  439. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  440. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  441. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  442. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  443. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
  444. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  445. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  446. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  447. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  448. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  449. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  450. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  451. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  452. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  453. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/__init__.py +0 -0
  454. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  455. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  456. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  457. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  458. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/sam_layers.py +0 -0
  459. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  460. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/sam_presets.py +0 -0
  461. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  462. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  463. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/segformer/__init__.py +0 -0
  464. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  465. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  466. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  467. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  468. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  469. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  470. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  471. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/__init__.py +0 -0
  472. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  473. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  474. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  475. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  476. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  477. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  478. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  479. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  480. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  481. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  482. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  483. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  484. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  485. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  486. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  487. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  488. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  489. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  490. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  491. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5/__init__.py +0 -0
  492. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  493. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  494. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  495. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  496. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5/t5_presets.py +0 -0
  497. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  498. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  499. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/__init__.py +0 -0
  500. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/t5gemma_attention.py +0 -0
  501. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/t5gemma_backbone.py +0 -0
  502. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/t5gemma_decoder.py +0 -0
  503. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/t5gemma_encoder.py +0 -0
  504. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/t5gemma_layers.py +0 -0
  505. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/t5gemma_presets.py +0 -0
  506. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +0 -0
  507. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +0 -0
  508. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +0 -0
  509. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/task.py +0 -0
  510. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/text_classifier.py +0 -0
  511. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  512. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/text_to_image.py +0 -0
  513. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  514. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vae/__init__.py +0 -0
  515. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  516. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vae/vae_layers.py +0 -0
  517. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vgg/__init__.py +0 -0
  518. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  519. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  520. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  521. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  522. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  523. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit/__init__.py +0 -0
  524. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  525. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  526. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  527. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  528. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit/vit_layers.py +0 -0
  529. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit/vit_presets.py +0 -0
  530. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit_det/__init__.py +0 -0
  531. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  532. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  533. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/whisper/__init__.py +0 -0
  534. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  535. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  536. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  537. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  538. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  539. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  540. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  541. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xception/__init__.py +0 -0
  542. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  543. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  544. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  545. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  546. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xception/xception_presets.py +0 -0
  547. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  548. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  549. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  550. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  551. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  552. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  553. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  554. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  555. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlnet/__init__.py +0 -0
  556. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  557. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  558. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  559. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  560. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/samplers/__init__.py +0 -0
  561. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/samplers/beam_sampler.py +0 -0
  562. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  563. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  564. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/samplers/random_sampler.py +0 -0
  565. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/samplers/sampler.py +0 -0
  566. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/samplers/serialization.py +0 -0
  567. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  568. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  569. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tests/__init__.py +0 -0
  570. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  571. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tests/test_case.py +0 -0
  572. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tokenizers/__init__.py +0 -0
  573. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  574. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  575. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  576. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  577. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  578. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  579. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  580. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  581. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/__init__.py +0 -0
  582. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/coco/__init__.py +0 -0
  583. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  584. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  585. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  586. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/keras_utils.py +0 -0
  587. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/openvino_utils.py +0 -0
  588. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/pipeline_model.py +0 -0
  589. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/preset_utils.py +0 -0
  590. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/python_utils.py +0 -0
  591. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/tensor_utils.py +0 -0
  592. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/timm/__init__.py +0 -0
  593. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  594. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  595. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  596. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  597. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/timm/convert_mobilenetv5.py +0 -0
  598. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  599. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  600. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  601. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/__init__.py +0 -0
  602. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  603. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  604. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  605. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_deit.py +0 -0
  606. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_dinov2.py +0 -0
  607. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  608. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_esm.py +0 -0
  609. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  610. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  611. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  612. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  613. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  614. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  615. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  616. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
  617. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_qwen3_moe.py +0 -0
  618. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  619. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_t5gemma.py +0 -0
  620. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  621. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/export/gemma.py +0 -0
  622. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/export/hf_exporter.py +0 -0
  623. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  624. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  625. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub_nightly.egg-info/requires.txt +0 -0
  626. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  627. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/pyproject.toml +0 -0
  628. {keras_hub_nightly-0.23.0.dev202510170417 → keras_hub_nightly-0.23.0.dev202510190425}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202510170417
3
+ Version: 0.23.0.dev202510190425
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -649,6 +649,30 @@ from keras_hub.src.models.siglip.siglip_tokenizer import (
649
649
  from keras_hub.src.models.siglip.siglip_vision_encoder import (
650
650
  SigLIPVisionEncoder as SigLIPVisionEncoder,
651
651
  )
652
+ from keras_hub.src.models.smollm3.smollm3_backbone import (
653
+ SmolLM3Backbone as SmolLM3Backbone,
654
+ )
655
+ from keras_hub.src.models.smollm3.smollm3_backbone import (
656
+ SmolLM3Backbone as SmolLMBackbone,
657
+ )
658
+ from keras_hub.src.models.smollm3.smollm3_causal_lm import (
659
+ SmolLM3CausalLM as SmolLM3CausalLM,
660
+ )
661
+ from keras_hub.src.models.smollm3.smollm3_causal_lm import (
662
+ SmolLM3CausalLM as SmolLMCausalLM,
663
+ )
664
+ from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
665
+ SmolLM3CausalLMPreprocessor as SmolLM3CausalLMPreprocessor,
666
+ )
667
+ from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
668
+ SmolLM3CausalLMPreprocessor as SmolLMCausalLMPreprocessor,
669
+ )
670
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
671
+ SmolLM3Tokenizer as SmolLM3Tokenizer,
672
+ )
673
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
674
+ SmolLM3Tokenizer as SmolLMTokenizer,
675
+ )
652
676
  from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
653
677
  StableDiffusion3Backbone as StableDiffusion3Backbone,
654
678
  )
@@ -93,6 +93,12 @@ from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
93
93
  from keras_hub.src.models.siglip.siglip_tokenizer import (
94
94
  SigLIPTokenizer as SigLIPTokenizer,
95
95
  )
96
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
97
+ SmolLM3Tokenizer as SmolLM3Tokenizer,
98
+ )
99
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
100
+ SmolLM3Tokenizer as SmolLMTokenizer,
101
+ )
96
102
  from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer as T5Tokenizer
97
103
  from keras_hub.src.models.t5gemma.t5gemma_tokenizer import (
98
104
  T5GemmaTokenizer as T5GemmaTokenizer,
@@ -206,4 +206,26 @@ backbone_presets = {
206
206
  },
207
207
  "kaggle_handle": "kaggle://keras/vaultgemma/keras/vault_gemma_1b_en/2",
208
208
  },
209
+ "c2s_scale_gemma_2_2b_en": {
210
+ "metadata": {
211
+ "description": (
212
+ "A 2 billion parameter, single-cell biology-aware model "
213
+ "built on the Gemma-2 architecture."
214
+ ),
215
+ "params": 2614341888,
216
+ "path": "gemma",
217
+ },
218
+ "kaggle_handle": "kaggle://keras/cell2sentence/keras/c2s_scale_gemma_2_2b_en/1",
219
+ },
220
+ "c2s_scale_gemma_2_27b_en": {
221
+ "metadata": {
222
+ "description": (
223
+ "A 27 billion parameter, single-cell biology-aware model "
224
+ "built on the Gemma-2 architecture."
225
+ ),
226
+ "params": 27227128320,
227
+ "path": "gemma",
228
+ },
229
+ "kaggle_handle": "kaggle://keras/cell2sentence/keras/c2s_scale_gemma_2_27b_en/1",
230
+ },
209
231
  }
@@ -0,0 +1,211 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.layers.modeling.reversible_embedding import (
5
+ ReversibleEmbedding,
6
+ )
7
+ from keras_hub.src.models.backbone import Backbone
8
+ from keras_hub.src.models.smollm3.smollm3_layers import SmolLM3DecoderLayer
9
+
10
+
11
+ @keras_hub_export(
12
+ [
13
+ "keras_hub.models.SmolLM3Backbone",
14
+ "keras_hub.models.SmolLMBackbone",
15
+ ]
16
+ )
17
+ class SmolLM3Backbone(Backbone):
18
+ """SmolLM3 core network with hyperparameters.
19
+
20
+ This network implements a Transformer-based decoder network,
21
+ SmolLM3, as described in the SmolLM3 model architecture.
22
+ It includes the embedding lookups and transformer layers.
23
+
24
+ The default constructor gives a fully customizable, randomly initialized
25
+ SmolLM3 model with any number of layers, heads, and embedding
26
+ dimensions. To load preset architectures and weights, use the `from_preset`
27
+ constructor.
28
+
29
+ Args:
30
+ vocabulary_size: int. The size of the token vocabulary.
31
+ hidden_dim: int. The size of the transformer hidden state at the end
32
+ of each transformer layer.
33
+ intermediate_dim: int. The output dimension of the first Dense layer in
34
+ the MLP network of each transformer layer.
35
+ num_layers: int. The number of transformer layers.
36
+ num_attention_heads: int. The number of attention heads for each
37
+ transformer layer.
38
+ num_key_value_heads: int. The number of key-value heads for grouped
39
+ query attention in each transformer layer.
40
+ attention_bias: bool. Whether to use bias in the query, key, value, and
41
+ output projection layers in the attention blocks.
42
+ attention_dropout: float. Dropout probability for the attention layers.
43
+ rope_layer_enabled_list: list of bool. List indicating whether RoPE
44
+ (Rotary Position Embedding) is enabled for each layer. Typically,
45
+ some layers may disable RoPE for architectural variations.
46
+ layer_types: list of str. List of layer types for each transformer
47
+ layer (e.g., "attention" or other custom types).
48
+ mlp_bias: bool. Whether to use bias in the MLP (feedforward) layers.
49
+ layer_norm_epsilon: float. Epsilon value for layer normalization layers
50
+ to prevent division by zero.
51
+ max_position_embeddings: int. The maximum sequence length that this
52
+ model might ever be used with.
53
+ rope_theta: float. The base period of the RoPE embeddings.
54
+ partial_rotary_factor: float. The percentage of hidden dimensions to
55
+ rotate in RoPE. A value of 1.0 rotates all dimensions, while values
56
+ less than 1.0 only rotate a subset.
57
+
58
+ Examples:
59
+
60
+ ```python
61
+ input_data = {
62
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
63
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
64
+ }
65
+
66
+ # Pretrained SmolLM3 decoder.
67
+ model = keras_hub.models.SmolLM3Backbone.from_preset(
68
+ "hf://HuggingFaceTB/SmolLM3-3B"
69
+ )
70
+ model(input_data)
71
+
72
+ # Randomly initialized SmolLM3 decoder with custom config.
73
+ model = keras_hub.models.SmolLM3Backbone(
74
+ vocabulary_size=49152,
75
+ hidden_dim=576,
76
+ intermediate_dim=1536,
77
+ num_layers=30,
78
+ num_attention_heads=9,
79
+ num_key_value_heads=3,
80
+ attention_bias=False,
81
+ attention_dropout=0.0,
82
+ rope_layer_enabled_list=[True] * 30,
83
+ layer_types=["attention"] * 30,
84
+ mlp_bias=False,
85
+ layer_norm_epsilon=1e-5,
86
+ max_position_embeddings=2048,
87
+ rope_theta=10000.0,
88
+ partial_rotary_factor=1.0,
89
+ )
90
+ model(input_data)
91
+ ```
92
+ """
93
+
94
+ def __init__(
95
+ self,
96
+ vocabulary_size,
97
+ hidden_dim,
98
+ intermediate_dim,
99
+ num_layers,
100
+ num_attention_heads,
101
+ num_key_value_heads,
102
+ attention_bias,
103
+ attention_dropout,
104
+ rope_layer_enabled_list,
105
+ layer_types,
106
+ mlp_bias,
107
+ layer_norm_epsilon,
108
+ max_position_embeddings,
109
+ rope_theta,
110
+ partial_rotary_factor,
111
+ **kwargs,
112
+ ):
113
+ # === Layers ===
114
+ self.token_embedding = ReversibleEmbedding(
115
+ input_dim=vocabulary_size,
116
+ output_dim=hidden_dim,
117
+ name="token_embedding",
118
+ )
119
+ self.transformer_layers = []
120
+ for i in range(num_layers):
121
+ layer = SmolLM3DecoderLayer(
122
+ hidden_size=hidden_dim,
123
+ num_attention_heads=num_attention_heads,
124
+ num_key_value_heads=num_key_value_heads,
125
+ attention_bias=attention_bias,
126
+ attention_dropout=attention_dropout,
127
+ rope_layer_enabled_list=rope_layer_enabled_list,
128
+ layer_types=layer_types,
129
+ layer_idx=i,
130
+ intermediate_size=intermediate_dim,
131
+ mlp_bias=mlp_bias,
132
+ layer_norm_epsilon=layer_norm_epsilon,
133
+ max_position_embeddings=max_position_embeddings,
134
+ rope_theta=rope_theta,
135
+ partial_rotary_factor=partial_rotary_factor,
136
+ name=f"transformer_layer_{i}",
137
+ )
138
+ self.transformer_layers.append(layer)
139
+
140
+ self.norm = keras.layers.RMSNormalization(
141
+ epsilon=layer_norm_epsilon,
142
+ name="sequence_output_layernorm",
143
+ )
144
+
145
+ # === Functional Model ===
146
+ token_id_input = keras.Input(
147
+ shape=(None,), dtype="int32", name="token_ids"
148
+ )
149
+
150
+ padding_mask_input = keras.Input(
151
+ shape=(None,), dtype="int32", name="padding_mask"
152
+ )
153
+
154
+ x = self.token_embedding(token_id_input)
155
+
156
+ for decoder_layer in self.transformer_layers:
157
+ x = decoder_layer(
158
+ x,
159
+ decoder_padding_mask=padding_mask_input,
160
+ **kwargs,
161
+ )
162
+
163
+ sequence_output = self.norm(x)
164
+ super().__init__(
165
+ inputs={
166
+ "token_ids": token_id_input,
167
+ "padding_mask": padding_mask_input,
168
+ },
169
+ outputs=sequence_output,
170
+ **kwargs,
171
+ )
172
+
173
+ # === Config ===
174
+ self.vocabulary_size = vocabulary_size
175
+ self.hidden_dim = hidden_dim
176
+ self.intermediate_dim = intermediate_dim
177
+ self.num_layers = num_layers
178
+ self.num_attention_heads = num_attention_heads
179
+ self.num_key_value_heads = num_key_value_heads
180
+ self.attention_bias = attention_bias
181
+ self.attention_dropout = attention_dropout
182
+ self.rope_layer_enabled_list = rope_layer_enabled_list
183
+ self.layer_types = layer_types
184
+ self.mlp_bias = mlp_bias
185
+ self.layer_norm_epsilon = layer_norm_epsilon
186
+ self.max_position_embeddings = max_position_embeddings
187
+ self.rope_theta = rope_theta
188
+ self.partial_rotary_factor = partial_rotary_factor
189
+
190
+ def get_config(self):
191
+ config = super().get_config()
192
+ config.update(
193
+ {
194
+ "vocabulary_size": self.vocabulary_size,
195
+ "hidden_dim": self.hidden_dim,
196
+ "intermediate_dim": self.intermediate_dim,
197
+ "num_layers": self.num_layers,
198
+ "num_attention_heads": self.num_attention_heads,
199
+ "num_key_value_heads": self.num_key_value_heads,
200
+ "attention_bias": self.attention_bias,
201
+ "attention_dropout": self.attention_dropout,
202
+ "rope_layer_enabled_list": self.rope_layer_enabled_list,
203
+ "layer_types": self.layer_types,
204
+ "mlp_bias": self.mlp_bias,
205
+ "layer_norm_epsilon": self.layer_norm_epsilon,
206
+ "max_position_embeddings": self.max_position_embeddings,
207
+ "rope_theta": self.rope_theta,
208
+ "partial_rotary_factor": self.partial_rotary_factor,
209
+ }
210
+ )
211
+ return config
@@ -0,0 +1,310 @@
1
+ import keras
2
+ from keras import ops
3
+
4
+ from keras_hub.src.api_export import keras_hub_export
5
+ from keras_hub.src.models.causal_lm import CausalLM
6
+ from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
7
+ from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
8
+ SmolLM3CausalLMPreprocessor,
9
+ )
10
+ from keras_hub.src.utils.tensor_utils import any_equal
11
+
12
+
13
+ @keras_hub_export(
14
+ [
15
+ "keras_hub.models.SmolLM3CausalLM",
16
+ "keras_hub.models.SmolLMCausalLM",
17
+ ]
18
+ )
19
+ class SmolLM3CausalLM(CausalLM):
20
+ backbone_cls = SmolLM3Backbone
21
+ preprocessor_cls = SmolLM3CausalLMPreprocessor
22
+
23
+ def __init__(self, backbone, preprocessor=None, **kwargs):
24
+ # === Layers ===
25
+ self.backbone = backbone
26
+ self.preprocessor = preprocessor
27
+
28
+ # === Functional Model ===
29
+ # This must be "backbone.input" i.e. the full input structure,
30
+ # rather than "backbone.inputs" which is the flattened list of inputs.
31
+ inputs = backbone.input
32
+ hidden_states = backbone(inputs)
33
+ outputs = backbone.token_embedding(hidden_states, reverse=True)
34
+ super().__init__(
35
+ inputs=inputs,
36
+ outputs=outputs,
37
+ **kwargs,
38
+ )
39
+
40
+ def call_with_cache(
41
+ self,
42
+ token_ids,
43
+ cache,
44
+ cache_update_index,
45
+ ):
46
+ """Forward pass of `SmolLM3CausalLM` with cache.
47
+
48
+ `call_with_cache` adds an additional forward pass for the model for
49
+ autoregressive inference. Unlike calling the model directly, this method
50
+ allows caching previous key/value Tensors in multi-head attention layer,
51
+ and avoids recomputing the outputs of seen tokens.
52
+
53
+ Args:
54
+ token_ids: a dense int Tensor with shape `(batch_size, seq_len)`.
55
+ For prefill, `seq_len` is the prompt length. For generation,
56
+ `seq_len` is typically 1.
57
+ cache: a dense float Tensor, the cache of key and value.
58
+ Shape: (batch_size, num_layers, 2, max_seq_len,
59
+ num_key_value_heads, head_dim)
60
+ cache_update_index: int, or int Tensor. The index of current
61
+ inputs in the whole sequence.
62
+ training: Boolean, whether the call is during training or inference.
63
+ attention_mask: Optional attention mask.
64
+
65
+ Returns:
66
+ A (logits, hidden_states, cache) tuple. Where `logits` is the
67
+ language model logits for the input token_ids, `hidden_states` is
68
+ the final hidden representation of the input tokens, and `cache` is
69
+ the decoding cache.
70
+ """
71
+ x = self.backbone.token_embedding(token_ids)
72
+
73
+ # Each decoder layer has a cache; we update them separately.
74
+ updated_cache = []
75
+
76
+ for i in range(self.backbone.num_layers):
77
+ current_cache = cache[:, i, ...]
78
+ x, next_cache = self.backbone.transformer_layers[i](
79
+ x,
80
+ self_attention_cache=current_cache,
81
+ self_attention_cache_update_index=cache_update_index,
82
+ )
83
+ updated_cache.append(next_cache)
84
+ cache = ops.stack(updated_cache, axis=1)
85
+ hidden_states = x = self.backbone.norm(x)
86
+ logits = self.backbone.token_embedding(x, reverse=True)
87
+ return logits, hidden_states, cache
88
+
89
+ def _build_cache(self, token_ids):
90
+ """Build an empty cache for use with `call_with_cache()`."""
91
+ batch_size = ops.shape(token_ids)[0]
92
+ max_length = ops.shape(token_ids)[1]
93
+ num_layers = self.backbone.num_layers
94
+ num_key_value_heads = self.backbone.num_key_value_heads
95
+ head_dim = self.backbone.hidden_dim // self.backbone.num_attention_heads
96
+ shape = [
97
+ batch_size,
98
+ num_layers,
99
+ 2,
100
+ max_length,
101
+ num_key_value_heads,
102
+ head_dim,
103
+ ]
104
+ cache = ops.zeros(shape, dtype=self.compute_dtype)
105
+ index = ops.convert_to_tensor(0, dtype="int32")
106
+ # Seed the cache.
107
+ _, hidden_states, cache = self.call_with_cache(token_ids, cache, index)
108
+ return hidden_states, cache
109
+
110
+ def generate_step(
111
+ self,
112
+ inputs,
113
+ stop_token_ids=None,
114
+ ):
115
+ """A compilable generation function for a single batch of inputs.
116
+
117
+ This function represents the inner, XLA-compilable, generation function
118
+ for a single batch of inputs. Inputs should have the same structure as
119
+ model inputs, a dictionary with keys `"token_ids"` and `"padding_mask"`.
120
+
121
+ Args:
122
+ inputs: A dictionary with two keys `"token_ids"` and
123
+ `"padding_mask"` and batched tensor values.
124
+ stop_token_ids: Tuple of id's of the end token to stop on. If all
125
+ sequences have produced a new stop token, generation
126
+ will stop.
127
+ """
128
+ token_ids, padding_mask = inputs["token_ids"], inputs["padding_mask"]
129
+
130
+ hidden_states, cache = self._build_cache(token_ids)
131
+ # Compute the lengths of all user inputted tokens ids.
132
+ row_lengths = ops.sum(ops.cast(padding_mask, "int32"), axis=-1)
133
+ # Start at the first index that has no user inputted id.
134
+ index = ops.min(row_lengths)
135
+
136
+ def next(prompt, cache, index):
137
+ # The cache index is the index of our previous token.
138
+ cache_update_index = index - 1
139
+ batch_size = ops.shape(prompt)[0]
140
+ prompt = ops.slice(prompt, [0, cache_update_index], [batch_size, 1])
141
+
142
+ logits, hidden_states, cache = self.call_with_cache(
143
+ prompt,
144
+ cache,
145
+ cache_update_index,
146
+ )
147
+ return (
148
+ ops.squeeze(logits, axis=1),
149
+ ops.squeeze(hidden_states, axis=1),
150
+ cache,
151
+ )
152
+
153
+ token_ids = self.sampler(
154
+ next=next,
155
+ prompt=token_ids,
156
+ cache=cache,
157
+ index=index,
158
+ mask=padding_mask,
159
+ stop_token_ids=stop_token_ids,
160
+ hidden_states=hidden_states,
161
+ model=self,
162
+ )
163
+
164
+ # Compute an output padding mask with the token ids we updated.
165
+ if stop_token_ids is not None:
166
+ # Build a mask of stop token locations not in the original
167
+ # prompt (not in locations where `padding_mask` is True).
168
+ end_locations = any_equal(
169
+ token_ids, stop_token_ids, ops.logical_not(padding_mask)
170
+ )
171
+ end_locations = ops.cast(end_locations, "int32")
172
+ # Use cumsum to get ones in all locations after end_locations.
173
+ cumsum = ops.cast(ops.cumsum(end_locations, axis=-1), "int32")
174
+ overflow = cumsum - end_locations
175
+ # Our padding mask is the inverse of these overflow locations.
176
+ padding_mask = ops.logical_not(ops.cast(overflow, "bool"))
177
+ else:
178
+ # Without early stopping, all locations will have been updated.
179
+ padding_mask = ops.ones_like(token_ids, dtype="bool")
180
+ return {
181
+ "token_ids": token_ids,
182
+ "padding_mask": padding_mask,
183
+ }
184
+
185
+ def score(
186
+ self,
187
+ token_ids,
188
+ padding_mask=None,
189
+ scoring_mode="logits",
190
+ layer_intercept_fn=None,
191
+ target_ids=None,
192
+ ):
193
+ """Score a generation represented by the provided token ids.
194
+
195
+ Args:
196
+ token_ids: A <int>[batch_size, num_tokens] tensor containing tokens
197
+ to score. Typically, this tensor captures the output from a call
198
+ to `SmolLM3CausalLM.generate()`, i.e., tokens for both the input
199
+ text and the model-generated text.
200
+ padding_mask: A <bool>[batch_size, num_tokens] tensor indicating the
201
+ tokens that should be preserved during generation. This is an
202
+ artifact required by the `SmolLM3Backbone` and isn't influential
203
+ on the computation of this function. If omitted, this function
204
+ uses `keras.ops.ones()` to create a tensor of the appropriate
205
+ shape.
206
+ scoring_mode: The type of scores to return, either "logits" or
207
+ "loss", both will be per input token.
208
+ layer_intercept_fn: An optional function for augmenting activations
209
+ with additional computation, for example, as part of
210
+ interpretability research. This function will be passed the
211
+ activations as its first parameter and a numeric index
212
+ associated with that backbone layer. _This index _is not_ an
213
+ index into `self.backbone.layers`_. The index -1 accompanies the
214
+ embeddings returned by calling `self.backbone.token_embedding()`
215
+ on `token_ids` in the forward direction. All subsequent indexes
216
+ will be 0-based indices for the activations returned by each of
217
+ the Transformers layers in the backbone. This function must
218
+ return a <float>[batch_size, num_tokens, hidden_dims] tensor
219
+ that can be passed as an input to the next layer in the model.
220
+ target_ids: An <bool>[batch_size, num_tokens] tensor containing the
221
+ predicted tokens against which the loss should be computed. If a
222
+ span of tokens is provided (sequential truthy values along
223
+ axis=1 in the tensor), the loss will be computed as the
224
+ aggregate across those tokens.
225
+
226
+ Raises:
227
+ ValueError: If an unsupported scoring_mode is provided, or if the
228
+ target_ids are not provided when using ScoringMode.LOSS.
229
+
230
+ Returns:
231
+ The per-token scores as a tensor of size
232
+ <float>[batch_size, num_tokens, vocab_size] in "logits" mode, or
233
+ <float>[batch_size, num_tokens] in "loss" mode.
234
+
235
+ Example:
236
+
237
+ Compute gradients between embeddings and loss scores with TensorFlow:
238
+ ```python
239
+ smol_lm = keras_hub.models.SmolLM3CausalLM.from_preset("...")
240
+ generations = smol_lm.generate(
241
+ ["This is a", "Where are you"],
242
+ max_length=30
243
+ )
244
+ preprocessed = smol_lm.preprocessor.generate_preprocess(generations)
245
+ generation_ids = preprocessed["token_ids"]
246
+ padding_mask = preprocessed["padding_mask"]
247
+ target_ids = keras.ops.roll(generation_ids, shift=-1, axis=1)
248
+
249
+ embeddings = None
250
+ with tf.GradientTape(watch_accessed_variables=True) as tape:
251
+ def layer_intercept_fn(x, i):
252
+ if i == -1:
253
+ nonlocal embeddings, tape
254
+ embeddings = x
255
+ tape.watch(embeddings)
256
+ return x
257
+
258
+ losses = smol_lm.score(
259
+ token_ids=generation_ids,
260
+ padding_mask=padding_mask,
261
+ scoring_mode="loss",
262
+ layer_intercept_fn=layer_intercept_fn,
263
+ target_ids=target_ids,
264
+ )
265
+
266
+ grads = tape.gradient(losses, embeddings)
267
+ ```
268
+ """
269
+ if scoring_mode not in ("logits", "loss"):
270
+ raise ValueError(
271
+ "Unsupported scoring_mode. Must be one of 'logits' or 'loss'."
272
+ )
273
+
274
+ if scoring_mode == "loss" and target_ids is None:
275
+ raise ValueError(
276
+ "Cannot compute loss without targets. Please provide target "
277
+ "token ids via the target_ids parameter."
278
+ )
279
+
280
+ batch_shape = ops.shape(token_ids)[:2]
281
+ assert len(batch_shape) == 2
282
+
283
+ if padding_mask is None:
284
+ padding_mask = ops.ones(shape=batch_shape)
285
+
286
+ if layer_intercept_fn is None:
287
+
288
+ def default_layer_intercept_fn(x, unused_i):
289
+ return x
290
+
291
+ layer_intercept_fn = default_layer_intercept_fn
292
+
293
+ token_embeddings = self.backbone.token_embedding(token_ids)
294
+ x = layer_intercept_fn(token_embeddings, -1)
295
+
296
+ for i, transformer_layer in enumerate(self.backbone.transformer_layers):
297
+ x = transformer_layer(x, decoder_padding_mask=padding_mask)
298
+ x = layer_intercept_fn(x, i)
299
+
300
+ x = self.backbone.norm(x)
301
+ logits = self.backbone.token_embedding(x, reverse=True)
302
+
303
+ if scoring_mode == "logits":
304
+ return logits
305
+
306
+ per_token_loss_fn = keras.losses.SparseCategoricalCrossentropy(
307
+ from_logits=True, reduction="none"
308
+ )
309
+ per_token_loss = per_token_loss_fn(target_ids, logits)
310
+ return per_token_loss
@@ -0,0 +1,84 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
3
+ from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
4
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import SmolLM3Tokenizer
5
+
6
+
7
+ @keras_hub_export(
8
+ [
9
+ "keras_hub.models.SmolLMCausalLMPreprocessor",
10
+ "keras_hub.models.SmolLM3CausalLMPreprocessor",
11
+ ]
12
+ )
13
+ class SmolLM3CausalLMPreprocessor(CausalLMPreprocessor):
14
+ """SmolLM3 Causal LM preprocessor.
15
+
16
+ This preprocessing layer is meant for use with
17
+ `keras_hub.models.SmolLM3CausalLM`. By default, it will take in batches of
18
+ strings, and return outputs in a `(x, y, sample_weight)` format, where the
19
+ `y` label is the next token id in the `x` sequence.
20
+
21
+ For use with generation, the layer also exposes two methods
22
+ `generate_preprocess()` and `generate_postprocess()`. When this preprocessor
23
+ is attached to a `keras_hub.models.SmolLM3CausalLM` instance, these methods
24
+ will be called implicitly in `generate()`. They can also be called
25
+ standalone (e.g. to precompute preprocessing inputs for generation in a
26
+ separate process).
27
+
28
+ Args:
29
+ tokenizer: A `keras_hub.models.SmolLM3Tokenizer` instance.
30
+ sequence_length: The length of the packed inputs.
31
+ add_start_token: If `True`, the preprocessor will prepend the tokenizer
32
+ start token to each input sequence. Default is `True`.
33
+ add_end_token: If `True`, the preprocessor will append the tokenizer
34
+ end token to each input sequence. Default is `False`.
35
+
36
+ Call arguments:
37
+ x: A string, `tf.Tensor` or list of python strings.
38
+ y: Label data. Should always be `None` as the layer generates labels.
39
+ sample_weight: Label weights. Should always be `None` as the layer
40
+ generates label weights.
41
+ sequence_length: Pass to override the configured `sequence_length` of
42
+ the layer.
43
+
44
+ Examples:
45
+ ```python
46
+ # Load the preprocessor from a preset.
47
+ preprocessor = keras_hub.models.SmolLM3CausalLMPreprocessor.from_preset(
48
+ "..."
49
+ )
50
+
51
+ # Tokenize and pack a single sentence.
52
+ sentence = tf.constant("...")
53
+ preprocessor(sentence)
54
+ # Same output.
55
+ preprocessor("...")
56
+
57
+ # Tokenize a batch of sentences.
58
+ sentences = tf.constant(["...", "..."])
59
+ preprocessor(sentences)
60
+ # Same output.
61
+ preprocessor(["...", "..."])
62
+
63
+ # Map a dataset to preprocess a single sentence.
64
+ features = tf.constant(
65
+ [
66
+ "...",
67
+ "...",
68
+ ]
69
+ )
70
+ labels = tf.constant([1, 0])
71
+ ds = tf.data.Dataset.from_tensor_slices((features, labels))
72
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
73
+
74
+ # Map a dataset to preprocess unlabled sentences.
75
+ ds = tf.data.Dataset.from_tensor_slices(features)
76
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
77
+ ```
78
+ """
79
+
80
+ backbone_cls = SmolLM3Backbone
81
+ tokenizer_cls = SmolLM3Tokenizer
82
+
83
+ def __init__(self, *args, **kwargs):
84
+ super().__init__(*args, **kwargs)