keras-hub-nightly 0.23.0.dev202510160419__tar.gz → 0.23.0.dev202510180414__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-hub-nightly might be problematic. Click here for more details.
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/PKG-INFO +1 -1
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/api/models/__init__.py +24 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/api/tokenizers/__init__.py +6 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma/gemma_presets.py +22 -0
- keras_hub_nightly-0.23.0.dev202510180414/keras_hub/src/models/smollm3/smollm3_backbone.py +211 -0
- keras_hub_nightly-0.23.0.dev202510180414/keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
- keras_hub_nightly-0.23.0.dev202510180414/keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
- keras_hub_nightly-0.23.0.dev202510180414/keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
- keras_hub_nightly-0.23.0.dev202510180414/keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
- keras_hub_nightly-0.23.0.dev202510180414/keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
- keras_hub_nightly-0.23.0.dev202510180414/keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/preset_loader.py +3 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/version.py +1 -1
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub_nightly.egg-info/SOURCES.txt +7 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/README.md +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/api/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/api/layers/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/api_export.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/audio_to_text.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/basnet/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/basnet/basnet.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/clip/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/clip/clip_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/clip/clip_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/clip/clip_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/cspnet/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_loss.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_object_detector.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/d_fine/d_fine_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deit/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deit/deit_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deit/deit_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deit/deit_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deit/deit_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/deit/deit_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_anything/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_anything/depth_anything_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_anything/depth_anything_depth_estimator.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_anything/depth_anything_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_anything/depth_anything_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_anything/depth_anything_loss.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_anything/depth_anything_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_anything/interpolate.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_estimator.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/depth_estimator_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/dinov2/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/dinov2/dinov2_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/dinov2/dinov2_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/dinov2/dinov2_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/dinov2/dinov2_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/efficientnet/cba.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/esm_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/esm_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/esm_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/esm_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/esm_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/esm_masked_plm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/esm_masked_plm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/esm_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/esm/esm_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/flux/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/flux/flux_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/flux/flux_maths.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/flux/flux_model.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/flux/flux_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/hgnetv2/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/hgnetv2/hgnetv2_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/hgnetv2/hgnetv2_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/image_segmenter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/image_to_image.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/inpaint.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mit/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mit/mit_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mit/mit_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mit/mit_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mixtral/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenet/util.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/object_detector.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/parseq/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/parseq/parseq_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/parseq/parseq_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/parseq/parseq_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/parseq/parseq_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/parseq/parseq_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3/qwen3_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3/qwen3_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3/qwen3_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3_moe/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/retinanet/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/sam_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/sam_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/sam_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/sam/sam_transformer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/segformer/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/t5gemma_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/t5gemma_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/t5gemma_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/t5gemma_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/t5gemma_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/t5gemma_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/task.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/text_to_image.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vae/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vae/vae_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vae/vae_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vgg/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit/vit_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit/vit_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit/vit_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit_det/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xception/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xception/xception_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xception/xception_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlnet/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tests/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tests/test_case.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tokenizers/tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/coco/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/coco/coco_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/imagenet/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/openvino_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/preset_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/tensor_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/timm/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/timm/convert_mobilenetv5.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/timm/preset_loader.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/__init__.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_deit.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_dinov2.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_esm.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_qwen3_moe.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_t5gemma.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/export/gemma.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/export/hf_exporter.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/pyproject.toml +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419 → keras_hub_nightly-0.23.0.dev202510180414}/setup.cfg +0 -0
|
@@ -649,6 +649,30 @@ from keras_hub.src.models.siglip.siglip_tokenizer import (
|
|
|
649
649
|
from keras_hub.src.models.siglip.siglip_vision_encoder import (
|
|
650
650
|
SigLIPVisionEncoder as SigLIPVisionEncoder,
|
|
651
651
|
)
|
|
652
|
+
from keras_hub.src.models.smollm3.smollm3_backbone import (
|
|
653
|
+
SmolLM3Backbone as SmolLM3Backbone,
|
|
654
|
+
)
|
|
655
|
+
from keras_hub.src.models.smollm3.smollm3_backbone import (
|
|
656
|
+
SmolLM3Backbone as SmolLMBackbone,
|
|
657
|
+
)
|
|
658
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm import (
|
|
659
|
+
SmolLM3CausalLM as SmolLM3CausalLM,
|
|
660
|
+
)
|
|
661
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm import (
|
|
662
|
+
SmolLM3CausalLM as SmolLMCausalLM,
|
|
663
|
+
)
|
|
664
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
|
|
665
|
+
SmolLM3CausalLMPreprocessor as SmolLM3CausalLMPreprocessor,
|
|
666
|
+
)
|
|
667
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
|
|
668
|
+
SmolLM3CausalLMPreprocessor as SmolLMCausalLMPreprocessor,
|
|
669
|
+
)
|
|
670
|
+
from keras_hub.src.models.smollm3.smollm3_tokenizer import (
|
|
671
|
+
SmolLM3Tokenizer as SmolLM3Tokenizer,
|
|
672
|
+
)
|
|
673
|
+
from keras_hub.src.models.smollm3.smollm3_tokenizer import (
|
|
674
|
+
SmolLM3Tokenizer as SmolLMTokenizer,
|
|
675
|
+
)
|
|
652
676
|
from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
|
|
653
677
|
StableDiffusion3Backbone as StableDiffusion3Backbone,
|
|
654
678
|
)
|
|
@@ -93,6 +93,12 @@ from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
|
|
|
93
93
|
from keras_hub.src.models.siglip.siglip_tokenizer import (
|
|
94
94
|
SigLIPTokenizer as SigLIPTokenizer,
|
|
95
95
|
)
|
|
96
|
+
from keras_hub.src.models.smollm3.smollm3_tokenizer import (
|
|
97
|
+
SmolLM3Tokenizer as SmolLM3Tokenizer,
|
|
98
|
+
)
|
|
99
|
+
from keras_hub.src.models.smollm3.smollm3_tokenizer import (
|
|
100
|
+
SmolLM3Tokenizer as SmolLMTokenizer,
|
|
101
|
+
)
|
|
96
102
|
from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer as T5Tokenizer
|
|
97
103
|
from keras_hub.src.models.t5gemma.t5gemma_tokenizer import (
|
|
98
104
|
T5GemmaTokenizer as T5GemmaTokenizer,
|
|
@@ -206,4 +206,26 @@ backbone_presets = {
|
|
|
206
206
|
},
|
|
207
207
|
"kaggle_handle": "kaggle://keras/vaultgemma/keras/vault_gemma_1b_en/2",
|
|
208
208
|
},
|
|
209
|
+
"c2s_scale_gemma_2_2b_en": {
|
|
210
|
+
"metadata": {
|
|
211
|
+
"description": (
|
|
212
|
+
"A 2 billion parameter, single-cell biology-aware model "
|
|
213
|
+
"built on the Gemma-2 architecture."
|
|
214
|
+
),
|
|
215
|
+
"params": 2614341888,
|
|
216
|
+
"path": "gemma",
|
|
217
|
+
},
|
|
218
|
+
"kaggle_handle": "kaggle://keras/cell2sentence/keras/c2s_scale_gemma_2_2b_en/1",
|
|
219
|
+
},
|
|
220
|
+
"c2s_scale_gemma_2_27b_en": {
|
|
221
|
+
"metadata": {
|
|
222
|
+
"description": (
|
|
223
|
+
"A 27 billion parameter, single-cell biology-aware model "
|
|
224
|
+
"built on the Gemma-2 architecture."
|
|
225
|
+
),
|
|
226
|
+
"params": 27227128320,
|
|
227
|
+
"path": "gemma",
|
|
228
|
+
},
|
|
229
|
+
"kaggle_handle": "kaggle://keras/cell2sentence/keras/c2s_scale_gemma_2_27b_en/1",
|
|
230
|
+
},
|
|
209
231
|
}
|
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
import keras
|
|
2
|
+
|
|
3
|
+
from keras_hub.src.api_export import keras_hub_export
|
|
4
|
+
from keras_hub.src.layers.modeling.reversible_embedding import (
|
|
5
|
+
ReversibleEmbedding,
|
|
6
|
+
)
|
|
7
|
+
from keras_hub.src.models.backbone import Backbone
|
|
8
|
+
from keras_hub.src.models.smollm3.smollm3_layers import SmolLM3DecoderLayer
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@keras_hub_export(
|
|
12
|
+
[
|
|
13
|
+
"keras_hub.models.SmolLM3Backbone",
|
|
14
|
+
"keras_hub.models.SmolLMBackbone",
|
|
15
|
+
]
|
|
16
|
+
)
|
|
17
|
+
class SmolLM3Backbone(Backbone):
|
|
18
|
+
"""SmolLM3 core network with hyperparameters.
|
|
19
|
+
|
|
20
|
+
This network implements a Transformer-based decoder network,
|
|
21
|
+
SmolLM3, as described in the SmolLM3 model architecture.
|
|
22
|
+
It includes the embedding lookups and transformer layers.
|
|
23
|
+
|
|
24
|
+
The default constructor gives a fully customizable, randomly initialized
|
|
25
|
+
SmolLM3 model with any number of layers, heads, and embedding
|
|
26
|
+
dimensions. To load preset architectures and weights, use the `from_preset`
|
|
27
|
+
constructor.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
vocabulary_size: int. The size of the token vocabulary.
|
|
31
|
+
hidden_dim: int. The size of the transformer hidden state at the end
|
|
32
|
+
of each transformer layer.
|
|
33
|
+
intermediate_dim: int. The output dimension of the first Dense layer in
|
|
34
|
+
the MLP network of each transformer layer.
|
|
35
|
+
num_layers: int. The number of transformer layers.
|
|
36
|
+
num_attention_heads: int. The number of attention heads for each
|
|
37
|
+
transformer layer.
|
|
38
|
+
num_key_value_heads: int. The number of key-value heads for grouped
|
|
39
|
+
query attention in each transformer layer.
|
|
40
|
+
attention_bias: bool. Whether to use bias in the query, key, value, and
|
|
41
|
+
output projection layers in the attention blocks.
|
|
42
|
+
attention_dropout: float. Dropout probability for the attention layers.
|
|
43
|
+
rope_layer_enabled_list: list of bool. List indicating whether RoPE
|
|
44
|
+
(Rotary Position Embedding) is enabled for each layer. Typically,
|
|
45
|
+
some layers may disable RoPE for architectural variations.
|
|
46
|
+
layer_types: list of str. List of layer types for each transformer
|
|
47
|
+
layer (e.g., "attention" or other custom types).
|
|
48
|
+
mlp_bias: bool. Whether to use bias in the MLP (feedforward) layers.
|
|
49
|
+
layer_norm_epsilon: float. Epsilon value for layer normalization layers
|
|
50
|
+
to prevent division by zero.
|
|
51
|
+
max_position_embeddings: int. The maximum sequence length that this
|
|
52
|
+
model might ever be used with.
|
|
53
|
+
rope_theta: float. The base period of the RoPE embeddings.
|
|
54
|
+
partial_rotary_factor: float. The percentage of hidden dimensions to
|
|
55
|
+
rotate in RoPE. A value of 1.0 rotates all dimensions, while values
|
|
56
|
+
less than 1.0 only rotate a subset.
|
|
57
|
+
|
|
58
|
+
Examples:
|
|
59
|
+
|
|
60
|
+
```python
|
|
61
|
+
input_data = {
|
|
62
|
+
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
|
|
63
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
# Pretrained SmolLM3 decoder.
|
|
67
|
+
model = keras_hub.models.SmolLM3Backbone.from_preset(
|
|
68
|
+
"hf://HuggingFaceTB/SmolLM3-3B"
|
|
69
|
+
)
|
|
70
|
+
model(input_data)
|
|
71
|
+
|
|
72
|
+
# Randomly initialized SmolLM3 decoder with custom config.
|
|
73
|
+
model = keras_hub.models.SmolLM3Backbone(
|
|
74
|
+
vocabulary_size=49152,
|
|
75
|
+
hidden_dim=576,
|
|
76
|
+
intermediate_dim=1536,
|
|
77
|
+
num_layers=30,
|
|
78
|
+
num_attention_heads=9,
|
|
79
|
+
num_key_value_heads=3,
|
|
80
|
+
attention_bias=False,
|
|
81
|
+
attention_dropout=0.0,
|
|
82
|
+
rope_layer_enabled_list=[True] * 30,
|
|
83
|
+
layer_types=["attention"] * 30,
|
|
84
|
+
mlp_bias=False,
|
|
85
|
+
layer_norm_epsilon=1e-5,
|
|
86
|
+
max_position_embeddings=2048,
|
|
87
|
+
rope_theta=10000.0,
|
|
88
|
+
partial_rotary_factor=1.0,
|
|
89
|
+
)
|
|
90
|
+
model(input_data)
|
|
91
|
+
```
|
|
92
|
+
"""
|
|
93
|
+
|
|
94
|
+
def __init__(
|
|
95
|
+
self,
|
|
96
|
+
vocabulary_size,
|
|
97
|
+
hidden_dim,
|
|
98
|
+
intermediate_dim,
|
|
99
|
+
num_layers,
|
|
100
|
+
num_attention_heads,
|
|
101
|
+
num_key_value_heads,
|
|
102
|
+
attention_bias,
|
|
103
|
+
attention_dropout,
|
|
104
|
+
rope_layer_enabled_list,
|
|
105
|
+
layer_types,
|
|
106
|
+
mlp_bias,
|
|
107
|
+
layer_norm_epsilon,
|
|
108
|
+
max_position_embeddings,
|
|
109
|
+
rope_theta,
|
|
110
|
+
partial_rotary_factor,
|
|
111
|
+
**kwargs,
|
|
112
|
+
):
|
|
113
|
+
# === Layers ===
|
|
114
|
+
self.token_embedding = ReversibleEmbedding(
|
|
115
|
+
input_dim=vocabulary_size,
|
|
116
|
+
output_dim=hidden_dim,
|
|
117
|
+
name="token_embedding",
|
|
118
|
+
)
|
|
119
|
+
self.transformer_layers = []
|
|
120
|
+
for i in range(num_layers):
|
|
121
|
+
layer = SmolLM3DecoderLayer(
|
|
122
|
+
hidden_size=hidden_dim,
|
|
123
|
+
num_attention_heads=num_attention_heads,
|
|
124
|
+
num_key_value_heads=num_key_value_heads,
|
|
125
|
+
attention_bias=attention_bias,
|
|
126
|
+
attention_dropout=attention_dropout,
|
|
127
|
+
rope_layer_enabled_list=rope_layer_enabled_list,
|
|
128
|
+
layer_types=layer_types,
|
|
129
|
+
layer_idx=i,
|
|
130
|
+
intermediate_size=intermediate_dim,
|
|
131
|
+
mlp_bias=mlp_bias,
|
|
132
|
+
layer_norm_epsilon=layer_norm_epsilon,
|
|
133
|
+
max_position_embeddings=max_position_embeddings,
|
|
134
|
+
rope_theta=rope_theta,
|
|
135
|
+
partial_rotary_factor=partial_rotary_factor,
|
|
136
|
+
name=f"transformer_layer_{i}",
|
|
137
|
+
)
|
|
138
|
+
self.transformer_layers.append(layer)
|
|
139
|
+
|
|
140
|
+
self.norm = keras.layers.RMSNormalization(
|
|
141
|
+
epsilon=layer_norm_epsilon,
|
|
142
|
+
name="sequence_output_layernorm",
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
# === Functional Model ===
|
|
146
|
+
token_id_input = keras.Input(
|
|
147
|
+
shape=(None,), dtype="int32", name="token_ids"
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
padding_mask_input = keras.Input(
|
|
151
|
+
shape=(None,), dtype="int32", name="padding_mask"
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
x = self.token_embedding(token_id_input)
|
|
155
|
+
|
|
156
|
+
for decoder_layer in self.transformer_layers:
|
|
157
|
+
x = decoder_layer(
|
|
158
|
+
x,
|
|
159
|
+
decoder_padding_mask=padding_mask_input,
|
|
160
|
+
**kwargs,
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
sequence_output = self.norm(x)
|
|
164
|
+
super().__init__(
|
|
165
|
+
inputs={
|
|
166
|
+
"token_ids": token_id_input,
|
|
167
|
+
"padding_mask": padding_mask_input,
|
|
168
|
+
},
|
|
169
|
+
outputs=sequence_output,
|
|
170
|
+
**kwargs,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
# === Config ===
|
|
174
|
+
self.vocabulary_size = vocabulary_size
|
|
175
|
+
self.hidden_dim = hidden_dim
|
|
176
|
+
self.intermediate_dim = intermediate_dim
|
|
177
|
+
self.num_layers = num_layers
|
|
178
|
+
self.num_attention_heads = num_attention_heads
|
|
179
|
+
self.num_key_value_heads = num_key_value_heads
|
|
180
|
+
self.attention_bias = attention_bias
|
|
181
|
+
self.attention_dropout = attention_dropout
|
|
182
|
+
self.rope_layer_enabled_list = rope_layer_enabled_list
|
|
183
|
+
self.layer_types = layer_types
|
|
184
|
+
self.mlp_bias = mlp_bias
|
|
185
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
|
186
|
+
self.max_position_embeddings = max_position_embeddings
|
|
187
|
+
self.rope_theta = rope_theta
|
|
188
|
+
self.partial_rotary_factor = partial_rotary_factor
|
|
189
|
+
|
|
190
|
+
def get_config(self):
|
|
191
|
+
config = super().get_config()
|
|
192
|
+
config.update(
|
|
193
|
+
{
|
|
194
|
+
"vocabulary_size": self.vocabulary_size,
|
|
195
|
+
"hidden_dim": self.hidden_dim,
|
|
196
|
+
"intermediate_dim": self.intermediate_dim,
|
|
197
|
+
"num_layers": self.num_layers,
|
|
198
|
+
"num_attention_heads": self.num_attention_heads,
|
|
199
|
+
"num_key_value_heads": self.num_key_value_heads,
|
|
200
|
+
"attention_bias": self.attention_bias,
|
|
201
|
+
"attention_dropout": self.attention_dropout,
|
|
202
|
+
"rope_layer_enabled_list": self.rope_layer_enabled_list,
|
|
203
|
+
"layer_types": self.layer_types,
|
|
204
|
+
"mlp_bias": self.mlp_bias,
|
|
205
|
+
"layer_norm_epsilon": self.layer_norm_epsilon,
|
|
206
|
+
"max_position_embeddings": self.max_position_embeddings,
|
|
207
|
+
"rope_theta": self.rope_theta,
|
|
208
|
+
"partial_rotary_factor": self.partial_rotary_factor,
|
|
209
|
+
}
|
|
210
|
+
)
|
|
211
|
+
return config
|
|
@@ -0,0 +1,310 @@
|
|
|
1
|
+
import keras
|
|
2
|
+
from keras import ops
|
|
3
|
+
|
|
4
|
+
from keras_hub.src.api_export import keras_hub_export
|
|
5
|
+
from keras_hub.src.models.causal_lm import CausalLM
|
|
6
|
+
from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
|
|
7
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
|
|
8
|
+
SmolLM3CausalLMPreprocessor,
|
|
9
|
+
)
|
|
10
|
+
from keras_hub.src.utils.tensor_utils import any_equal
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@keras_hub_export(
|
|
14
|
+
[
|
|
15
|
+
"keras_hub.models.SmolLM3CausalLM",
|
|
16
|
+
"keras_hub.models.SmolLMCausalLM",
|
|
17
|
+
]
|
|
18
|
+
)
|
|
19
|
+
class SmolLM3CausalLM(CausalLM):
|
|
20
|
+
backbone_cls = SmolLM3Backbone
|
|
21
|
+
preprocessor_cls = SmolLM3CausalLMPreprocessor
|
|
22
|
+
|
|
23
|
+
def __init__(self, backbone, preprocessor=None, **kwargs):
|
|
24
|
+
# === Layers ===
|
|
25
|
+
self.backbone = backbone
|
|
26
|
+
self.preprocessor = preprocessor
|
|
27
|
+
|
|
28
|
+
# === Functional Model ===
|
|
29
|
+
# This must be "backbone.input" i.e. the full input structure,
|
|
30
|
+
# rather than "backbone.inputs" which is the flattened list of inputs.
|
|
31
|
+
inputs = backbone.input
|
|
32
|
+
hidden_states = backbone(inputs)
|
|
33
|
+
outputs = backbone.token_embedding(hidden_states, reverse=True)
|
|
34
|
+
super().__init__(
|
|
35
|
+
inputs=inputs,
|
|
36
|
+
outputs=outputs,
|
|
37
|
+
**kwargs,
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
def call_with_cache(
|
|
41
|
+
self,
|
|
42
|
+
token_ids,
|
|
43
|
+
cache,
|
|
44
|
+
cache_update_index,
|
|
45
|
+
):
|
|
46
|
+
"""Forward pass of `SmolLM3CausalLM` with cache.
|
|
47
|
+
|
|
48
|
+
`call_with_cache` adds an additional forward pass for the model for
|
|
49
|
+
autoregressive inference. Unlike calling the model directly, this method
|
|
50
|
+
allows caching previous key/value Tensors in multi-head attention layer,
|
|
51
|
+
and avoids recomputing the outputs of seen tokens.
|
|
52
|
+
|
|
53
|
+
Args:
|
|
54
|
+
token_ids: a dense int Tensor with shape `(batch_size, seq_len)`.
|
|
55
|
+
For prefill, `seq_len` is the prompt length. For generation,
|
|
56
|
+
`seq_len` is typically 1.
|
|
57
|
+
cache: a dense float Tensor, the cache of key and value.
|
|
58
|
+
Shape: (batch_size, num_layers, 2, max_seq_len,
|
|
59
|
+
num_key_value_heads, head_dim)
|
|
60
|
+
cache_update_index: int, or int Tensor. The index of current
|
|
61
|
+
inputs in the whole sequence.
|
|
62
|
+
training: Boolean, whether the call is during training or inference.
|
|
63
|
+
attention_mask: Optional attention mask.
|
|
64
|
+
|
|
65
|
+
Returns:
|
|
66
|
+
A (logits, hidden_states, cache) tuple. Where `logits` is the
|
|
67
|
+
language model logits for the input token_ids, `hidden_states` is
|
|
68
|
+
the final hidden representation of the input tokens, and `cache` is
|
|
69
|
+
the decoding cache.
|
|
70
|
+
"""
|
|
71
|
+
x = self.backbone.token_embedding(token_ids)
|
|
72
|
+
|
|
73
|
+
# Each decoder layer has a cache; we update them separately.
|
|
74
|
+
updated_cache = []
|
|
75
|
+
|
|
76
|
+
for i in range(self.backbone.num_layers):
|
|
77
|
+
current_cache = cache[:, i, ...]
|
|
78
|
+
x, next_cache = self.backbone.transformer_layers[i](
|
|
79
|
+
x,
|
|
80
|
+
self_attention_cache=current_cache,
|
|
81
|
+
self_attention_cache_update_index=cache_update_index,
|
|
82
|
+
)
|
|
83
|
+
updated_cache.append(next_cache)
|
|
84
|
+
cache = ops.stack(updated_cache, axis=1)
|
|
85
|
+
hidden_states = x = self.backbone.norm(x)
|
|
86
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
|
87
|
+
return logits, hidden_states, cache
|
|
88
|
+
|
|
89
|
+
def _build_cache(self, token_ids):
|
|
90
|
+
"""Build an empty cache for use with `call_with_cache()`."""
|
|
91
|
+
batch_size = ops.shape(token_ids)[0]
|
|
92
|
+
max_length = ops.shape(token_ids)[1]
|
|
93
|
+
num_layers = self.backbone.num_layers
|
|
94
|
+
num_key_value_heads = self.backbone.num_key_value_heads
|
|
95
|
+
head_dim = self.backbone.hidden_dim // self.backbone.num_attention_heads
|
|
96
|
+
shape = [
|
|
97
|
+
batch_size,
|
|
98
|
+
num_layers,
|
|
99
|
+
2,
|
|
100
|
+
max_length,
|
|
101
|
+
num_key_value_heads,
|
|
102
|
+
head_dim,
|
|
103
|
+
]
|
|
104
|
+
cache = ops.zeros(shape, dtype=self.compute_dtype)
|
|
105
|
+
index = ops.convert_to_tensor(0, dtype="int32")
|
|
106
|
+
# Seed the cache.
|
|
107
|
+
_, hidden_states, cache = self.call_with_cache(token_ids, cache, index)
|
|
108
|
+
return hidden_states, cache
|
|
109
|
+
|
|
110
|
+
def generate_step(
|
|
111
|
+
self,
|
|
112
|
+
inputs,
|
|
113
|
+
stop_token_ids=None,
|
|
114
|
+
):
|
|
115
|
+
"""A compilable generation function for a single batch of inputs.
|
|
116
|
+
|
|
117
|
+
This function represents the inner, XLA-compilable, generation function
|
|
118
|
+
for a single batch of inputs. Inputs should have the same structure as
|
|
119
|
+
model inputs, a dictionary with keys `"token_ids"` and `"padding_mask"`.
|
|
120
|
+
|
|
121
|
+
Args:
|
|
122
|
+
inputs: A dictionary with two keys `"token_ids"` and
|
|
123
|
+
`"padding_mask"` and batched tensor values.
|
|
124
|
+
stop_token_ids: Tuple of id's of the end token to stop on. If all
|
|
125
|
+
sequences have produced a new stop token, generation
|
|
126
|
+
will stop.
|
|
127
|
+
"""
|
|
128
|
+
token_ids, padding_mask = inputs["token_ids"], inputs["padding_mask"]
|
|
129
|
+
|
|
130
|
+
hidden_states, cache = self._build_cache(token_ids)
|
|
131
|
+
# Compute the lengths of all user inputted tokens ids.
|
|
132
|
+
row_lengths = ops.sum(ops.cast(padding_mask, "int32"), axis=-1)
|
|
133
|
+
# Start at the first index that has no user inputted id.
|
|
134
|
+
index = ops.min(row_lengths)
|
|
135
|
+
|
|
136
|
+
def next(prompt, cache, index):
|
|
137
|
+
# The cache index is the index of our previous token.
|
|
138
|
+
cache_update_index = index - 1
|
|
139
|
+
batch_size = ops.shape(prompt)[0]
|
|
140
|
+
prompt = ops.slice(prompt, [0, cache_update_index], [batch_size, 1])
|
|
141
|
+
|
|
142
|
+
logits, hidden_states, cache = self.call_with_cache(
|
|
143
|
+
prompt,
|
|
144
|
+
cache,
|
|
145
|
+
cache_update_index,
|
|
146
|
+
)
|
|
147
|
+
return (
|
|
148
|
+
ops.squeeze(logits, axis=1),
|
|
149
|
+
ops.squeeze(hidden_states, axis=1),
|
|
150
|
+
cache,
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
token_ids = self.sampler(
|
|
154
|
+
next=next,
|
|
155
|
+
prompt=token_ids,
|
|
156
|
+
cache=cache,
|
|
157
|
+
index=index,
|
|
158
|
+
mask=padding_mask,
|
|
159
|
+
stop_token_ids=stop_token_ids,
|
|
160
|
+
hidden_states=hidden_states,
|
|
161
|
+
model=self,
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
# Compute an output padding mask with the token ids we updated.
|
|
165
|
+
if stop_token_ids is not None:
|
|
166
|
+
# Build a mask of stop token locations not in the original
|
|
167
|
+
# prompt (not in locations where `padding_mask` is True).
|
|
168
|
+
end_locations = any_equal(
|
|
169
|
+
token_ids, stop_token_ids, ops.logical_not(padding_mask)
|
|
170
|
+
)
|
|
171
|
+
end_locations = ops.cast(end_locations, "int32")
|
|
172
|
+
# Use cumsum to get ones in all locations after end_locations.
|
|
173
|
+
cumsum = ops.cast(ops.cumsum(end_locations, axis=-1), "int32")
|
|
174
|
+
overflow = cumsum - end_locations
|
|
175
|
+
# Our padding mask is the inverse of these overflow locations.
|
|
176
|
+
padding_mask = ops.logical_not(ops.cast(overflow, "bool"))
|
|
177
|
+
else:
|
|
178
|
+
# Without early stopping, all locations will have been updated.
|
|
179
|
+
padding_mask = ops.ones_like(token_ids, dtype="bool")
|
|
180
|
+
return {
|
|
181
|
+
"token_ids": token_ids,
|
|
182
|
+
"padding_mask": padding_mask,
|
|
183
|
+
}
|
|
184
|
+
|
|
185
|
+
def score(
|
|
186
|
+
self,
|
|
187
|
+
token_ids,
|
|
188
|
+
padding_mask=None,
|
|
189
|
+
scoring_mode="logits",
|
|
190
|
+
layer_intercept_fn=None,
|
|
191
|
+
target_ids=None,
|
|
192
|
+
):
|
|
193
|
+
"""Score a generation represented by the provided token ids.
|
|
194
|
+
|
|
195
|
+
Args:
|
|
196
|
+
token_ids: A <int>[batch_size, num_tokens] tensor containing tokens
|
|
197
|
+
to score. Typically, this tensor captures the output from a call
|
|
198
|
+
to `SmolLM3CausalLM.generate()`, i.e., tokens for both the input
|
|
199
|
+
text and the model-generated text.
|
|
200
|
+
padding_mask: A <bool>[batch_size, num_tokens] tensor indicating the
|
|
201
|
+
tokens that should be preserved during generation. This is an
|
|
202
|
+
artifact required by the `SmolLM3Backbone` and isn't influential
|
|
203
|
+
on the computation of this function. If omitted, this function
|
|
204
|
+
uses `keras.ops.ones()` to create a tensor of the appropriate
|
|
205
|
+
shape.
|
|
206
|
+
scoring_mode: The type of scores to return, either "logits" or
|
|
207
|
+
"loss", both will be per input token.
|
|
208
|
+
layer_intercept_fn: An optional function for augmenting activations
|
|
209
|
+
with additional computation, for example, as part of
|
|
210
|
+
interpretability research. This function will be passed the
|
|
211
|
+
activations as its first parameter and a numeric index
|
|
212
|
+
associated with that backbone layer. _This index _is not_ an
|
|
213
|
+
index into `self.backbone.layers`_. The index -1 accompanies the
|
|
214
|
+
embeddings returned by calling `self.backbone.token_embedding()`
|
|
215
|
+
on `token_ids` in the forward direction. All subsequent indexes
|
|
216
|
+
will be 0-based indices for the activations returned by each of
|
|
217
|
+
the Transformers layers in the backbone. This function must
|
|
218
|
+
return a <float>[batch_size, num_tokens, hidden_dims] tensor
|
|
219
|
+
that can be passed as an input to the next layer in the model.
|
|
220
|
+
target_ids: An <bool>[batch_size, num_tokens] tensor containing the
|
|
221
|
+
predicted tokens against which the loss should be computed. If a
|
|
222
|
+
span of tokens is provided (sequential truthy values along
|
|
223
|
+
axis=1 in the tensor), the loss will be computed as the
|
|
224
|
+
aggregate across those tokens.
|
|
225
|
+
|
|
226
|
+
Raises:
|
|
227
|
+
ValueError: If an unsupported scoring_mode is provided, or if the
|
|
228
|
+
target_ids are not provided when using ScoringMode.LOSS.
|
|
229
|
+
|
|
230
|
+
Returns:
|
|
231
|
+
The per-token scores as a tensor of size
|
|
232
|
+
<float>[batch_size, num_tokens, vocab_size] in "logits" mode, or
|
|
233
|
+
<float>[batch_size, num_tokens] in "loss" mode.
|
|
234
|
+
|
|
235
|
+
Example:
|
|
236
|
+
|
|
237
|
+
Compute gradients between embeddings and loss scores with TensorFlow:
|
|
238
|
+
```python
|
|
239
|
+
smol_lm = keras_hub.models.SmolLM3CausalLM.from_preset("...")
|
|
240
|
+
generations = smol_lm.generate(
|
|
241
|
+
["This is a", "Where are you"],
|
|
242
|
+
max_length=30
|
|
243
|
+
)
|
|
244
|
+
preprocessed = smol_lm.preprocessor.generate_preprocess(generations)
|
|
245
|
+
generation_ids = preprocessed["token_ids"]
|
|
246
|
+
padding_mask = preprocessed["padding_mask"]
|
|
247
|
+
target_ids = keras.ops.roll(generation_ids, shift=-1, axis=1)
|
|
248
|
+
|
|
249
|
+
embeddings = None
|
|
250
|
+
with tf.GradientTape(watch_accessed_variables=True) as tape:
|
|
251
|
+
def layer_intercept_fn(x, i):
|
|
252
|
+
if i == -1:
|
|
253
|
+
nonlocal embeddings, tape
|
|
254
|
+
embeddings = x
|
|
255
|
+
tape.watch(embeddings)
|
|
256
|
+
return x
|
|
257
|
+
|
|
258
|
+
losses = smol_lm.score(
|
|
259
|
+
token_ids=generation_ids,
|
|
260
|
+
padding_mask=padding_mask,
|
|
261
|
+
scoring_mode="loss",
|
|
262
|
+
layer_intercept_fn=layer_intercept_fn,
|
|
263
|
+
target_ids=target_ids,
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
grads = tape.gradient(losses, embeddings)
|
|
267
|
+
```
|
|
268
|
+
"""
|
|
269
|
+
if scoring_mode not in ("logits", "loss"):
|
|
270
|
+
raise ValueError(
|
|
271
|
+
"Unsupported scoring_mode. Must be one of 'logits' or 'loss'."
|
|
272
|
+
)
|
|
273
|
+
|
|
274
|
+
if scoring_mode == "loss" and target_ids is None:
|
|
275
|
+
raise ValueError(
|
|
276
|
+
"Cannot compute loss without targets. Please provide target "
|
|
277
|
+
"token ids via the target_ids parameter."
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
batch_shape = ops.shape(token_ids)[:2]
|
|
281
|
+
assert len(batch_shape) == 2
|
|
282
|
+
|
|
283
|
+
if padding_mask is None:
|
|
284
|
+
padding_mask = ops.ones(shape=batch_shape)
|
|
285
|
+
|
|
286
|
+
if layer_intercept_fn is None:
|
|
287
|
+
|
|
288
|
+
def default_layer_intercept_fn(x, unused_i):
|
|
289
|
+
return x
|
|
290
|
+
|
|
291
|
+
layer_intercept_fn = default_layer_intercept_fn
|
|
292
|
+
|
|
293
|
+
token_embeddings = self.backbone.token_embedding(token_ids)
|
|
294
|
+
x = layer_intercept_fn(token_embeddings, -1)
|
|
295
|
+
|
|
296
|
+
for i, transformer_layer in enumerate(self.backbone.transformer_layers):
|
|
297
|
+
x = transformer_layer(x, decoder_padding_mask=padding_mask)
|
|
298
|
+
x = layer_intercept_fn(x, i)
|
|
299
|
+
|
|
300
|
+
x = self.backbone.norm(x)
|
|
301
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
|
302
|
+
|
|
303
|
+
if scoring_mode == "logits":
|
|
304
|
+
return logits
|
|
305
|
+
|
|
306
|
+
per_token_loss_fn = keras.losses.SparseCategoricalCrossentropy(
|
|
307
|
+
from_logits=True, reduction="none"
|
|
308
|
+
)
|
|
309
|
+
per_token_loss = per_token_loss_fn(target_ids, logits)
|
|
310
|
+
return per_token_loss
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
|
2
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
|
3
|
+
from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
|
|
4
|
+
from keras_hub.src.models.smollm3.smollm3_tokenizer import SmolLM3Tokenizer
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@keras_hub_export(
|
|
8
|
+
[
|
|
9
|
+
"keras_hub.models.SmolLMCausalLMPreprocessor",
|
|
10
|
+
"keras_hub.models.SmolLM3CausalLMPreprocessor",
|
|
11
|
+
]
|
|
12
|
+
)
|
|
13
|
+
class SmolLM3CausalLMPreprocessor(CausalLMPreprocessor):
|
|
14
|
+
"""SmolLM3 Causal LM preprocessor.
|
|
15
|
+
|
|
16
|
+
This preprocessing layer is meant for use with
|
|
17
|
+
`keras_hub.models.SmolLM3CausalLM`. By default, it will take in batches of
|
|
18
|
+
strings, and return outputs in a `(x, y, sample_weight)` format, where the
|
|
19
|
+
`y` label is the next token id in the `x` sequence.
|
|
20
|
+
|
|
21
|
+
For use with generation, the layer also exposes two methods
|
|
22
|
+
`generate_preprocess()` and `generate_postprocess()`. When this preprocessor
|
|
23
|
+
is attached to a `keras_hub.models.SmolLM3CausalLM` instance, these methods
|
|
24
|
+
will be called implicitly in `generate()`. They can also be called
|
|
25
|
+
standalone (e.g. to precompute preprocessing inputs for generation in a
|
|
26
|
+
separate process).
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
tokenizer: A `keras_hub.models.SmolLM3Tokenizer` instance.
|
|
30
|
+
sequence_length: The length of the packed inputs.
|
|
31
|
+
add_start_token: If `True`, the preprocessor will prepend the tokenizer
|
|
32
|
+
start token to each input sequence. Default is `True`.
|
|
33
|
+
add_end_token: If `True`, the preprocessor will append the tokenizer
|
|
34
|
+
end token to each input sequence. Default is `False`.
|
|
35
|
+
|
|
36
|
+
Call arguments:
|
|
37
|
+
x: A string, `tf.Tensor` or list of python strings.
|
|
38
|
+
y: Label data. Should always be `None` as the layer generates labels.
|
|
39
|
+
sample_weight: Label weights. Should always be `None` as the layer
|
|
40
|
+
generates label weights.
|
|
41
|
+
sequence_length: Pass to override the configured `sequence_length` of
|
|
42
|
+
the layer.
|
|
43
|
+
|
|
44
|
+
Examples:
|
|
45
|
+
```python
|
|
46
|
+
# Load the preprocessor from a preset.
|
|
47
|
+
preprocessor = keras_hub.models.SmolLM3CausalLMPreprocessor.from_preset(
|
|
48
|
+
"..."
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
# Tokenize and pack a single sentence.
|
|
52
|
+
sentence = tf.constant("...")
|
|
53
|
+
preprocessor(sentence)
|
|
54
|
+
# Same output.
|
|
55
|
+
preprocessor("...")
|
|
56
|
+
|
|
57
|
+
# Tokenize a batch of sentences.
|
|
58
|
+
sentences = tf.constant(["...", "..."])
|
|
59
|
+
preprocessor(sentences)
|
|
60
|
+
# Same output.
|
|
61
|
+
preprocessor(["...", "..."])
|
|
62
|
+
|
|
63
|
+
# Map a dataset to preprocess a single sentence.
|
|
64
|
+
features = tf.constant(
|
|
65
|
+
[
|
|
66
|
+
"...",
|
|
67
|
+
"...",
|
|
68
|
+
]
|
|
69
|
+
)
|
|
70
|
+
labels = tf.constant([1, 0])
|
|
71
|
+
ds = tf.data.Dataset.from_tensor_slices((features, labels))
|
|
72
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
73
|
+
|
|
74
|
+
# Map a dataset to preprocess unlabled sentences.
|
|
75
|
+
ds = tf.data.Dataset.from_tensor_slices(features)
|
|
76
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
77
|
+
```
|
|
78
|
+
"""
|
|
79
|
+
|
|
80
|
+
backbone_cls = SmolLM3Backbone
|
|
81
|
+
tokenizer_cls = SmolLM3Tokenizer
|
|
82
|
+
|
|
83
|
+
def __init__(self, *args, **kwargs):
|
|
84
|
+
super().__init__(*args, **kwargs)
|