keras-hub-nightly 0.23.0.dev202510030412__tar.gz → 0.26.0.dev202512260436__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

Files changed (653) hide show
  1. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/PKG-INFO +4 -5
  2. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/README.md +2 -2
  3. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/api/layers/__init__.py +6 -0
  4. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/api/models/__init__.py +48 -0
  5. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/api/tokenizers/__init__.py +9 -0
  6. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/layers/modeling/reversible_embedding.py +8 -0
  7. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/layers/modeling/rotary_embedding.py +340 -0
  8. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/token_and_position_embedding.py +1 -3
  9. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/albert/albert_backbone.py +1 -3
  10. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bart/bart_backbone.py +1 -3
  11. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bert/bert_backbone.py +1 -3
  12. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bloom/bloom_backbone.py +1 -3
  13. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/causal_lm.py +28 -1
  14. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +1 -3
  15. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/depth_anything/depth_anything_presets.py +41 -0
  16. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/dinov2/dinov2_layers.py +3 -1
  17. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/dinov3/__init__.py +5 -0
  18. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/dinov3/dinov3_backbone.py +263 -0
  19. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/dinov3/dinov3_image_converter.py +8 -0
  20. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/dinov3/dinov3_layers.py +1013 -0
  21. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/dinov3/dinov3_presets.py +93 -0
  22. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/electra/electra_backbone.py +1 -3
  23. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/esm_attention.py +11 -4
  24. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/f_net/f_net_backbone.py +1 -3
  25. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/falcon/falcon_backbone.py +1 -3
  26. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma/gemma_backbone.py +1 -3
  27. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma/gemma_causal_lm.py +16 -0
  28. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma/gemma_presets.py +22 -0
  29. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_backbone.py +1 -3
  30. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +8 -3
  31. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_presets.py +51 -0
  32. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +20 -8
  33. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt2/gpt2_backbone.py +1 -3
  34. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +17 -0
  35. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +1 -3
  36. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/gpt_oss/__init__.py +5 -0
  37. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/gpt_oss/gpt_oss_attention.py +330 -0
  38. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/gpt_oss/gpt_oss_backbone.py +219 -0
  39. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/gpt_oss/gpt_oss_causal_lm.py +284 -0
  40. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/gpt_oss/gpt_oss_causal_lm_preprocessor.py +79 -0
  41. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/gpt_oss/gpt_oss_decoder.py +444 -0
  42. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/gpt_oss/gpt_oss_layer_norm.py +34 -0
  43. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/gpt_oss/gpt_oss_presets.py +51 -0
  44. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/gpt_oss/gpt_oss_tokenizer.py +39 -0
  45. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/image_to_image.py +5 -0
  46. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/inpaint.py +5 -0
  47. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/llama_backbone.py +1 -3
  48. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama3/llama3_presets.py +1 -1
  49. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/masked_lm.py +22 -0
  50. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mistral/mistral_backbone.py +1 -3
  51. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mixtral/mixtral_backbone.py +1 -3
  52. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/__init__.py +9 -0
  53. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py +699 -0
  54. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py +396 -0
  55. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py +890 -0
  56. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py +436 -0
  57. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py +157 -0
  58. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py +16 -0
  59. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py +10 -0
  60. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py +462 -0
  61. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py +15 -0
  62. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py +146 -0
  63. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_backbone.py +1 -3
  64. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +1 -3
  65. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/parseq/__init__.py +5 -0
  66. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/parseq/parseq_decoder.py +21 -9
  67. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/parseq/parseq_presets.py +15 -0
  68. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/phi3_backbone.py +1 -3
  69. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen/qwen_backbone.py +1 -3
  70. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3/qwen3_backbone.py +1 -3
  71. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3/qwen3_presets.py +36 -0
  72. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/qwen3_moe/__init__.py +5 -0
  73. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +1 -3
  74. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +30 -0
  75. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +1 -3
  76. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +1 -3
  77. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/siglip_layers.py +1 -3
  78. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/siglip_presets.py +15 -0
  79. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/smollm3/__init__.py +5 -0
  80. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/smollm3/smollm3_backbone.py +209 -0
  81. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
  82. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
  83. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
  84. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/smollm3/smollm3_presets.py +16 -0
  85. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
  86. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
  87. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +4 -4
  88. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +1 -3
  89. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5/t5_backbone.py +1 -3
  90. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/t5gemma_backbone.py +1 -3
  91. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/text_to_image.py +5 -0
  92. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tests/test_case.py +1 -3
  93. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/preset_utils.py +9 -2
  94. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/tensor_utils.py +3 -1
  95. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils/timm/convert_mobilenetv5.py +321 -0
  96. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/timm/preset_loader.py +8 -4
  97. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils/transformers/convert_dinov3.py +106 -0
  98. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils/transformers/convert_gemma3.py +353 -0
  99. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils/transformers/convert_gpt_oss.py +302 -0
  100. keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
  101. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/preset_loader.py +18 -0
  102. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/version.py +1 -1
  103. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub_nightly.egg-info/PKG-INFO +4 -5
  104. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub_nightly.egg-info/SOURCES.txt +41 -0
  105. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub_nightly.egg-info/requires.txt +1 -1
  106. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/pyproject.toml +3 -3
  107. keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/layers/modeling/reversible_embedding.py +0 -275
  108. keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/layers/modeling/rotary_embedding.py +0 -166
  109. keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/models/depth_anything/depth_anything_presets.py +0 -4
  110. keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/utils/transformers/__init__.py +0 -0
  111. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/api/__init__.py +0 -0
  112. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/api/metrics/__init__.py +0 -0
  113. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/api/samplers/__init__.py +0 -0
  114. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/api/utils/__init__.py +0 -0
  115. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/__init__.py +0 -0
  116. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/api_export.py +0 -0
  117. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/__init__.py +0 -0
  118. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/__init__.py +0 -0
  119. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  120. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  121. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  122. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  123. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  124. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  125. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  126. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  127. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  128. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  129. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  130. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  131. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  132. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  133. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  134. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  135. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  136. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  137. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  138. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  139. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  140. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  141. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/metrics/__init__.py +0 -0
  142. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/metrics/bleu.py +0 -0
  143. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/metrics/edit_distance.py +0 -0
  144. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/metrics/perplexity.py +0 -0
  145. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/metrics/rouge_base.py +0 -0
  146. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/metrics/rouge_l.py +0 -0
  147. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/metrics/rouge_n.py +0 -0
  148. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/__init__.py +0 -0
  149. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/albert/__init__.py +0 -0
  150. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  151. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  152. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/albert/albert_presets.py +0 -0
  153. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  154. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  155. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  156. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/audio_to_text.py +0 -0
  157. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  158. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/backbone.py +0 -0
  159. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bart/__init__.py +0 -0
  160. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bart/bart_presets.py +0 -0
  161. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  162. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  163. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  164. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/basnet/__init__.py +0 -0
  165. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/basnet/basnet.py +0 -0
  166. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  167. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  168. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  169. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  170. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bert/__init__.py +0 -0
  171. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  172. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  173. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bert/bert_presets.py +0 -0
  174. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  175. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  176. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  177. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bloom/__init__.py +0 -0
  178. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  179. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  180. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  181. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  182. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  183. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  184. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/clip/__init__.py +0 -0
  186. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  187. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  188. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/clip/clip_layers.py +0 -0
  189. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  190. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/clip/clip_presets.py +0 -0
  191. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  192. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  193. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  194. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/cspnet/__init__.py +0 -0
  195. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  196. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  197. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  198. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  199. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  200. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/__init__.py +0 -0
  201. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_attention.py +0 -0
  202. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_backbone.py +0 -0
  203. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_decoder.py +0 -0
  204. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_encoder.py +0 -0
  205. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +0 -0
  206. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_image_converter.py +0 -0
  207. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_layers.py +0 -0
  208. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_loss.py +0 -0
  209. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_object_detector.py +0 -0
  210. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +0 -0
  211. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_presets.py +0 -0
  212. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/d_fine/d_fine_utils.py +0 -0
  213. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  214. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  215. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  216. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  217. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  218. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  219. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  220. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  221. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  222. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  223. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  224. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  225. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  226. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  227. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  228. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  229. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  230. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deit/__init__.py +0 -0
  231. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deit/deit_backbone.py +0 -0
  232. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deit/deit_image_classifier.py +0 -0
  233. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +0 -0
  234. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deit/deit_image_converter.py +0 -0
  235. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deit/deit_layers.py +0 -0
  236. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/deit/deit_presets.py +0 -0
  237. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/densenet/__init__.py +0 -0
  238. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  239. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  240. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  241. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  242. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  243. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_anything/__init__.py +0 -0
  244. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_anything/depth_anything_backbone.py +0 -0
  245. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_anything/depth_anything_depth_estimator.py +0 -0
  246. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.py +0 -0
  247. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_anything/depth_anything_image_converter.py +0 -0
  248. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_anything/depth_anything_layers.py +0 -0
  249. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_anything/depth_anything_loss.py +0 -0
  250. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_anything/interpolate.py +0 -0
  251. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_estimator.py +0 -0
  252. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/depth_estimator_preprocessor.py +0 -0
  253. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/dinov2/__init__.py +0 -0
  254. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/dinov2/dinov2_backbone.py +0 -0
  255. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/dinov2/dinov2_image_converter.py +0 -0
  256. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/dinov2/dinov2_presets.py +0 -0
  257. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  258. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  259. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  260. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  261. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  262. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  263. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  264. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  265. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  266. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/efficientnet/cba.py +0 -0
  267. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  268. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  269. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  270. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  271. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  272. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  273. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  274. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/electra/__init__.py +0 -0
  275. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/electra/electra_presets.py +0 -0
  276. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  277. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/__init__.py +0 -0
  278. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/esm_backbone.py +0 -0
  279. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/esm_classifier.py +0 -0
  280. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/esm_classifier_preprocessor.py +0 -0
  281. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/esm_encoder.py +0 -0
  282. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/esm_masked_plm.py +0 -0
  283. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/esm_masked_plm_preprocessor.py +0 -0
  284. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/esm_presets.py +0 -0
  285. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/esm/esm_tokenizer.py +0 -0
  286. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/f_net/__init__.py +0 -0
  287. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  288. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  289. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  290. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  291. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  292. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  293. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/falcon/__init__.py +0 -0
  294. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  295. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  296. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  297. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  298. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  299. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  300. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  301. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/flux/__init__.py +0 -0
  302. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/flux/flux_layers.py +0 -0
  303. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/flux/flux_maths.py +0 -0
  304. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/flux/flux_model.py +0 -0
  305. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/flux/flux_presets.py +0 -0
  306. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  307. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  308. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma/__init__.py +0 -0
  309. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  310. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  311. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  312. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  313. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  314. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/__init__.py +0 -0
  315. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  316. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  317. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  318. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  319. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  320. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  321. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  322. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt2/__init__.py +0 -0
  323. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  324. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  325. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  326. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  327. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  328. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  329. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  330. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  331. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  332. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  333. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/hgnetv2/__init__.py +0 -0
  334. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +0 -0
  335. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +0 -0
  336. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +0 -0
  337. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +0 -0
  338. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +0 -0
  339. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/hgnetv2/hgnetv2_layers.py +0 -0
  340. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/hgnetv2/hgnetv2_presets.py +0 -0
  341. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/image_classifier.py +0 -0
  342. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  343. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/image_segmenter.py +0 -0
  344. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  345. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/__init__.py +0 -0
  346. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/llama_attention.py +0 -0
  347. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  348. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  349. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  350. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  351. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/llama_presets.py +0 -0
  352. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  353. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  354. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama3/__init__.py +0 -0
  355. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  356. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  357. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  358. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  359. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  360. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mistral/__init__.py +0 -0
  361. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  362. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  363. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  364. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  365. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  366. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  367. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  368. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mit/__init__.py +0 -0
  369. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  370. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  371. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  372. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  373. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mit/mit_layers.py +0 -0
  374. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mit/mit_presets.py +0 -0
  375. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mixtral/__init__.py +0 -0
  376. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  377. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  378. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  379. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  380. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  381. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
  382. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  383. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  384. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  385. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  386. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  387. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  388. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  389. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/mobilenet/util.py +0 -0
  390. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/__init__.py +0 -0
  391. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  392. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  393. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  394. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  395. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  396. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  397. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  398. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  399. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  400. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/object_detector.py +0 -0
  401. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  402. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/opt/__init__.py +0 -0
  403. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  404. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  405. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  406. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/opt/opt_presets.py +0 -0
  407. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  408. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  409. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  410. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  411. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  412. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  413. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  414. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  415. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  416. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/parseq/parseq_backbone.py +0 -0
  417. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/parseq/parseq_causal_lm.py +0 -0
  418. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +0 -0
  419. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/parseq/parseq_image_converter.py +0 -0
  420. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/parseq/parseq_tokenizer.py +0 -0
  421. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/__init__.py +0 -0
  422. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  423. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  424. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  425. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  426. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  427. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  428. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  429. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  430. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/preprocessor.py +0 -0
  431. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen/__init__.py +0 -0
  432. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  433. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  434. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  435. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  436. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  437. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  438. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  439. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3/__init__.py +0 -0
  440. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
  441. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3/qwen3_causal_lm.py +0 -0
  442. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
  443. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
  444. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
  445. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
  446. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py +0 -0
  447. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py +0 -0
  448. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py +0 -0
  449. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py +0 -0
  450. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py +0 -0
  451. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py +0 -0
  452. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  453. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  454. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  455. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  456. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  457. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  458. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
  459. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  460. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/resnet/__init__.py +0 -0
  461. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  462. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  463. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  464. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  465. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  466. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/retinanet/__init__.py +0 -0
  467. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  468. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  469. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  470. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  471. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  472. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  473. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  474. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  475. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roberta/__init__.py +0 -0
  476. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  477. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  478. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  479. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  480. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  481. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  482. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  483. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/models/parseq → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/roformer_v2}/__init__.py +0 -0
  484. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  485. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  486. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  487. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  488. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  489. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  490. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  491. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  492. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/__init__.py +0 -0
  493. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  494. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  495. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  496. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  497. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/sam_layers.py +0 -0
  498. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  499. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/sam_presets.py +0 -0
  500. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  501. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  502. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/segformer/__init__.py +0 -0
  503. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  504. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  505. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  506. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  507. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  508. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  509. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  510. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/__init__.py +0 -0
  511. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  512. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  513. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  514. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  515. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  516. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  517. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  518. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  519. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  520. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  521. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  522. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  523. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  524. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  525. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  526. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5/__init__.py +0 -0
  527. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  528. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  529. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  530. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5/t5_presets.py +0 -0
  531. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  532. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  533. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/__init__.py +0 -0
  534. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/t5gemma_attention.py +0 -0
  535. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/t5gemma_decoder.py +0 -0
  536. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/t5gemma_encoder.py +0 -0
  537. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/t5gemma_layers.py +0 -0
  538. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/t5gemma_presets.py +0 -0
  539. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +0 -0
  540. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +0 -0
  541. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +0 -0
  542. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/task.py +0 -0
  543. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/text_classifier.py +0 -0
  544. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  545. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  546. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vae/__init__.py +0 -0
  547. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  548. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vae/vae_layers.py +0 -0
  549. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vgg/__init__.py +0 -0
  550. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  551. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  552. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  553. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  554. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  555. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vit/__init__.py +0 -0
  556. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  557. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  558. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  559. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  560. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vit/vit_layers.py +0 -0
  561. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vit/vit_presets.py +0 -0
  562. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/models/roformer_v2 → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/vit_det}/__init__.py +0 -0
  563. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  564. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  565. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/whisper/__init__.py +0 -0
  566. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  567. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  568. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  569. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  570. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  571. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  572. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  573. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xception/__init__.py +0 -0
  574. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  575. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  576. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  577. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  578. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xception/xception_presets.py +0 -0
  579. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  580. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  581. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  582. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  583. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  584. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  585. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  586. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  587. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/models/vit_det → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/models/xlnet}/__init__.py +0 -0
  588. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  589. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  590. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  591. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  592. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/models/xlnet → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/samplers}/__init__.py +0 -0
  593. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/samplers/beam_sampler.py +0 -0
  594. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  595. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  596. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/samplers/random_sampler.py +0 -0
  597. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/samplers/sampler.py +0 -0
  598. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/samplers/serialization.py +0 -0
  599. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  600. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  601. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/samplers → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/tests}/__init__.py +0 -0
  602. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  603. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/tests → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/tokenizers}/__init__.py +0 -0
  604. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  605. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  606. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  607. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  608. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  609. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  610. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  611. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  612. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/tokenizers → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils}/__init__.py +0 -0
  613. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/utils → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils/coco}/__init__.py +0 -0
  614. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  615. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/utils/coco → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils/imagenet}/__init__.py +0 -0
  616. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  617. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/keras_utils.py +0 -0
  618. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/openvino_utils.py +0 -0
  619. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/pipeline_model.py +0 -0
  620. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/python_utils.py +0 -0
  621. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/utils/imagenet → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils/timm}/__init__.py +0 -0
  622. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  623. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  624. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  625. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  626. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  627. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  628. {keras_hub_nightly-0.23.0.dev202510030412/keras_hub/src/utils/timm → keras_hub_nightly-0.26.0.dev202512260436/keras_hub/src/utils/transformers}/__init__.py +0 -0
  629. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  630. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  631. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  632. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_deit.py +0 -0
  633. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_dinov2.py +0 -0
  634. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  635. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_esm.py +0 -0
  636. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  637. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  638. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  639. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  640. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  641. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  642. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  643. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
  644. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_qwen3_moe.py +0 -0
  645. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  646. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_t5gemma.py +0 -0
  647. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  648. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/export/gemma.py +0 -0
  649. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/export/hf_exporter.py +0 -0
  650. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  651. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  652. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  653. {keras_hub_nightly-0.23.0.dev202510030412 → keras_hub_nightly-0.26.0.dev202512260436}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202510030412
3
+ Version: 0.26.0.dev202512260436
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -8,7 +8,6 @@ Project-URL: Home, https://keras.io/keras_hub/
8
8
  Project-URL: Repository, https://github.com/keras-team/keras/keras_hub
9
9
  Classifier: Development Status :: 3 - Alpha
10
10
  Classifier: Programming Language :: Python :: 3
11
- Classifier: Programming Language :: Python :: 3.9
12
11
  Classifier: Programming Language :: Python :: 3.10
13
12
  Classifier: Programming Language :: Python :: 3.11
14
13
  Classifier: Programming Language :: Python :: 3 :: Only
@@ -18,9 +17,9 @@ Classifier: Operating System :: MacOS
18
17
  Classifier: Intended Audience :: Science/Research
19
18
  Classifier: Topic :: Scientific/Engineering
20
19
  Classifier: Topic :: Software Development
21
- Requires-Python: >=3.10
20
+ Requires-Python: >=3.11
22
21
  Description-Content-Type: text/markdown
23
- Requires-Dist: keras>=3.8
22
+ Requires-Dist: keras>=3.13
24
23
  Requires-Dist: absl-py
25
24
  Requires-Dist: numpy
26
25
  Requires-Dist: packaging
@@ -31,7 +30,7 @@ Requires-Dist: tensorflow-text; platform_system != "Windows"
31
30
 
32
31
  # KerasHub: Multi-framework Pretrained Models
33
32
  [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
34
- ![Python](https://img.shields.io/badge/python-v3.10.0+-success.svg)
33
+ ![Python](https://img.shields.io/badge/python-v3.11.0+-success.svg)
35
34
  [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/keras-team/keras-hub/issues)
36
35
 
37
36
  > [!IMPORTANT]
@@ -1,6 +1,6 @@
1
1
  # KerasHub: Multi-framework Pretrained Models
2
2
  [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
3
- ![Python](https://img.shields.io/badge/python-v3.10.0+-success.svg)
3
+ ![Python](https://img.shields.io/badge/python-v3.11.0+-success.svg)
4
4
  [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/keras-team/keras-hub/issues)
5
5
 
6
6
  > [!IMPORTANT]
@@ -186,4 +186,4 @@ Thank you to all of our wonderful contributors!
186
186
 
187
187
  <a href="https://github.com/keras-team/keras-hub/graphs/contributors">
188
188
  <img src="https://contrib.rocks/image?repo=keras-team/keras-hub" />
189
- </a>
189
+ </a>
@@ -93,6 +93,9 @@ from keras_hub.src.models.depth_anything.depth_anything_image_converter import (
93
93
  from keras_hub.src.models.dinov2.dinov2_image_converter import (
94
94
  DINOV2ImageConverter as DINOV2ImageConverter,
95
95
  )
96
+ from keras_hub.src.models.dinov3.dinov3_image_converter import (
97
+ DINOV3ImageConverter as DINOV3ImageConverter,
98
+ )
96
99
  from keras_hub.src.models.efficientnet.efficientnet_image_converter import (
97
100
  EfficientNetImageConverter as EfficientNetImageConverter,
98
101
  )
@@ -108,6 +111,9 @@ from keras_hub.src.models.mit.mit_image_converter import (
108
111
  from keras_hub.src.models.mobilenet.mobilenet_image_converter import (
109
112
  MobileNetImageConverter as MobileNetImageConverter,
110
113
  )
114
+ from keras_hub.src.models.mobilenetv5.mobilenetv5_image_converter import (
115
+ MobileNetV5ImageConverter as MobileNetV5ImageConverter,
116
+ )
111
117
  from keras_hub.src.models.moonshine.moonshine_audio_converter import (
112
118
  MoonshineAudioConverter as MoonshineAudioConverter,
113
119
  )
@@ -184,6 +184,9 @@ from keras_hub.src.models.depth_estimator_preprocessor import (
184
184
  from keras_hub.src.models.dinov2.dinov2_backbone import (
185
185
  DINOV2Backbone as DINOV2Backbone,
186
186
  )
187
+ from keras_hub.src.models.dinov3.dinov3_backbone import (
188
+ DINOV3Backbone as DINOV3Backbone,
189
+ )
187
190
  from keras_hub.src.models.distil_bert.distil_bert_backbone import (
188
191
  DistilBertBackbone as DistilBertBackbone,
189
192
  )
@@ -337,6 +340,18 @@ from keras_hub.src.models.gpt_neo_x.gpt_neo_x_causal_lm_preprocessor import (
337
340
  from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import (
338
341
  GPTNeoXTokenizer as GPTNeoXTokenizer,
339
342
  )
343
+ from keras_hub.src.models.gpt_oss.gpt_oss_backbone import (
344
+ GptOssBackbone as GptOssBackbone,
345
+ )
346
+ from keras_hub.src.models.gpt_oss.gpt_oss_causal_lm import (
347
+ GptOssCausalLM as GptOssCausalLM,
348
+ )
349
+ from keras_hub.src.models.gpt_oss.gpt_oss_causal_lm_preprocessor import (
350
+ GptOssCausalLMPreprocessor as GptOssCausalLMPreprocessor,
351
+ )
352
+ from keras_hub.src.models.gpt_oss.gpt_oss_tokenizer import (
353
+ GptOssTokenizer as GptOssTokenizer,
354
+ )
340
355
  from keras_hub.src.models.hgnetv2.hgnetv2_backbone import (
341
356
  HGNetV2Backbone as HGNetV2Backbone,
342
357
  )
@@ -428,6 +443,15 @@ from keras_hub.src.models.mobilenet.mobilenet_image_classifier import (
428
443
  from keras_hub.src.models.mobilenet.mobilenet_image_classifier_preprocessor import (
429
444
  MobileNetImageClassifierPreprocessor as MobileNetImageClassifierPreprocessor,
430
445
  )
446
+ from keras_hub.src.models.mobilenetv5.mobilenetv5_backbone import (
447
+ MobileNetV5Backbone as MobileNetV5Backbone,
448
+ )
449
+ from keras_hub.src.models.mobilenetv5.mobilenetv5_image_classifier import (
450
+ MobileNetV5ImageClassifier as MobileNetV5ImageClassifier,
451
+ )
452
+ from keras_hub.src.models.mobilenetv5.mobilenetv5_image_classifier_preprocessor import (
453
+ MobileNetV5ImageClassifierPreprocessor as MobileNetV5ImageClassifierPreprocessor,
454
+ )
431
455
  from keras_hub.src.models.moonshine.moonshine_audio_to_text import (
432
456
  MoonshineAudioToText as MoonshineAudioToText,
433
457
  )
@@ -640,6 +664,30 @@ from keras_hub.src.models.siglip.siglip_tokenizer import (
640
664
  from keras_hub.src.models.siglip.siglip_vision_encoder import (
641
665
  SigLIPVisionEncoder as SigLIPVisionEncoder,
642
666
  )
667
+ from keras_hub.src.models.smollm3.smollm3_backbone import (
668
+ SmolLM3Backbone as SmolLM3Backbone,
669
+ )
670
+ from keras_hub.src.models.smollm3.smollm3_backbone import (
671
+ SmolLM3Backbone as SmolLMBackbone,
672
+ )
673
+ from keras_hub.src.models.smollm3.smollm3_causal_lm import (
674
+ SmolLM3CausalLM as SmolLM3CausalLM,
675
+ )
676
+ from keras_hub.src.models.smollm3.smollm3_causal_lm import (
677
+ SmolLM3CausalLM as SmolLMCausalLM,
678
+ )
679
+ from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
680
+ SmolLM3CausalLMPreprocessor as SmolLM3CausalLMPreprocessor,
681
+ )
682
+ from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
683
+ SmolLM3CausalLMPreprocessor as SmolLMCausalLMPreprocessor,
684
+ )
685
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
686
+ SmolLM3Tokenizer as SmolLM3Tokenizer,
687
+ )
688
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
689
+ SmolLM3Tokenizer as SmolLMTokenizer,
690
+ )
643
691
  from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
644
692
  StableDiffusion3Backbone as StableDiffusion3Backbone,
645
693
  )
@@ -47,6 +47,9 @@ from keras_hub.src.models.gpt2.gpt2_tokenizer import (
47
47
  from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import (
48
48
  GPTNeoXTokenizer as GPTNeoXTokenizer,
49
49
  )
50
+ from keras_hub.src.models.gpt_oss.gpt_oss_tokenizer import (
51
+ GptOssTokenizer as GptOssTokenizer,
52
+ )
50
53
  from keras_hub.src.models.llama.llama_tokenizer import (
51
54
  LlamaTokenizer as LlamaTokenizer,
52
55
  )
@@ -93,6 +96,12 @@ from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
93
96
  from keras_hub.src.models.siglip.siglip_tokenizer import (
94
97
  SigLIPTokenizer as SigLIPTokenizer,
95
98
  )
99
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
100
+ SmolLM3Tokenizer as SmolLM3Tokenizer,
101
+ )
102
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
103
+ SmolLM3Tokenizer as SmolLMTokenizer,
104
+ )
96
105
  from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer as T5Tokenizer
97
106
  from keras_hub.src.models.t5gemma.t5gemma_tokenizer import (
98
107
  T5GemmaTokenizer as T5GemmaTokenizer,
@@ -0,0 +1,8 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+
5
+
6
+ @keras_hub_export("keras_hub.layers.ReversibleEmbedding")
7
+ class ReversibleEmbedding(keras.layers.ReversibleEmbedding):
8
+ pass
@@ -0,0 +1,340 @@
1
+ import keras
2
+ import numpy as np
3
+ from keras import ops
4
+
5
+ from keras_hub.src.api_export import keras_hub_export
6
+
7
+
8
+ @keras_hub_export("keras_hub.layers.RotaryEmbedding")
9
+ class RotaryEmbedding(keras.layers.Layer):
10
+ """Rotary positional encoding layer.
11
+
12
+ This layer encodes absolute positional information with a rotation
13
+ matrix. It calculates the rotary encoding with a mix of sine and
14
+ cosine functions with geometrically increasing wavelengths.
15
+ Defined and formulated in
16
+ [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864v4).
17
+ The input must be a tensor with shape a sequence dimension and a feature
18
+ dimension. Typically, this will either an input with shape
19
+ `(batch_size, sequence_length, feature_length)` or
20
+ `(batch_size, sequence_length, num_heads, feature_length)`.
21
+ This layer will return a new tensor with the rotary embedding applied to
22
+ the input tensor.
23
+
24
+ Args:
25
+ max_wavelength: int. The maximum angular wavelength of the sine/cosine
26
+ curves.
27
+ scaling_factor: float. The scaling factor used to scale positions of
28
+ the tokens.
29
+ rope_type: str. The type of RoPE scaling to apply. Supported types:
30
+ "linear", "dynamic", "yarn". Defaults to "linear".
31
+ beta_fast: float. Beta fast parameter for YaRN scaling. Only used
32
+ when rope_type="yarn". Defaults to 32.0.
33
+ beta_slow: float. Beta slow parameter for YaRN scaling. Only used
34
+ when rope_type="yarn". Defaults to 1.0.
35
+ original_max_position_embeddings: int. Original maximum position
36
+ embeddings for YaRN scaling. Only used when rope_type="yarn".
37
+ Defaults to 4096.
38
+ truncate: bool. Whether to apply truncation for YaRN scaling. Only used
39
+ when rope_type="yarn". Defaults to False.
40
+ sequence_axis: int. Sequence axis in the input tensor.
41
+ feature_axis: int. Feature axis in the input tensor.
42
+ **kwargs: other keyword arguments passed to `keras.layers.Layer`,
43
+ including `name`, `trainable`, `dtype` etc.
44
+
45
+ Call arguments:
46
+ inputs: The tensor inputs to apply the embedding to. This can have
47
+ any shape, but must contain both a sequence and feature axis. The
48
+ rotary embedding will be applied to `inputs` and returned.
49
+ start_index: An integer or integer tensor. The starting position to
50
+ compute the rotary embedding from. This is useful during cached
51
+ decoding, where each position is predicted separately in a loop.
52
+ positions: Tensor of shape `(sequence_length,)` or
53
+ `(batch_size, sequence_length)`. Custom positions for the input
54
+ sequence. If specified, this tensor will be used to
55
+ compute the rotary embedding, and the `start_index` argument will
56
+ be ignored. This is useful for cases with non-standard positions.
57
+
58
+ Examples:
59
+
60
+ ```python
61
+ batch_size = 16
62
+ feature_length = 18
63
+ sequence_length = 256
64
+ num_heads = 8
65
+
66
+ # No multi-head dimension.
67
+ tensor = np.ones((batch_size, sequence_length, feature_length))
68
+ rot_emb_layer = RotaryEmbedding()
69
+ tensor_rot = rot_emb_layer(tensor)
70
+
71
+ # With multi-head dimension.
72
+ tensor = np.ones((batch_size, sequence_length, num_heads, feature_length))
73
+ tensor_rot = rot_emb_layer(tensor)
74
+ ```
75
+
76
+ References:
77
+ - [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864v4)
78
+ """
79
+
80
+ def __init__(
81
+ self,
82
+ max_wavelength=10000,
83
+ scaling_factor=1.0,
84
+ rope_type="linear",
85
+ beta_fast=32.0,
86
+ beta_slow=1.0,
87
+ original_max_position_embeddings=4096,
88
+ truncate=False,
89
+ sequence_axis=1,
90
+ feature_axis=-1,
91
+ **kwargs,
92
+ ):
93
+ super().__init__(**kwargs)
94
+ self.max_wavelength = max_wavelength
95
+ self.sequence_axis = sequence_axis
96
+ self.feature_axis = feature_axis
97
+ self.scaling_factor = scaling_factor
98
+ self.rope_type = rope_type
99
+
100
+ # YaRN-specific parameters (only used when rope_type="yarn")
101
+ self.beta_fast = beta_fast
102
+ self.beta_slow = beta_slow
103
+ self.original_max_position_embeddings = original_max_position_embeddings
104
+ self.truncate = truncate
105
+ self.built = True
106
+
107
+ def _normalize_axes(self, input_shape):
108
+ """Normalize and validate axis indices for the given input shape."""
109
+ rank = len(input_shape)
110
+
111
+ # Normalize negative indices
112
+ sequence_axis = self.sequence_axis
113
+ feature_axis = self.feature_axis
114
+
115
+ if sequence_axis < 0:
116
+ sequence_axis += rank
117
+ if feature_axis < 0:
118
+ feature_axis += rank
119
+
120
+ if sequence_axis < 0 or sequence_axis >= rank:
121
+ raise ValueError(
122
+ f"sequence_axis {self.sequence_axis} "
123
+ f"is out of range for input with rank {rank}"
124
+ )
125
+ if feature_axis < 0 or feature_axis >= rank:
126
+ raise ValueError(
127
+ f"feature_axis {self.feature_axis} "
128
+ f"is out of range for input with rank {rank}"
129
+ )
130
+ if sequence_axis == feature_axis:
131
+ raise ValueError("sequence_axis and feature_axis must be different")
132
+
133
+ return sequence_axis, feature_axis
134
+
135
+ def _validate_rotary_dimension(self, rotary_dim):
136
+ if rotary_dim % 2 != 0:
137
+ raise ValueError(
138
+ f"Rotary dimension must be even, got {rotary_dim}."
139
+ "The rotary embedding splits the feature dimension "
140
+ "into two halves. Consider using a different feature "
141
+ "dimension or padding."
142
+ )
143
+
144
+ def call(self, inputs, start_index=0, positions=None):
145
+ input_shape = ops.shape(inputs)
146
+ sequence_axis, feature_axis = self._normalize_axes(input_shape)
147
+
148
+ rotary_dim = input_shape[feature_axis]
149
+ self._validate_rotary_dimension(rotary_dim)
150
+
151
+ # Take care of unbatched `positions`.
152
+ if positions is not None:
153
+ if len(ops.shape(positions)) == 1:
154
+ positions = ops.expand_dims(positions, axis=0)
155
+
156
+ inputs = ops.moveaxis(inputs, (feature_axis, sequence_axis), (-1, 1))
157
+ cos_emb, sin_emb = self._compute_cos_sin_embedding(
158
+ inputs, start_index, positions
159
+ )
160
+ output = self._apply_rotary_pos_emb(inputs, cos_emb, sin_emb)
161
+ return ops.moveaxis(output, (-1, 1), (feature_axis, sequence_axis))
162
+
163
+ def _apply_rotary_pos_emb(self, tensor, cos_emb, sin_emb):
164
+ x1, x2 = ops.split(tensor, 2, axis=-1)
165
+ # Avoid `ops.concatenate` for now, to avoid a obscure bug with XLA
166
+ # compilation on jax. We should be able to remove this once the
167
+ # following PR is in all jax releases we care about:
168
+ # https://github.com/openxla/xla/pull/7875
169
+ half_rot_tensor = ops.stack((-x2, x1), axis=-2)
170
+ half_rot_tensor = ops.reshape(half_rot_tensor, ops.shape(tensor))
171
+ return (tensor * cos_emb) + (half_rot_tensor * sin_emb)
172
+
173
+ def _compute_positions(self, inputs, start_index=0):
174
+ seq_len = ops.shape(inputs)[1]
175
+ positions = ops.arange(seq_len, dtype="float32")
176
+ return positions + ops.cast(start_index, dtype="float32")
177
+
178
+ def _compute_cos_sin_embedding(self, inputs, start_index=0, positions=None):
179
+ """Compute cos & sin RoPE embeddings with optional YaRN scaling.
180
+ Uses tensor ops only to remain JIT/backends friendly.
181
+ """
182
+ batch_axis = 0
183
+ sequence_axis = 1
184
+ feature_axis = len(inputs.shape) - 1
185
+
186
+ rotary_dim = ops.shape(inputs)[feature_axis]
187
+ inverse_freq = self._get_inverse_freq(rotary_dim)
188
+
189
+ if positions is None:
190
+ positions = self._compute_positions(inputs, start_index)
191
+ positions = ops.expand_dims(
192
+ positions, axis=batch_axis
193
+ ) # shape (1, seq_len)
194
+ else:
195
+ positions = ops.cast(positions, "float32")
196
+ if len(ops.shape(positions)) == 1:
197
+ positions = ops.expand_dims(positions, axis=batch_axis)
198
+
199
+ if (
200
+ self.rope_type == "yarn"
201
+ and self.truncate
202
+ and self.original_max_position_embeddings is not None
203
+ ):
204
+ positions = ops.minimum(
205
+ positions,
206
+ ops.cast(self.original_max_position_embeddings, "float32"),
207
+ )
208
+
209
+ freq = ops.einsum("bi,j->bij", positions, inverse_freq)
210
+
211
+ embedding = ops.stack((freq, freq), axis=-2)
212
+ embedding = ops.reshape(
213
+ embedding, (*ops.shape(freq)[:-1], ops.shape(freq)[-1] * 2)
214
+ )
215
+
216
+ for axis in range(len(inputs.shape)):
217
+ if axis not in (batch_axis, sequence_axis, feature_axis):
218
+ embedding = ops.expand_dims(embedding, axis)
219
+
220
+ cos_emb = ops.cast(ops.cos(embedding), self.compute_dtype)
221
+ sin_emb = ops.cast(ops.sin(embedding), self.compute_dtype)
222
+
223
+ if self.rope_type == "yarn":
224
+ # YaRN temperature scaling
225
+ factor = ops.add(
226
+ ops.multiply(
227
+ ops.cast(0.1, self.compute_dtype),
228
+ ops.log(ops.cast(self.scaling_factor, self.compute_dtype)),
229
+ ),
230
+ ops.cast(1.0, self.compute_dtype),
231
+ )
232
+ cos_emb = cos_emb * factor
233
+ sin_emb = sin_emb * factor
234
+ return cos_emb, sin_emb
235
+
236
+ def _get_inverse_freq(self, rotary_dim):
237
+ """Return inverse frequencies."""
238
+ idx = ops.arange(0, rotary_dim, 2, dtype="float32")
239
+ denom = ops.cast(rotary_dim, "float32")
240
+ freq_range = idx / denom
241
+ inv = ops.power(ops.cast(self.max_wavelength, "float32"), -freq_range)
242
+
243
+ if self.rope_type == "linear":
244
+ return inv / ops.cast(self.scaling_factor, "float32")
245
+ elif self.rope_type == "dynamic":
246
+ exponent = ops.cast(rotary_dim, "float32") / ops.cast(
247
+ max(1, rotary_dim - 2), "float32"
248
+ )
249
+ return inv / ops.power(
250
+ ops.cast(self.scaling_factor, "float32"), exponent
251
+ )
252
+ elif self.rope_type == "yarn":
253
+ return self._get_yarn_inverse_freq(rotary_dim)
254
+ else:
255
+ return inv
256
+
257
+ def _get_yarn_inverse_freq(self, rotary_dim):
258
+ # Get the base (rope_theta equivalent) from max_wavelength
259
+ base = ops.cast(self.max_wavelength, "float32")
260
+
261
+ # Compute base frequencies: base ** (idx / dim)
262
+ idx = ops.arange(0, rotary_dim, 2, dtype="float32")
263
+ pos_freqs = ops.power(base, idx / ops.cast(rotary_dim, "float32"))
264
+
265
+ # Compute interpolation and extrapolation frequencies
266
+ inv_freq_extrapolation = 1.0 / pos_freqs
267
+ inv_freq_interpolation = 1.0 / (
268
+ ops.cast(self.scaling_factor, "float32") * pos_freqs
269
+ )
270
+
271
+ # Find correction range
272
+ beta_fast = ops.cast(self.beta_fast, "float32")
273
+ beta_slow = ops.cast(self.beta_slow, "float32")
274
+
275
+ # Find correction dimensions for beta_fast and beta_slow
276
+ def find_correction_dim_tensor(num_rotations, dim):
277
+ max_pos = ops.cast(self.original_max_position_embeddings, "float32")
278
+ return (dim * ops.log(max_pos / (num_rotations * 2 * np.pi))) / (
279
+ 2 * ops.log(base)
280
+ )
281
+
282
+ low = find_correction_dim_tensor(
283
+ beta_fast, ops.cast(rotary_dim, "float32")
284
+ )
285
+ high = find_correction_dim_tensor(
286
+ beta_slow, ops.cast(rotary_dim, "float32")
287
+ )
288
+
289
+ # Apply truncation if specified
290
+ if self.truncate:
291
+ low = ops.floor(low)
292
+ high = ops.ceil(high)
293
+
294
+ # Clamp to valid range
295
+ low = ops.maximum(low, ops.cast(0, "float32"))
296
+ high = ops.minimum(high, ops.cast(rotary_dim // 2 - 1, "float32"))
297
+
298
+ # Linear ramp function
299
+ dim_half = rotary_dim // 2
300
+ idx_half = ops.arange(0, dim_half, dtype="float32")
301
+
302
+ # Prevent singularity
303
+ diff = high - low
304
+ diff = ops.maximum(diff, ops.cast(0.001, "float32"))
305
+
306
+ linear_func = (idx_half - low) / diff
307
+ ramp_func = ops.clip(linear_func, 0, 1)
308
+
309
+ # Apply the ramp to get extrapolation factor
310
+ inv_freq_extrapolation_factor = 1 - ramp_func
311
+
312
+ # Combine interpolation and extrapolation
313
+ scaled_inverse_freq = (
314
+ inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
315
+ + inv_freq_extrapolation * inv_freq_extrapolation_factor
316
+ )
317
+
318
+ return scaled_inverse_freq
319
+
320
+ def get_config(self):
321
+ config = super().get_config()
322
+ config.update(
323
+ {
324
+ "max_wavelength": self.max_wavelength,
325
+ "scaling_factor": self.scaling_factor,
326
+ "rope_type": self.rope_type,
327
+ "beta_fast": self.beta_fast,
328
+ "beta_slow": self.beta_slow,
329
+ "original_max_position_embeddings": (
330
+ self.original_max_position_embeddings
331
+ ),
332
+ "truncate": self.truncate,
333
+ "sequence_axis": self.sequence_axis,
334
+ "feature_axis": self.feature_axis,
335
+ }
336
+ )
337
+ return config
338
+
339
+ def compute_output_shape(self, input_shape):
340
+ return input_shape
@@ -1,10 +1,8 @@
1
1
  import keras
2
+ from keras.layers import ReversibleEmbedding
2
3
 
3
4
  from keras_hub.src.api_export import keras_hub_export
4
5
  from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
5
- from keras_hub.src.layers.modeling.reversible_embedding import (
6
- ReversibleEmbedding,
7
- )
8
6
  from keras_hub.src.utils.keras_utils import clone_initializer
9
7
 
10
8
 
@@ -1,10 +1,8 @@
1
1
  import keras
2
+ from keras.layers import ReversibleEmbedding
2
3
 
3
4
  from keras_hub.src.api_export import keras_hub_export
4
5
  from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
5
- from keras_hub.src.layers.modeling.reversible_embedding import (
6
- ReversibleEmbedding,
7
- )
8
6
  from keras_hub.src.layers.modeling.transformer_encoder import TransformerEncoder
9
7
  from keras_hub.src.models.backbone import Backbone
10
8
  from keras_hub.src.utils.keras_utils import gelu_approximate
@@ -1,10 +1,8 @@
1
1
  import keras
2
+ from keras.layers import ReversibleEmbedding
2
3
 
3
4
  from keras_hub.src.api_export import keras_hub_export
4
5
  from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
5
- from keras_hub.src.layers.modeling.reversible_embedding import (
6
- ReversibleEmbedding,
7
- )
8
6
  from keras_hub.src.layers.modeling.transformer_decoder import TransformerDecoder
9
7
  from keras_hub.src.layers.modeling.transformer_encoder import TransformerEncoder
10
8
  from keras_hub.src.models.backbone import Backbone
@@ -1,10 +1,8 @@
1
1
  import keras
2
+ from keras.layers import ReversibleEmbedding
2
3
 
3
4
  from keras_hub.src.api_export import keras_hub_export
4
5
  from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
5
- from keras_hub.src.layers.modeling.reversible_embedding import (
6
- ReversibleEmbedding,
7
- )
8
6
  from keras_hub.src.layers.modeling.transformer_encoder import TransformerEncoder
9
7
  from keras_hub.src.models.backbone import Backbone
10
8
  from keras_hub.src.utils.keras_utils import gelu_approximate
@@ -1,9 +1,7 @@
1
1
  import keras
2
+ from keras.layers import ReversibleEmbedding
2
3
 
3
4
  from keras_hub.src.api_export import keras_hub_export
4
- from keras_hub.src.layers.modeling.reversible_embedding import (
5
- ReversibleEmbedding,
6
- )
7
5
  from keras_hub.src.models.backbone import Backbone
8
6
  from keras_hub.src.models.bloom.bloom_decoder import BloomDecoder
9
7
 
@@ -196,7 +196,7 @@ class CausalLM(Task):
196
196
 
197
197
  # Create an explicit tuple of all variable state.
198
198
  state = (
199
- self.sampler.variables,
199
+ [v.value for v in self.sampler.variables],
200
200
  # Use the explicit variable.value to preserve the
201
201
  # sharding spec of distribution.
202
202
  [v.value for v in self.trainable_variables],
@@ -424,3 +424,30 @@ class CausalLM(Task):
424
424
  )
425
425
 
426
426
  export_to_safetensors(self, path)
427
+
428
+ def _post_quantize(self, mode, **kwargs):
429
+ super()._post_quantize(mode, **kwargs)
430
+ # Reset the compiled generate function.
431
+ self.generate_function = None
432
+
433
+ def get_quantization_layer_structure(self, mode):
434
+ if mode != "gptq":
435
+ return None
436
+
437
+ backbone = self.backbone
438
+ # Check for standard backbone structure.
439
+ if not hasattr(backbone, "transformer_layers"):
440
+ return None
441
+
442
+ # Check for embedding.
443
+ embedding = getattr(backbone, "token_embedding", None)
444
+ if embedding is None:
445
+ embedding = getattr(backbone, "embedding", None)
446
+
447
+ if embedding is None:
448
+ return None
449
+
450
+ return {
451
+ "pre_block_layers": [embedding],
452
+ "sequential_blocks": backbone.transformer_layers,
453
+ }
@@ -1,9 +1,7 @@
1
1
  import keras
2
+ from keras.layers import ReversibleEmbedding
2
3
 
3
4
  from keras_hub.src.api_export import keras_hub_export
4
- from keras_hub.src.layers.modeling.reversible_embedding import (
5
- ReversibleEmbedding,
6
- )
7
5
  from keras_hub.src.models.backbone import Backbone
8
6
  from keras_hub.src.models.deberta_v3.disentangled_attention_encoder import (
9
7
  DisentangledAttentionEncoder,
@@ -0,0 +1,41 @@
1
+ """DepthAnything model preset configurations."""
2
+
3
+ # Metadata for loading pretrained model weights.
4
+ backbone_presets = {
5
+ "depth_anything_v2_small": {
6
+ "metadata": {
7
+ "description": (
8
+ "Small variant of Depth Anything V2 monocular depth estimation "
9
+ "(MDE) model trained on synthetic labeled images and real "
10
+ "unlabeled images."
11
+ ),
12
+ "params": 25_311_169,
13
+ "path": "depth_anything",
14
+ },
15
+ "kaggle_handle": "kaggle://keras/depth-anything/keras/depth_anything_v2_small/1",
16
+ },
17
+ "depth_anything_v2_base": {
18
+ "metadata": {
19
+ "description": (
20
+ "Base variant of Depth Anything V2 monocular depth estimation "
21
+ "(MDE) model trained on synthetic labeled images and real "
22
+ "unlabeled images."
23
+ ),
24
+ "params": 98_522_945,
25
+ "path": "depth_anything",
26
+ },
27
+ "kaggle_handle": "kaggle://keras/depth-anything/keras/depth_anything_v2_base/1",
28
+ },
29
+ "depth_anything_v2_large": {
30
+ "metadata": {
31
+ "description": (
32
+ "Large variant of Depth Anything V2 monocular depth estimation "
33
+ "(MDE) model trained on synthetic labeled images and real "
34
+ "unlabeled images."
35
+ ),
36
+ "params": 336_718_529,
37
+ "path": "depth_anything",
38
+ },
39
+ "kaggle_handle": "kaggle://keras/depth-anything/keras/depth_anything_v2_large/1",
40
+ },
41
+ }