keras-hub-nightly 0.23.0.dev202509150421__tar.gz → 0.23.0.dev202509170415__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

Files changed (592) hide show
  1. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/clip/clip_presets.py +8 -8
  3. keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/models/d_fine/__init__.py +5 -0
  4. keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/models/d_fine/d_fine_presets.py +155 -0
  5. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma/gemma_backbone.py +0 -1
  6. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -1
  7. keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/models/t5gemma/t5gemma_presets.py +374 -0
  8. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/version.py +1 -1
  9. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  10. keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/models/d_fine/d_fine_presets.py +0 -2
  11. keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/models/t5gemma/t5gemma_presets.py +0 -15
  12. keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/utils/transformers/__init__.py +0 -0
  13. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/README.md +0 -0
  14. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/api/__init__.py +0 -0
  15. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/api/layers/__init__.py +0 -0
  16. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/api/metrics/__init__.py +0 -0
  17. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/api/models/__init__.py +0 -0
  18. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/api/samplers/__init__.py +0 -0
  19. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/api/tokenizers/__init__.py +0 -0
  20. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/api/utils/__init__.py +0 -0
  21. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/__init__.py +0 -0
  22. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/api_export.py +0 -0
  23. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/__init__.py +0 -0
  24. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/__init__.py +0 -0
  25. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  26. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  27. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  28. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  29. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  30. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  31. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  32. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  33. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  34. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  35. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  36. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  37. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  38. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  39. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  40. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  41. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  42. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  43. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  44. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  45. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  46. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  47. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  48. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  49. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  50. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/metrics/__init__.py +0 -0
  51. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/metrics/bleu.py +0 -0
  52. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/metrics/edit_distance.py +0 -0
  53. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/metrics/perplexity.py +0 -0
  54. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/metrics/rouge_base.py +0 -0
  55. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/metrics/rouge_l.py +0 -0
  56. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/metrics/rouge_n.py +0 -0
  57. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/__init__.py +0 -0
  58. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/albert/__init__.py +0 -0
  59. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  60. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  61. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  62. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/albert/albert_presets.py +0 -0
  63. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  64. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  65. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  66. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/audio_to_text.py +0 -0
  67. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  68. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/backbone.py +0 -0
  69. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bart/__init__.py +0 -0
  70. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  71. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bart/bart_presets.py +0 -0
  72. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  73. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  74. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  75. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/basnet/__init__.py +0 -0
  76. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/basnet/basnet.py +0 -0
  77. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  78. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  79. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  80. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  81. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bert/__init__.py +0 -0
  82. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  83. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  84. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  85. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bert/bert_presets.py +0 -0
  86. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  87. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  88. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  89. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bloom/__init__.py +0 -0
  90. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  91. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  92. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  93. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  94. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  95. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  96. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  97. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/causal_lm.py +0 -0
  98. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  99. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/clip/__init__.py +0 -0
  100. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  101. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  102. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/clip/clip_layers.py +0 -0
  103. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  104. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  105. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  106. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  107. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/cspnet/__init__.py +0 -0
  108. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  109. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  110. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  111. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  112. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  113. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_attention.py +0 -0
  114. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_backbone.py +0 -0
  115. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_decoder.py +0 -0
  116. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_encoder.py +0 -0
  117. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +0 -0
  118. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_image_converter.py +0 -0
  119. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_layers.py +0 -0
  120. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_loss.py +0 -0
  121. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_object_detector.py +0 -0
  122. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +0 -0
  123. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/d_fine/d_fine_utils.py +0 -0
  124. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  125. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  126. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  127. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  128. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  129. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  130. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  131. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  132. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  133. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  134. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  135. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  136. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  137. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  138. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  139. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  140. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  141. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  142. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deit/__init__.py +0 -0
  143. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deit/deit_backbone.py +0 -0
  144. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deit/deit_image_classifier.py +0 -0
  145. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +0 -0
  146. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deit/deit_image_converter.py +0 -0
  147. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deit/deit_layers.py +0 -0
  148. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/deit/deit_presets.py +0 -0
  149. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/densenet/__init__.py +0 -0
  150. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  151. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  152. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  153. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  154. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  155. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/dinov2/__init__.py +0 -0
  156. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/dinov2/dinov2_backbone.py +0 -0
  157. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/dinov2/dinov2_image_converter.py +0 -0
  158. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/dinov2/dinov2_layers.py +0 -0
  159. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/dinov2/dinov2_presets.py +0 -0
  160. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  161. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  162. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  163. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  164. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  165. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  166. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  167. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  168. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  169. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/efficientnet/cba.py +0 -0
  170. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  171. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  172. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  173. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  174. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  175. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  176. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  177. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/electra/__init__.py +0 -0
  178. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  179. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/electra/electra_presets.py +0 -0
  180. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  181. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/__init__.py +0 -0
  182. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/esm_attention.py +0 -0
  183. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/esm_backbone.py +0 -0
  184. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/esm_classifier.py +0 -0
  185. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/esm_classifier_preprocessor.py +0 -0
  186. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/esm_encoder.py +0 -0
  187. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/esm_masked_plm.py +0 -0
  188. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/esm_masked_plm_preprocessor.py +0 -0
  189. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/esm_presets.py +0 -0
  190. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/esm/esm_tokenizer.py +0 -0
  191. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/f_net/__init__.py +0 -0
  192. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  193. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  194. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  195. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  196. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  197. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  198. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  199. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/falcon/__init__.py +0 -0
  200. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  201. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  202. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  203. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  204. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  205. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  206. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  207. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  208. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/flux/__init__.py +0 -0
  209. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/flux/flux_layers.py +0 -0
  210. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/flux/flux_maths.py +0 -0
  211. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/flux/flux_model.py +0 -0
  212. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/flux/flux_presets.py +0 -0
  213. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  214. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  215. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma/__init__.py +0 -0
  216. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  217. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  218. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  219. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  220. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  221. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  222. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  223. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/__init__.py +0 -0
  224. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  225. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  226. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  227. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  228. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  229. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  230. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  231. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  232. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  233. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  234. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt2/__init__.py +0 -0
  235. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  236. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  237. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  238. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  239. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  240. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  241. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/models/d_fine → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/models/gpt_neo_x}/__init__.py +0 -0
  242. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  243. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  244. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  245. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  246. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  247. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  248. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/hgnetv2/__init__.py +0 -0
  249. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +0 -0
  250. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +0 -0
  251. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +0 -0
  252. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +0 -0
  253. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +0 -0
  254. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/hgnetv2/hgnetv2_layers.py +0 -0
  255. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/hgnetv2/hgnetv2_presets.py +0 -0
  256. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/image_classifier.py +0 -0
  257. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  258. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/image_segmenter.py +0 -0
  259. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  260. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/image_to_image.py +0 -0
  261. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/inpaint.py +0 -0
  262. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/__init__.py +0 -0
  263. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/llama_attention.py +0 -0
  264. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  265. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  266. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  267. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  268. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  269. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/llama_presets.py +0 -0
  270. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  271. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  272. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama3/__init__.py +0 -0
  273. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  274. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  275. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  276. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  277. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  278. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/masked_lm.py +0 -0
  279. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  280. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mistral/__init__.py +0 -0
  281. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  282. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  283. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  284. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  285. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  286. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  287. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  288. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  289. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mit/__init__.py +0 -0
  290. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  291. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  292. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  293. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  294. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mit/mit_layers.py +0 -0
  295. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mit/mit_presets.py +0 -0
  296. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mixtral/__init__.py +0 -0
  297. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  298. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  299. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  300. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  301. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  302. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  303. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
  304. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  305. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  306. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  307. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  308. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  309. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  310. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  311. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/mobilenet/util.py +0 -0
  312. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/__init__.py +0 -0
  313. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  314. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  315. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  316. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
  317. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  318. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  319. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  320. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  321. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  322. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  323. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/object_detector.py +0 -0
  324. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  325. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/opt/__init__.py +0 -0
  326. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  327. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  328. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  329. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/opt/opt_presets.py +0 -0
  330. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  331. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  332. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  333. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  334. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  335. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  336. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  337. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  338. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  339. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  340. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/models/gpt_neo_x → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/models/parseq}/__init__.py +0 -0
  341. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/parseq/parseq_backbone.py +0 -0
  342. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/parseq/parseq_causal_lm.py +0 -0
  343. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +0 -0
  344. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/parseq/parseq_decoder.py +0 -0
  345. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/parseq/parseq_image_converter.py +0 -0
  346. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/parseq/parseq_tokenizer.py +0 -0
  347. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/__init__.py +0 -0
  348. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  349. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  350. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  351. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  352. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  353. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  354. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  355. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  356. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  357. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/preprocessor.py +0 -0
  358. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen/__init__.py +0 -0
  359. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  360. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  361. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  362. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  363. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  364. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  365. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  366. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  367. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen3/__init__.py +0 -0
  368. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
  369. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen3/qwen3_backbone.py +0 -0
  370. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen3/qwen3_causal_lm.py +0 -0
  371. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
  372. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
  373. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
  374. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen3/qwen3_presets.py +0 -0
  375. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
  376. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  377. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  378. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  379. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  380. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  381. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  382. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  383. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
  384. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  385. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/resnet/__init__.py +0 -0
  386. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  387. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  388. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  389. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  390. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  391. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/retinanet/__init__.py +0 -0
  392. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  393. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  394. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  395. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  396. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  397. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  398. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  399. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  400. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roberta/__init__.py +0 -0
  401. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  402. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  403. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  404. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  405. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  406. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  407. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  408. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/models/parseq → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/models/roformer_v2}/__init__.py +0 -0
  409. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  410. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  411. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  412. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  413. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  414. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  415. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  416. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  417. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  418. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/__init__.py +0 -0
  419. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  420. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  421. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  422. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  423. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/sam_layers.py +0 -0
  424. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  425. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/sam_presets.py +0 -0
  426. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  427. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  428. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/segformer/__init__.py +0 -0
  429. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  430. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  431. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  432. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  433. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  434. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  435. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  436. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/__init__.py +0 -0
  437. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  438. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  439. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  440. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  441. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  442. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  443. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  444. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  445. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  446. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  447. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  448. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  449. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  450. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  451. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  452. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  453. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  454. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  455. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  456. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5/__init__.py +0 -0
  457. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  458. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  459. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  460. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  461. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5/t5_presets.py +0 -0
  462. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  463. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  464. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5gemma/__init__.py +0 -0
  465. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5gemma/t5gemma_attention.py +0 -0
  466. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5gemma/t5gemma_backbone.py +0 -0
  467. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5gemma/t5gemma_decoder.py +0 -0
  468. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5gemma/t5gemma_encoder.py +0 -0
  469. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5gemma/t5gemma_layers.py +0 -0
  470. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +0 -0
  471. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +0 -0
  472. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +0 -0
  473. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/task.py +0 -0
  474. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/text_classifier.py +0 -0
  475. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  476. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/text_to_image.py +0 -0
  477. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  478. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vae/__init__.py +0 -0
  479. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  480. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vae/vae_layers.py +0 -0
  481. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vgg/__init__.py +0 -0
  482. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  483. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  484. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  485. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  486. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  487. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vit/__init__.py +0 -0
  488. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  489. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  490. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  491. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  492. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vit/vit_layers.py +0 -0
  493. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vit/vit_presets.py +0 -0
  494. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/models/roformer_v2 → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/models/vit_det}/__init__.py +0 -0
  495. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  496. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  497. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/whisper/__init__.py +0 -0
  498. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  499. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  500. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  501. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  502. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  503. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  504. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  505. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xception/__init__.py +0 -0
  506. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  507. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  508. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  509. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  510. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xception/xception_presets.py +0 -0
  511. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  512. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  513. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  514. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  515. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  516. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  517. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  518. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  519. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/models/vit_det → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/models/xlnet}/__init__.py +0 -0
  520. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  521. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  522. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  523. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  524. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/models/xlnet → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/samplers}/__init__.py +0 -0
  525. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/samplers/beam_sampler.py +0 -0
  526. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  527. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  528. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/samplers/random_sampler.py +0 -0
  529. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/samplers/sampler.py +0 -0
  530. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/samplers/serialization.py +0 -0
  531. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  532. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  533. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/samplers → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/tests}/__init__.py +0 -0
  534. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  535. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tests/test_case.py +0 -0
  536. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/tests → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/tokenizers}/__init__.py +0 -0
  537. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  538. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  539. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  540. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  541. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  542. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  543. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  544. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  545. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/tokenizers → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/utils}/__init__.py +0 -0
  546. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/utils → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/utils/coco}/__init__.py +0 -0
  547. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  548. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/utils/coco → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/utils/imagenet}/__init__.py +0 -0
  549. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  550. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/keras_utils.py +0 -0
  551. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/openvino_utils.py +0 -0
  552. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/pipeline_model.py +0 -0
  553. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/preset_utils.py +0 -0
  554. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/python_utils.py +0 -0
  555. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/tensor_utils.py +0 -0
  556. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/utils/imagenet → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/utils/timm}/__init__.py +0 -0
  557. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  558. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  559. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  560. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  561. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  562. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  563. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  564. {keras_hub_nightly-0.23.0.dev202509150421/keras_hub/src/utils/timm → keras_hub_nightly-0.23.0.dev202509170415/keras_hub/src/utils/transformers}/__init__.py +0 -0
  565. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  566. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  567. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  568. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_deit.py +0 -0
  569. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_dinov2.py +0 -0
  570. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  571. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_esm.py +0 -0
  572. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  573. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  574. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  575. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  576. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  577. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  578. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  579. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
  580. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  581. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_t5gemma.py +0 -0
  582. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  583. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/export/gemma.py +0 -0
  584. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/export/hf_exporter.py +0 -0
  585. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  586. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  587. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub_nightly.egg-info/SOURCES.txt +0 -0
  588. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  589. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub_nightly.egg-info/requires.txt +0 -0
  590. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  591. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/pyproject.toml +0 -0
  592. {keras_hub_nightly-0.23.0.dev202509150421 → keras_hub_nightly-0.23.0.dev202509170415}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202509150421
3
+ Version: 0.23.0.dev202509170415
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -11,7 +11,7 @@ backbone_presets = {
11
11
  "params": 149620934,
12
12
  "path": "clip",
13
13
  },
14
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch16/2",
14
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch16/3",
15
15
  },
16
16
  "clip_vit_base_patch32": {
17
17
  "metadata": {
@@ -22,7 +22,7 @@ backbone_presets = {
22
22
  "params": 151277363,
23
23
  "path": "clip",
24
24
  },
25
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch32/2",
25
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch32/3",
26
26
  },
27
27
  "clip_vit_large_patch14": {
28
28
  "metadata": {
@@ -33,7 +33,7 @@ backbone_presets = {
33
33
  "params": 427616770,
34
34
  "path": "clip",
35
35
  },
36
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14/2",
36
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14/3",
37
37
  },
38
38
  "clip_vit_large_patch14_336": {
39
39
  "metadata": {
@@ -44,7 +44,7 @@ backbone_presets = {
44
44
  "params": 427944770,
45
45
  "path": "clip",
46
46
  },
47
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14_336/2",
47
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14_336/3",
48
48
  },
49
49
  "clip_vit_b_32_laion2b_s34b_b79k": {
50
50
  "metadata": {
@@ -55,7 +55,7 @@ backbone_presets = {
55
55
  "params": 151277363,
56
56
  "path": "clip",
57
57
  },
58
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_b_32_laion2b_s34b_b79k/2",
58
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_b_32_laion2b_s34b_b79k/3",
59
59
  },
60
60
  "clip_vit_h_14_laion2b_s32b_b79k": {
61
61
  "metadata": {
@@ -66,7 +66,7 @@ backbone_presets = {
66
66
  "params": 986109698,
67
67
  "path": "clip",
68
68
  },
69
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_h_14_laion2b_s32b_b79k/2",
69
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_h_14_laion2b_s32b_b79k/3",
70
70
  },
71
71
  "clip_vit_g_14_laion2b_s12b_b42k": {
72
72
  "metadata": {
@@ -77,7 +77,7 @@ backbone_presets = {
77
77
  "params": 1366678530,
78
78
  "path": "clip",
79
79
  },
80
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_g_14_laion2b_s12b_b42k/2",
80
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_g_14_laion2b_s12b_b42k/3",
81
81
  },
82
82
  "clip_vit_bigg_14_laion2b_39b_b160k": {
83
83
  "metadata": {
@@ -88,6 +88,6 @@ backbone_presets = {
88
88
  "params": 2539567362,
89
89
  "path": "clip",
90
90
  },
91
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_bigg_14_laion2b_39b_b160k/2",
91
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_bigg_14_laion2b_39b_b160k/3",
92
92
  },
93
93
  }
@@ -0,0 +1,5 @@
1
+ from keras_hub.src.models.d_fine.d_fine_backbone import DFineBackbone
2
+ from keras_hub.src.models.d_fine.d_fine_presets import backbone_presets
3
+ from keras_hub.src.utils.preset_utils import register_presets
4
+
5
+ register_presets(backbone_presets, DFineBackbone)
@@ -0,0 +1,155 @@
1
+ # Metadata for loading pretrained model weights.
2
+ backbone_presets = {
3
+ "dfine_nano_coco": {
4
+ "metadata": {
5
+ "description": (
6
+ "D-FINE Nano model, the smallest variant in the family, "
7
+ "pretrained on the COCO dataset. Ideal for applications "
8
+ "where computational resources are limited."
9
+ ),
10
+ "params": 3788625,
11
+ "path": "d_fine",
12
+ },
13
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_nano_coco/1",
14
+ },
15
+ "dfine_small_coco": {
16
+ "metadata": {
17
+ "description": (
18
+ "D-FINE Small model pretrained on the COCO dataset. Offers a "
19
+ "balance between performance and computational efficiency."
20
+ ),
21
+ "params": 10329321,
22
+ "path": "d_fine",
23
+ },
24
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_small_coco/1",
25
+ },
26
+ "dfine_medium_coco": {
27
+ "metadata": {
28
+ "description": (
29
+ "D-FINE Medium model pretrained on the COCO dataset. A solid "
30
+ "baseline with strong performance for general-purpose "
31
+ "object detection."
32
+ ),
33
+ "params": 19621160,
34
+ "path": "d_fine",
35
+ },
36
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_medium_coco/1",
37
+ },
38
+ "dfine_large_coco": {
39
+ "metadata": {
40
+ "description": (
41
+ "D-FINE Large model pretrained on the COCO dataset. Provides "
42
+ "high accuracy and is suitable for more demanding tasks."
43
+ ),
44
+ "params": 31344064,
45
+ "path": "d_fine",
46
+ },
47
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_large_coco/1",
48
+ },
49
+ "dfine_xlarge_coco": {
50
+ "metadata": {
51
+ "description": (
52
+ "D-FINE X-Large model, the largest COCO-pretrained variant, "
53
+ "designed for state-of-the-art performance where accuracy "
54
+ "is the top priority."
55
+ ),
56
+ "params": 62834048,
57
+ "path": "d_fine",
58
+ },
59
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_xlarge_coco/1",
60
+ },
61
+ "dfine_small_obj365": {
62
+ "metadata": {
63
+ "description": (
64
+ "D-FINE Small model pretrained on the large-scale Objects365 "
65
+ "dataset, enhancing its ability to recognize a wider "
66
+ "variety of objects."
67
+ ),
68
+ "params": 10623329,
69
+ "path": "d_fine",
70
+ },
71
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_small_obj365/1",
72
+ },
73
+ "dfine_medium_obj365": {
74
+ "metadata": {
75
+ "description": (
76
+ "D-FINE Medium model pretrained on the Objects365 dataset. "
77
+ "Benefits from a larger and more diverse pretraining corpus."
78
+ ),
79
+ "params": 19988670,
80
+ "path": "d_fine",
81
+ },
82
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_medium_obj365/1",
83
+ },
84
+ "dfine_large_obj365": {
85
+ "metadata": {
86
+ "description": (
87
+ "D-FINE Large model pretrained on the Objects365 dataset for "
88
+ "improved generalization and performance on diverse object "
89
+ "categories."
90
+ ),
91
+ "params": 31858578,
92
+ "path": "d_fine",
93
+ },
94
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_large_obj365/1",
95
+ },
96
+ "dfine_xlarge_obj365": {
97
+ "metadata": {
98
+ "description": (
99
+ "D-FINE X-Large model pretrained on the Objects365 dataset, "
100
+ "offering maximum performance by leveraging a vast number "
101
+ "of object categories during pretraining."
102
+ ),
103
+ "params": 63348562,
104
+ "path": "d_fine",
105
+ },
106
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_xlarge_obj365/1",
107
+ },
108
+ "dfine_small_obj2coco": {
109
+ "metadata": {
110
+ "description": (
111
+ "D-FINE Small model first pretrained on Objects365 and then "
112
+ "fine-tuned on COCO, combining broad feature learning with "
113
+ "benchmark-specific adaptation."
114
+ ),
115
+ "params": 10329321,
116
+ "path": "d_fine",
117
+ },
118
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_small_obj2coco/1",
119
+ },
120
+ "dfine_medium_obj2coco": {
121
+ "metadata": {
122
+ "description": (
123
+ "D-FINE Medium model using a two-stage training process: "
124
+ "pretraining on Objects365 followed by fine-tuning on COCO."
125
+ ),
126
+ "params": 19621160,
127
+ "path": "d_fine",
128
+ },
129
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_medium_obj2coco/1",
130
+ },
131
+ "dfine_large_obj2coco_e25": {
132
+ "metadata": {
133
+ "description": (
134
+ "D-FINE Large model pretrained on Objects365 and then "
135
+ "fine-tuned on COCO for 25 epochs. A high-performance model "
136
+ "with specialized tuning."
137
+ ),
138
+ "params": 31344064,
139
+ "path": "d_fine",
140
+ },
141
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_large_obj2coco_e25/1",
142
+ },
143
+ "dfine_xlarge_obj2coco": {
144
+ "metadata": {
145
+ "description": (
146
+ "D-FINE X-Large model, pretrained on Objects365 and fine-tuned "
147
+ "on COCO, representing the most powerful model in this "
148
+ "series for COCO-style tasks."
149
+ ),
150
+ "params": 62834048,
151
+ "path": "d_fine",
152
+ },
153
+ "kaggle_handle": "kaggle://keras/d-fine/keras/dfine_xlarge_obj2coco/1",
154
+ },
155
+ }
@@ -114,7 +114,6 @@ class GemmaBackbone(Backbone):
114
114
  scale=1.0,
115
115
  mode="fan_in",
116
116
  distribution="untruncated_normal",
117
- seed=None,
118
117
  ),
119
118
  dtype=dtype,
120
119
  logit_soft_cap=final_logit_soft_cap,
@@ -210,7 +210,6 @@ class Gemma3Backbone(Backbone):
210
210
  scale=1.0,
211
211
  mode="fan_in",
212
212
  distribution="untruncated_normal",
213
- seed=None,
214
213
  ),
215
214
  dtype=dtype,
216
215
  logit_soft_cap=final_logit_soft_cap,
@@ -0,0 +1,374 @@
1
+ # Metadata for loading pretrained model weights.
2
+ backbone_presets = {
3
+ "t5gemma_s_s_ul2": {
4
+ "metadata": {
5
+ "description": (
6
+ "T5Gemma S/S model with a small encoder and small decoder, "
7
+ "adapted as a UL2 model."
8
+ ),
9
+ "params": 312517632,
10
+ "path": "t5gemma",
11
+ },
12
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_ul2/1",
13
+ },
14
+ "t5gemma_s_s_prefixlm": {
15
+ "metadata": {
16
+ "description": (
17
+ "T5Gemma S/S model with a small encoder and small decoder, "
18
+ "adapted as a prefix language model."
19
+ ),
20
+ "params": 312517632,
21
+ "path": "t5gemma",
22
+ },
23
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_prefixlm/1",
24
+ },
25
+ "t5gemma_s_s_ul2_it": {
26
+ "metadata": {
27
+ "description": (
28
+ "T5Gemma S/S model with a small encoder and small decoder, "
29
+ "adapted as a UL2 model and fine-tuned for instruction "
30
+ "following."
31
+ ),
32
+ "params": 312517632,
33
+ "path": "t5gemma",
34
+ },
35
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_ul2_it/1",
36
+ },
37
+ "t5gemma_s_s_prefixlm_it": {
38
+ "metadata": {
39
+ "description": (
40
+ "T5Gemma S/S model with a small encoder and small decoder, "
41
+ "adapted as a prefix language model and fine-tuned for "
42
+ "instruction following."
43
+ ),
44
+ "params": 312517632,
45
+ "path": "t5gemma",
46
+ },
47
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_prefixlm_it/1",
48
+ },
49
+ "t5gemma_b_b_ul2": {
50
+ "metadata": {
51
+ "description": (
52
+ "T5Gemma B/B model with a base encoder and base decoder, "
53
+ "adapted as a UL2 model."
54
+ ),
55
+ "params": 591490560,
56
+ "path": "t5gemma",
57
+ },
58
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_ul2/1",
59
+ },
60
+ "t5gemma_b_b_prefixlm": {
61
+ "metadata": {
62
+ "description": (
63
+ "T5Gemma B/B model with a base encoder and base decoder, "
64
+ "adapted as a prefix language model."
65
+ ),
66
+ "params": 591490560,
67
+ "path": "t5gemma",
68
+ },
69
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_prefixlm/1",
70
+ },
71
+ "t5gemma_b_b_ul2_it": {
72
+ "metadata": {
73
+ "description": (
74
+ "T5Gemma B/B model with a base encoder and base decoder, "
75
+ "adapted as a UL2 model and fine-tuned for instruction "
76
+ "following."
77
+ ),
78
+ "params": 591490560,
79
+ "path": "t5gemma",
80
+ },
81
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_ul2_it/1",
82
+ },
83
+ "t5gemma_b_b_prefixlm_it": {
84
+ "metadata": {
85
+ "description": (
86
+ "T5Gemma B/B model with a base encoder and base decoder, "
87
+ "adapted as a prefix language model and fine-tuned for "
88
+ "instruction following."
89
+ ),
90
+ "params": 591490560,
91
+ "path": "t5gemma",
92
+ },
93
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_prefixlm_it/1",
94
+ },
95
+ "t5gemma_l_l_ul2": {
96
+ "metadata": {
97
+ "description": (
98
+ "T5Gemma L/L model with a large encoder and large decoder, "
99
+ "adapted as a UL2 model."
100
+ ),
101
+ "params": 1241761792,
102
+ "path": "t5gemma",
103
+ },
104
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_ul2/1",
105
+ },
106
+ "t5gemma_l_l_prefixlm": {
107
+ "metadata": {
108
+ "description": (
109
+ "T5Gemma L/L model with a large encoder and large decoder, "
110
+ "adapted as a prefix language model."
111
+ ),
112
+ "params": 1241761792,
113
+ "path": "t5gemma",
114
+ },
115
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_prefixlm/1",
116
+ },
117
+ "t5gemma_l_l_ul2_it": {
118
+ "metadata": {
119
+ "description": (
120
+ "T5Gemma L/L model with a large encoder and large decoder, "
121
+ "adapted as a UL2 model and fine-tuned for instruction "
122
+ "following."
123
+ ),
124
+ "params": 1241761792,
125
+ "path": "t5gemma",
126
+ },
127
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_ul2_it/1",
128
+ },
129
+ "t5gemma_l_l_prefixlm_it": {
130
+ "metadata": {
131
+ "description": (
132
+ "T5Gemma L/L model with a large encoder and large decoder, "
133
+ "adapted as a prefix language model and fine-tuned for "
134
+ "instruction following."
135
+ ),
136
+ "params": 1241761792,
137
+ "path": "t5gemma",
138
+ },
139
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_prefixlm_it/1",
140
+ },
141
+ "t5gemma_ml_ml_ul2": {
142
+ "metadata": {
143
+ "description": (
144
+ "T5Gemma ML/ML model with a medium-large encoder and "
145
+ "medium-large decoder, adapted as a UL2 model."
146
+ ),
147
+ "params": 2200345344,
148
+ "path": "t5gemma",
149
+ },
150
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_ul2/1",
151
+ },
152
+ "t5gemma_ml_ml_prefixlm": {
153
+ "metadata": {
154
+ "description": (
155
+ "T5Gemma ML/ML model with a medium-large encoder and "
156
+ "medium-large decoder, adapted as a prefix language model."
157
+ ),
158
+ "params": 2200345344,
159
+ "path": "t5gemma",
160
+ },
161
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_prefixlm/1",
162
+ },
163
+ "t5gemma_ml_ml_ul2_it": {
164
+ "metadata": {
165
+ "description": (
166
+ "T5Gemma ML/ML model with a medium-large encoder and "
167
+ "medium-large decoder, adapted as a UL2 model and fine-tuned "
168
+ "for instruction following."
169
+ ),
170
+ "params": 2200345344,
171
+ "path": "t5gemma",
172
+ },
173
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_ul2_it/1",
174
+ },
175
+ "t5gemma_ml_ml_prefixlm_it": {
176
+ "metadata": {
177
+ "description": (
178
+ "T5Gemma ML/ML model with a medium-large encoder and "
179
+ "medium-large decoder, adapted as a prefix language model and "
180
+ "fine-tuned for instruction following."
181
+ ),
182
+ "params": 2200345344,
183
+ "path": "t5gemma",
184
+ },
185
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_prefixlm_it/1",
186
+ },
187
+ "t5gemma_xl_xl_ul2": {
188
+ "metadata": {
189
+ "description": (
190
+ "T5Gemma XL/XL model with an extra-large encoder and "
191
+ "extra-large decoder, adapted as a UL2 model."
192
+ ),
193
+ "params": 3766980608,
194
+ "path": "t5gemma",
195
+ },
196
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_ul2/1",
197
+ },
198
+ "t5gemma_xl_xl_prefixlm": {
199
+ "metadata": {
200
+ "description": (
201
+ "T5Gemma XL/XL model with an extra-large encoder and "
202
+ "extra-large decoder, adapted as a prefix language model."
203
+ ),
204
+ "params": 3766980608,
205
+ "path": "t5gemma",
206
+ },
207
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_prefixlm/1",
208
+ },
209
+ "t5gemma_xl_xl_ul2_it": {
210
+ "metadata": {
211
+ "description": (
212
+ "T5Gemma XL/XL model with an extra-large encoder and "
213
+ "extra-large decoder, adapted as a UL2 model and fine-tuned "
214
+ "for instruction following."
215
+ ),
216
+ "params": 3766980608,
217
+ "path": "t5gemma",
218
+ },
219
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_ul2_it/1",
220
+ },
221
+ "t5gemma_xl_xl_prefixlm_it": {
222
+ "metadata": {
223
+ "description": (
224
+ "T5Gemma XL/XL model with an extra-large encoder and "
225
+ "extra-large decoder, adapted as a prefix language model and "
226
+ "fine-tuned for instruction following."
227
+ ),
228
+ "params": 3766980608,
229
+ "path": "t5gemma",
230
+ },
231
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_prefixlm_it/1",
232
+ },
233
+ "t5gemma_2b_2b_ul2": {
234
+ "metadata": {
235
+ "description": (
236
+ "T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
237
+ "2-billion-parameter decoder, adapted as a UL2 model."
238
+ ),
239
+ "params": 5596853760,
240
+ "path": "t5gemma",
241
+ },
242
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_ul2/1",
243
+ },
244
+ "t5gemma_2b_2b_prefixlm": {
245
+ "metadata": {
246
+ "description": (
247
+ "T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
248
+ "2-billion-parameter decoder, adapted as a prefix language "
249
+ "model."
250
+ ),
251
+ "params": 5596853760,
252
+ "path": "t5gemma",
253
+ },
254
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_prefixlm/1",
255
+ },
256
+ "t5gemma_2b_2b_ul2_it": {
257
+ "metadata": {
258
+ "description": (
259
+ "T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
260
+ "2-billion-parameter decoder, adapted as a UL2 model and "
261
+ "fine-tuned for instruction following."
262
+ ),
263
+ "params": 5596853760,
264
+ "path": "t5gemma",
265
+ },
266
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_ul2_it/1",
267
+ },
268
+ "t5gemma_2b_2b_prefixlm_it": {
269
+ "metadata": {
270
+ "description": (
271
+ "T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
272
+ "2-billion-parameter decoder, adapted as a prefix language "
273
+ "model and fine-tuned for instruction following."
274
+ ),
275
+ "params": 5596853760,
276
+ "path": "t5gemma",
277
+ },
278
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_prefixlm_it/1",
279
+ },
280
+ "t5gemma_9b_2b_ul2": {
281
+ "metadata": {
282
+ "description": (
283
+ "T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
284
+ "2-billion-parameter decoder, adapted as a UL2 model."
285
+ ),
286
+ "params": 12292375296,
287
+ "path": "t5gemma",
288
+ },
289
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_ul2/1",
290
+ },
291
+ "t5gemma_9b_2b_prefixlm": {
292
+ "metadata": {
293
+ "description": (
294
+ "T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
295
+ "2-billion-parameter decoder, adapted as a prefix language "
296
+ "model."
297
+ ),
298
+ "params": 12292375296,
299
+ "path": "t5gemma",
300
+ },
301
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_prefixlm/1",
302
+ },
303
+ "t5gemma_9b_2b_ul2_it": {
304
+ "metadata": {
305
+ "description": (
306
+ "T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
307
+ "2-billion-parameter decoder, adapted as a UL2 model and "
308
+ "fine-tuned for instruction following."
309
+ ),
310
+ "params": 12292375296,
311
+ "path": "t5gemma",
312
+ },
313
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_ul2_it/1",
314
+ },
315
+ "t5gemma_9b_2b_prefixlm_it": {
316
+ "metadata": {
317
+ "description": (
318
+ "T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
319
+ "2-billion-parameter decoder, adapted as a prefix language "
320
+ "model and fine-tuned for instruction following."
321
+ ),
322
+ "params": 12292375296,
323
+ "path": "t5gemma",
324
+ },
325
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_prefixlm_it/1",
326
+ },
327
+ "t5gemma_9b_9b_ul2": {
328
+ "metadata": {
329
+ "description": (
330
+ "T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
331
+ "9-billion-parameter decoder, adapted as a UL2 model."
332
+ ),
333
+ "params": 20333401088,
334
+ "path": "t5gemma",
335
+ },
336
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_ul2/1",
337
+ },
338
+ "t5gemma_9b_9b_prefixlm": {
339
+ "metadata": {
340
+ "description": (
341
+ "T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
342
+ "9-billion-parameter decoder, adapted as a prefix language "
343
+ "model."
344
+ ),
345
+ "params": 20333401088,
346
+ "path": "t5gemma",
347
+ },
348
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_prefixlm/1",
349
+ },
350
+ "t5gemma_9b_9b_ul2_it": {
351
+ "metadata": {
352
+ "description": (
353
+ "T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
354
+ "9-billion-parameter decoder, adapted as a UL2 model and "
355
+ "fine-tuned for instruction following."
356
+ ),
357
+ "params": 20333401088,
358
+ "path": "t5gemma",
359
+ },
360
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_ul2_it/1",
361
+ },
362
+ "t5gemma_9b_9b_prefixlm_it": {
363
+ "metadata": {
364
+ "description": (
365
+ "T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
366
+ "9-billion-parameter decoder, adapted as a prefix language "
367
+ "model and fine-tuned for instruction following."
368
+ ),
369
+ "params": 20333401088,
370
+ "path": "t5gemma",
371
+ },
372
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_prefixlm_it/1",
373
+ },
374
+ }
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.23.0.dev202509150421"
4
+ __version__ = "0.23.0.dev202509170415"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202509150421
3
+ Version: 0.23.0.dev202509170415
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -1,2 +0,0 @@
1
- # Metadata for loading pretrained model weights.
2
- backbone_presets = {}
@@ -1,15 +0,0 @@
1
- # Metadata for loading pretrained model weights.
2
- backbone_presets = {
3
- "t5gemma_b_b_prefixlm_it": {
4
- "metadata": {
5
- "description": (
6
- "T5Gemma B/B model with a base encoder and base decoder, "
7
- "adapted as a prefix language model and fine-tuned for "
8
- "instruction following."
9
- ),
10
- "params": 591490560,
11
- "path": "t5gemma",
12
- },
13
- "kaggle_handle": "kaggle://harshaljanjani/t5gemma/keras/t5gemma_b_b_prefixlm_it",
14
- },
15
- }