keras-hub-nightly 0.23.0.dev202508300415__tar.gz → 0.23.0.dev202509130423__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (589) hide show
  1. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/reversible_embedding.py +2 -1
  3. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/backbone.py +2 -1
  4. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/causal_lm.py +11 -0
  5. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma/gemma_presets.py +8 -0
  6. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_attention.py +48 -0
  7. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_backbone.py +4 -0
  8. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +12 -0
  9. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/sam_prompt_encoder.py +3 -1
  10. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/samplers/beam_sampler.py +6 -6
  11. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/samplers/sampler.py +8 -6
  12. keras_hub_nightly-0.23.0.dev202509130423/keras_hub/src/utils/openvino_utils.py +141 -0
  13. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/version.py +1 -1
  14. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  15. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub_nightly.egg-info/SOURCES.txt +1 -0
  16. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/README.md +0 -0
  17. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/api/__init__.py +0 -0
  18. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/api/layers/__init__.py +0 -0
  19. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/api/metrics/__init__.py +0 -0
  20. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/api/models/__init__.py +0 -0
  21. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/api/samplers/__init__.py +0 -0
  22. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/api/tokenizers/__init__.py +0 -0
  23. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/api/utils/__init__.py +0 -0
  24. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/__init__.py +0 -0
  25. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/api_export.py +0 -0
  26. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/__init__.py +0 -0
  27. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/__init__.py +0 -0
  28. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  29. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  30. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  31. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  32. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  33. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  34. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  35. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  36. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  37. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  38. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  39. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  40. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  41. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  42. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  43. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  44. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  45. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  46. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  47. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  48. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  49. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  50. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  51. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  52. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/metrics/__init__.py +0 -0
  53. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/metrics/bleu.py +0 -0
  54. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/metrics/edit_distance.py +0 -0
  55. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/metrics/perplexity.py +0 -0
  56. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/metrics/rouge_base.py +0 -0
  57. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/metrics/rouge_l.py +0 -0
  58. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/metrics/rouge_n.py +0 -0
  59. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/__init__.py +0 -0
  60. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/albert/__init__.py +0 -0
  61. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  62. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  63. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  64. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/albert/albert_presets.py +0 -0
  65. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  66. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  67. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  68. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/audio_to_text.py +0 -0
  69. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  70. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bart/__init__.py +0 -0
  71. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  72. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bart/bart_presets.py +0 -0
  73. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  74. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  75. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  76. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/basnet/__init__.py +0 -0
  77. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/basnet/basnet.py +0 -0
  78. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  79. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  80. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  81. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  82. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bert/__init__.py +0 -0
  83. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  84. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  85. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  86. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bert/bert_presets.py +0 -0
  87. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  88. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  89. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  90. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bloom/__init__.py +0 -0
  91. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  92. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  93. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  94. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  95. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  96. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  97. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  98. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  99. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/clip/__init__.py +0 -0
  100. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  101. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  102. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/clip/clip_layers.py +0 -0
  103. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  104. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/clip/clip_presets.py +0 -0
  105. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  106. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  107. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  108. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/cspnet/__init__.py +0 -0
  109. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  110. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  111. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  112. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  113. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  114. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/__init__.py +0 -0
  115. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_attention.py +0 -0
  116. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_backbone.py +0 -0
  117. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_decoder.py +0 -0
  118. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_encoder.py +0 -0
  119. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +0 -0
  120. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_image_converter.py +0 -0
  121. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_layers.py +0 -0
  122. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_loss.py +0 -0
  123. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_object_detector.py +0 -0
  124. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +0 -0
  125. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_presets.py +0 -0
  126. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/d_fine/d_fine_utils.py +0 -0
  127. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  128. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  129. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  130. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  131. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  132. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  133. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  134. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  135. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  136. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  137. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  138. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  139. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  140. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  141. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  142. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  143. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  144. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  145. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deit/__init__.py +0 -0
  146. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deit/deit_backbone.py +0 -0
  147. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deit/deit_image_classifier.py +0 -0
  148. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +0 -0
  149. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deit/deit_image_converter.py +0 -0
  150. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deit/deit_layers.py +0 -0
  151. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/deit/deit_presets.py +0 -0
  152. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/densenet/__init__.py +0 -0
  153. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  154. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  155. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  156. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  157. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  158. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/dinov2/__init__.py +0 -0
  159. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/dinov2/dinov2_backbone.py +0 -0
  160. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/dinov2/dinov2_image_converter.py +0 -0
  161. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/dinov2/dinov2_layers.py +0 -0
  162. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/dinov2/dinov2_presets.py +0 -0
  163. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  164. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  165. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  166. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  167. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  168. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  169. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  170. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  171. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  172. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/efficientnet/cba.py +0 -0
  173. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  174. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  175. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  176. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  177. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  178. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  179. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  180. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/electra/__init__.py +0 -0
  181. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  182. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/electra/electra_presets.py +0 -0
  183. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  184. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/__init__.py +0 -0
  185. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/esm_attention.py +0 -0
  186. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/esm_backbone.py +0 -0
  187. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/esm_classifier.py +0 -0
  188. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/esm_classifier_preprocessor.py +0 -0
  189. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/esm_encoder.py +0 -0
  190. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/esm_masked_plm.py +0 -0
  191. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/esm_masked_plm_preprocessor.py +0 -0
  192. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/esm_presets.py +0 -0
  193. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/esm/esm_tokenizer.py +0 -0
  194. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/f_net/__init__.py +0 -0
  195. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  196. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  197. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  198. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  199. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  200. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  201. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  202. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/falcon/__init__.py +0 -0
  203. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  204. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  205. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  206. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  207. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  208. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  209. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  210. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  211. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/flux/__init__.py +0 -0
  212. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/flux/flux_layers.py +0 -0
  213. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/flux/flux_maths.py +0 -0
  214. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/flux/flux_model.py +0 -0
  215. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/flux/flux_presets.py +0 -0
  216. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  217. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  218. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma/__init__.py +0 -0
  219. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  220. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  221. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  222. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  223. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  224. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  225. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  226. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/__init__.py +0 -0
  227. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  228. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  229. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  230. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  231. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  232. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  233. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  234. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  235. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt2/__init__.py +0 -0
  236. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  237. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  238. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  239. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  240. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  241. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  242. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  243. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  244. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  245. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  246. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  247. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  248. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  249. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/hgnetv2/__init__.py +0 -0
  250. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +0 -0
  251. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +0 -0
  252. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +0 -0
  253. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +0 -0
  254. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +0 -0
  255. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/hgnetv2/hgnetv2_layers.py +0 -0
  256. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/hgnetv2/hgnetv2_presets.py +0 -0
  257. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/image_classifier.py +0 -0
  258. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  259. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/image_segmenter.py +0 -0
  260. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  261. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/image_to_image.py +0 -0
  262. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/inpaint.py +0 -0
  263. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/__init__.py +0 -0
  264. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/llama_attention.py +0 -0
  265. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  266. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  267. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  268. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  269. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  270. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/llama_presets.py +0 -0
  271. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  272. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  273. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama3/__init__.py +0 -0
  274. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  275. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  276. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  277. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  278. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  279. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/masked_lm.py +0 -0
  280. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  281. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mistral/__init__.py +0 -0
  282. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  283. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  284. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  285. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  286. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  287. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  288. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  289. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  290. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mit/__init__.py +0 -0
  291. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  292. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  293. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  294. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  295. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mit/mit_layers.py +0 -0
  296. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mit/mit_presets.py +0 -0
  297. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mixtral/__init__.py +0 -0
  298. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  299. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  300. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  301. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  302. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  303. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  304. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
  305. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  306. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  307. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  308. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  309. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  310. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  311. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  312. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/mobilenet/util.py +0 -0
  313. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/__init__.py +0 -0
  314. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  315. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  316. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  317. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
  318. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  319. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  320. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  321. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  322. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  323. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  324. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/object_detector.py +0 -0
  325. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  326. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/opt/__init__.py +0 -0
  327. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  328. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  329. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  330. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/opt/opt_presets.py +0 -0
  331. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  332. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  333. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  334. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  335. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  336. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  337. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  338. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  339. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  340. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  341. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/parseq/__init__.py +0 -0
  342. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/parseq/parseq_backbone.py +0 -0
  343. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/parseq/parseq_causal_lm.py +0 -0
  344. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +0 -0
  345. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/parseq/parseq_decoder.py +0 -0
  346. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/parseq/parseq_image_converter.py +0 -0
  347. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/parseq/parseq_tokenizer.py +0 -0
  348. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/__init__.py +0 -0
  349. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  350. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  351. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  352. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  353. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  354. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  355. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  356. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  357. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  358. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/preprocessor.py +0 -0
  359. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen/__init__.py +0 -0
  360. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  361. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  362. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  363. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  364. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  365. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  366. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  367. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  368. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen3/__init__.py +0 -0
  369. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
  370. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen3/qwen3_backbone.py +0 -0
  371. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen3/qwen3_causal_lm.py +0 -0
  372. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
  373. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
  374. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
  375. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen3/qwen3_presets.py +0 -0
  376. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
  377. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  378. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  379. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  380. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  381. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  382. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  383. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  384. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
  385. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  386. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/resnet/__init__.py +0 -0
  387. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  388. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  389. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  390. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  391. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  392. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/retinanet/__init__.py +0 -0
  393. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  394. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  395. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  396. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  397. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  398. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  399. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  400. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  401. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roberta/__init__.py +0 -0
  402. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  403. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  404. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  405. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  406. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  407. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  408. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  409. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
  410. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  411. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  412. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  413. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  414. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  415. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  416. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  417. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  418. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  419. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/__init__.py +0 -0
  420. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  421. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  422. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  423. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  424. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/sam_layers.py +0 -0
  425. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  426. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/sam_presets.py +0 -0
  427. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  428. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/segformer/__init__.py +0 -0
  429. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  430. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  431. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  432. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  433. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  434. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  435. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  436. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/__init__.py +0 -0
  437. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  438. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  439. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  440. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  441. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  442. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  443. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  444. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  445. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  446. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  447. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  448. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  449. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  450. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  451. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  452. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  453. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  454. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  455. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  456. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5/__init__.py +0 -0
  457. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  458. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  459. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  460. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  461. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5/t5_presets.py +0 -0
  462. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  463. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  464. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/__init__.py +0 -0
  465. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/t5gemma_attention.py +0 -0
  466. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/t5gemma_backbone.py +0 -0
  467. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/t5gemma_decoder.py +0 -0
  468. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/t5gemma_encoder.py +0 -0
  469. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/t5gemma_layers.py +0 -0
  470. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/t5gemma_presets.py +0 -0
  471. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +0 -0
  472. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +0 -0
  473. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +0 -0
  474. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/task.py +0 -0
  475. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/text_classifier.py +0 -0
  476. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  477. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/text_to_image.py +0 -0
  478. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  479. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vae/__init__.py +0 -0
  480. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  481. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vae/vae_layers.py +0 -0
  482. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vgg/__init__.py +0 -0
  483. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  484. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  485. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  486. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  487. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  488. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit/__init__.py +0 -0
  489. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  490. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  491. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  492. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  493. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit/vit_layers.py +0 -0
  494. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit/vit_presets.py +0 -0
  495. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit_det/__init__.py +0 -0
  496. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  497. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  498. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/whisper/__init__.py +0 -0
  499. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  500. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  501. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  502. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  503. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  504. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  505. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  506. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xception/__init__.py +0 -0
  507. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  508. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  509. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  510. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  511. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xception/xception_presets.py +0 -0
  512. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  513. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  514. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  515. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  516. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  517. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  518. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  519. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  520. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlnet/__init__.py +0 -0
  521. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  522. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  523. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  524. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  525. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/samplers/__init__.py +0 -0
  526. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  527. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  528. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/samplers/random_sampler.py +0 -0
  529. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/samplers/serialization.py +0 -0
  530. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  531. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  532. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tests/__init__.py +0 -0
  533. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  534. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tests/test_case.py +0 -0
  535. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tokenizers/__init__.py +0 -0
  536. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  537. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  538. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  539. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  540. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  541. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  542. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  543. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  544. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/__init__.py +0 -0
  545. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/coco/__init__.py +0 -0
  546. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  547. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  548. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  549. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/keras_utils.py +0 -0
  550. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/pipeline_model.py +0 -0
  551. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/preset_utils.py +0 -0
  552. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/python_utils.py +0 -0
  553. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/tensor_utils.py +0 -0
  554. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/timm/__init__.py +0 -0
  555. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  556. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  557. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  558. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  559. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  560. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  561. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  562. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/__init__.py +0 -0
  563. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  564. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  565. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  566. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_deit.py +0 -0
  567. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_dinov2.py +0 -0
  568. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  569. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_esm.py +0 -0
  570. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  571. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  572. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  573. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  574. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  575. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  576. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  577. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
  578. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  579. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_t5gemma.py +0 -0
  580. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  581. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/export/gemma.py +0 -0
  582. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/export/hf_exporter.py +0 -0
  583. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  584. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  585. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  586. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub_nightly.egg-info/requires.txt +0 -0
  587. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  588. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/pyproject.toml +0 -0
  589. {keras_hub_nightly-0.23.0.dev202508300415 → keras_hub_nightly-0.23.0.dev202509130423}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202508300415
3
+ Version: 0.23.0.dev202509130423
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -235,7 +235,8 @@ class ReversibleEmbedding(keras.layers.Embedding):
235
235
 
236
236
  return super()._int8_call(inputs)
237
237
 
238
- def quantize(self, mode, type_check=True):
238
+ def quantize(self, mode, type_check=True, config=None):
239
+ del config
239
240
  if type_check and type(self) is not ReversibleEmbedding:
240
241
  raise self._not_implemented_error(self.quantize)
241
242
 
@@ -130,7 +130,8 @@ class Backbone(keras.Model):
130
130
  1. a built-in preset identifier like `'bert_base_en'`
131
131
  2. a Kaggle Models handle like `'kaggle://user/bert/keras/bert_base_en'`
132
132
  3. a Hugging Face handle like `'hf://user/bert_base_en'`
133
- 4. a path to a local preset directory like `'./bert_base_en'`
133
+ 4. a ModelScope handle like `'modelscope://user/bert_base_en'`
134
+ 5. a path to a local preset directory like `'./bert_base_en'`
134
135
 
135
136
  This constructor can be called in one of two ways. Either from the base
136
137
  class like `keras_hub.models.Backbone.from_preset()`, or from
@@ -132,6 +132,17 @@ class CausalLM(Task):
132
132
  return self.generate_function
133
133
 
134
134
  self.generate_function = self.generate_step
135
+ if keras.config.backend() == "openvino":
136
+ from keras_hub.src.utils.openvino_utils import ov_infer
137
+
138
+ def wrapped_generate_function(inputs, stop_token_ids=None):
139
+ # Convert to numpy for OpenVINO backend
140
+ inputs = tree.map_structure(ops.array, inputs)
141
+ return ov_infer(
142
+ self, inputs, stop_token_ids, self.generate_step
143
+ )
144
+
145
+ self.generate_function = wrapped_generate_function
135
146
  if keras.config.backend() == "torch":
136
147
  import torch
137
148
 
@@ -198,4 +198,12 @@ backbone_presets = {
198
198
  },
199
199
  "kaggle_handle": "kaggle://google/shieldgemma/keras/shieldgemma_27b_en/2",
200
200
  },
201
+ "vault_gemma_1b_en": {
202
+ "metadata": {
203
+ "description": "1 billion parameter, 26-layer, VaultGemma model.",
204
+ "params": 1038741120,
205
+ "path": "gemma",
206
+ },
207
+ "kaggle_handle": "kaggle://keras/vaultgemma/keras/vault_gemma_1b_en/2",
208
+ },
201
209
  }
@@ -46,6 +46,7 @@ class CachedGemma3Attention(keras.layers.Layer):
46
46
  layer_norm_epsilon=1e-6,
47
47
  rope_wavelength=10_000.0,
48
48
  rope_scaling_factor=1.0,
49
+ use_bidirectional_attention=False,
49
50
  dropout=0,
50
51
  **kwargs,
51
52
  ):
@@ -61,6 +62,7 @@ class CachedGemma3Attention(keras.layers.Layer):
61
62
  self.layer_norm_epsilon = layer_norm_epsilon
62
63
  self.rope_wavelength = rope_wavelength
63
64
  self.rope_scaling_factor = rope_scaling_factor
65
+ self.use_bidirectional_attention = use_bidirectional_attention
64
66
  self.dropout = dropout
65
67
 
66
68
  self._kernel_initializer = keras.initializers.get(
@@ -240,12 +242,58 @@ class CachedGemma3Attention(keras.layers.Layer):
240
242
  results = ops.einsum("bkgts,bskh->btkgh", attention_softmax, v)
241
243
  return ops.reshape(results, (b, q_len, self.num_query_heads, h))
242
244
 
245
+ def _compute_bidirectional_sliding_mask(self, batch_size, sequence_length):
246
+ """Computes a bidirectional sliding window attention mask.
247
+
248
+ A token can attend to any other token if their absolute distance is
249
+ within half the sliding window size. This mask is used in embedding
250
+ models like `EmbeddingGemma`.
251
+
252
+ Args:
253
+ batch_size: The batch size for the mask.
254
+ sequence_length: The length of the sequence.
255
+
256
+ Returns:
257
+ A boolean attention mask with shape
258
+ `(batch_size, sequence_length, sequence_length)`.
259
+ """
260
+ i = keras.ops.expand_dims(
261
+ keras.ops.arange(sequence_length, dtype="int32"), axis=1
262
+ )
263
+ j = keras.ops.arange(sequence_length, dtype="int32")
264
+
265
+ # If sliding window size is 4, the token in question attends to 1
266
+ # token before and 2 tokens after.
267
+ w_right = self.sliding_window_size // 2
268
+ w_left = self.sliding_window_size - w_right - 1
269
+
270
+ # Calculate the relative distance.
271
+ distance = i - j
272
+
273
+ mask = keras.ops.logical_and(distance <= w_left, distance >= -w_right)
274
+
275
+ mask = keras.ops.expand_dims(mask, axis=0)
276
+ return keras.ops.broadcast_to(
277
+ mask, (batch_size, sequence_length, sequence_length)
278
+ )
279
+
243
280
  def _mask_sliding_window(
244
281
  self,
245
282
  attention_mask,
246
283
  cache_update_index=0,
247
284
  ):
248
285
  batch_size, query_len, key_len = ops.shape(attention_mask)
286
+
287
+ if self.use_bidirectional_attention:
288
+ bidirectional_sliding_mask = (
289
+ self._compute_bidirectional_sliding_mask(
290
+ batch_size=batch_size,
291
+ # `query_len = key_len` for embedding models
292
+ sequence_length=query_len,
293
+ )
294
+ )
295
+ return ops.logical_and(attention_mask, bidirectional_sliding_mask)
296
+
249
297
  # Compute the sliding window for square attention.
250
298
  all_ones = ops.ones((key_len, key_len), "bool")
251
299
  if keras.config.backend() == "tensorflow":
@@ -196,6 +196,7 @@ class Gemma3Backbone(Backbone):
196
196
  global_rope_scaling_factor=1.0,
197
197
  vision_encoder=None,
198
198
  layer_norm_epsilon=1e-6,
199
+ use_bidirectional_attention=False,
199
200
  dropout=0,
200
201
  dtype=None,
201
202
  **kwargs,
@@ -251,6 +252,7 @@ class Gemma3Backbone(Backbone):
251
252
  sliding_window_size=sliding_window_size,
252
253
  rope_wavelength=rope_wavelength,
253
254
  rope_scaling_factor=rope_scaling_factor,
255
+ use_bidirectional_attention=use_bidirectional_attention,
254
256
  dropout=dropout,
255
257
  dtype=dtype,
256
258
  name=f"decoder_block_{i}",
@@ -357,6 +359,7 @@ class Gemma3Backbone(Backbone):
357
359
  self.sliding_window_size = sliding_window_size
358
360
  self.local_rope_scaling_factor = local_rope_scaling_factor
359
361
  self.global_rope_scaling_factor = global_rope_scaling_factor
362
+ self.use_bidirectional_attention = use_bidirectional_attention
360
363
  self.layer_norm_epsilon = layer_norm_epsilon
361
364
  self.dropout = dropout
362
365
 
@@ -396,6 +399,7 @@ class Gemma3Backbone(Backbone):
396
399
  "vision_encoder": None
397
400
  if self.vision_encoder is None
398
401
  else keras.layers.serialize(self.vision_encoder),
402
+ "use_bidirectional_attention": self.use_bidirectional_attention,
399
403
  "layer_norm_epsilon": self.layer_norm_epsilon,
400
404
  "dropout": self.dropout,
401
405
  }
@@ -45,6 +45,7 @@ class Gemma3DecoderBlock(keras.layers.Layer):
45
45
  layer_norm_epsilon=1e-6,
46
46
  rope_wavelength=10_000.0,
47
47
  rope_scaling_factor=1.0,
48
+ use_bidirectional_attention=False,
48
49
  dropout=0,
49
50
  **kwargs,
50
51
  ):
@@ -66,6 +67,7 @@ class Gemma3DecoderBlock(keras.layers.Layer):
66
67
  self.layer_norm_epsilon = layer_norm_epsilon
67
68
  self.rope_wavelength = rope_wavelength
68
69
  self.rope_scaling_factor = rope_scaling_factor
70
+ self.use_bidirectional_attention = use_bidirectional_attention
69
71
  self.dropout = dropout
70
72
 
71
73
  self.pre_attention_norm = RMSNormalization(
@@ -93,6 +95,7 @@ class Gemma3DecoderBlock(keras.layers.Layer):
93
95
  rope_wavelength=rope_wavelength,
94
96
  rope_scaling_factor=rope_scaling_factor,
95
97
  dropout=dropout,
98
+ use_bidirectional_attention=use_bidirectional_attention,
96
99
  dtype=self.dtype_policy,
97
100
  name="attention",
98
101
  )
@@ -209,6 +212,14 @@ class Gemma3DecoderBlock(keras.layers.Layer):
209
212
  if cache is not None:
210
213
  input_length = ops.shape(cache)[2]
211
214
 
215
+ if self.use_bidirectional_attention:
216
+ # `output_length` and `input_length` will be the same in this case
217
+ # because we use bidirectional attention for models like
218
+ # `EmbeddingGemma` which aren't used for text generation.
219
+ mask_1 = decoder_mask
220
+ mask_2 = ops.transpose(mask_1, (0, 2, 1))
221
+ return mask_1 * mask_2
222
+
212
223
  causal_mask = compute_causal_mask(
213
224
  batch_size=batch_size,
214
225
  input_length=input_length,
@@ -304,6 +315,7 @@ class Gemma3DecoderBlock(keras.layers.Layer):
304
315
  "dropout": self.dropout,
305
316
  "rope_wavelength": self.rope_wavelength,
306
317
  "rope_scaling_factor": self.rope_scaling_factor,
318
+ "use_bidirectional_attention": self.use_bidirectional_attention,
307
319
  }
308
320
  )
309
321
  return config
@@ -67,7 +67,9 @@ class SAMPromptEncoder(keras.layers.Layer):
67
67
  self.activation = activation
68
68
 
69
69
  self.positional_embedding_layer = RandomFrequencyPositionalEmbeddings(
70
- num_positional_features=self.hidden_size // 2, scale=1
70
+ num_positional_features=self.hidden_size // 2,
71
+ scale=1,
72
+ dtype=self.dtype,
71
73
  )
72
74
 
73
75
  self.foreground_point_embed = keras.layers.Embedding(
@@ -95,15 +95,15 @@ class BeamSampler(Sampler):
95
95
  )
96
96
  log_probs = flatten_beams(ops.repeat(log_probs, batch_size, axis=0))
97
97
 
98
- def cond(prompt, cache, index, log_probs):
98
+ def cond(prompt, cache, index, mask, log_probs):
99
99
  if stop_token_ids is None:
100
- return True
100
+ return ops.convert_to_tensor(True, dtype="bool")
101
101
  # Stop if all sequences have produced a *new* stop token.
102
102
  end_tokens = any_equal(prompt, stop_token_ids, ~mask)
103
103
  prompt_done = ops.any(end_tokens, axis=-1)
104
104
  return ops.logical_not(ops.all(prompt_done))
105
105
 
106
- def body(prompt, cache, index, log_probs):
106
+ def body(prompt, cache, index, mask, log_probs):
107
107
  # Compute the softmax distribution for the next token.
108
108
  logits, _, cache = next(prompt, cache, index)
109
109
  vocab_size = ops.shape(logits)[-1]
@@ -150,12 +150,12 @@ class BeamSampler(Sampler):
150
150
  next_token = next_token[:, None]
151
151
  prompt = ops.slice_update(prompt, [0, index], next_token)
152
152
  # Return the iteration of the loop state.
153
- return (prompt, cache, index + 1, log_probs)
153
+ return (prompt, cache, index + 1, mask, log_probs)
154
154
 
155
- prompt, _, _, log_probs = self.run_loop(
155
+ prompt, _, _, _, log_probs = self.run_loop(
156
156
  cond=cond,
157
157
  body=body,
158
- loop_vars=(prompt, cache, index, log_probs),
158
+ loop_vars=(prompt, cache, index, mask, log_probs),
159
159
  maximum_iterations=(max_length - index),
160
160
  model=model,
161
161
  )
@@ -92,16 +92,18 @@ class Sampler:
92
92
  # `ops.while_loop` will not accept `None` as a value for `loop_vars`.
93
93
  cache = () if cache is None else cache
94
94
 
95
- def cond(prompt, cache, index):
95
+ # OpenVINO requires all parameters to be passed in the body.
96
+ # So we pass `mask` as well.
97
+ def cond(prompt, cache, index, mask):
96
98
  if stop_token_ids is None:
97
- return True
99
+ return ops.convert_to_tensor(True, dtype="bool")
98
100
  # Stop if all sequences have produced a *new* id from
99
101
  # stop_token_ids.
100
102
  end_tokens = any_equal(prompt, stop_token_ids, ~mask)
101
103
  prompt_done = ops.any(end_tokens, axis=-1)
102
104
  return ops.logical_not(ops.all(prompt_done))
103
105
 
104
- def body(prompt, cache, index):
106
+ def body(prompt, cache, index, mask):
105
107
  # Compute the softmax distribution for the next token.
106
108
  logits, _, cache = next(prompt, cache, index)
107
109
  probabilities = self.compute_probabilities(logits)
@@ -115,12 +117,12 @@ class Sampler:
115
117
  prompt = ops.slice_update(prompt, [0, index], next_token)
116
118
 
117
119
  # Return the next prompt, cache and incremented index.
118
- return (prompt, cache, index + 1)
120
+ return (prompt, cache, index + 1, mask)
119
121
 
120
- prompt, _, _ = self.run_loop(
122
+ prompt, _, _, _ = self.run_loop(
121
123
  cond,
122
124
  body,
123
- loop_vars=(prompt, cache, index),
125
+ loop_vars=(prompt, cache, index, mask),
124
126
  maximum_iterations=(max_length - index),
125
127
  model=model,
126
128
  )
@@ -0,0 +1,141 @@
1
+ from keras import tree
2
+
3
+ from keras_hub.src.utils.keras_utils import print_msg
4
+
5
+ try:
6
+ import openvino as ov
7
+ import openvino.opset14 as ov_opset
8
+ from openvino import Core
9
+ except ImportError:
10
+ ov = None
11
+ ov_opset = None
12
+ Core = None
13
+
14
+
15
+ _core = None
16
+
17
+
18
+ def get_core():
19
+ """Get or create OpenVINO Core instance.
20
+
21
+ Returns:
22
+ openvino.Core: OpenVINO Core instance,
23
+ or None if OpenVINO not available.
24
+ """
25
+ global _core
26
+ if _core is None and Core is not None:
27
+ _core = Core()
28
+ return _core
29
+
30
+
31
+ def get_device():
32
+ """Detect and return the best available OpenVINO device.
33
+
34
+ Returns:
35
+ str: "GPU" if available, otherwise "CPU".
36
+ """
37
+ core = get_core()
38
+ if core is None:
39
+ return "CPU"
40
+ return "GPU" if "GPU" in core.available_devices else "CPU"
41
+
42
+
43
+ def compile_model(struct_params, struct_outputs, device, model_dtype):
44
+ """Compile OpenVINO model with dynamic shapes and precision hints.
45
+
46
+ Args:
47
+ struct_params: Model parameters structure.
48
+ struct_outputs: Model outputs structure.
49
+ device: Target device ("GPU" or "CPU").
50
+ model_dtype: Model precision ("f16" or "f32").
51
+
52
+ Returns:
53
+ Compiled OpenVINO model ready for inference.
54
+ """
55
+ flat_params = tree.flatten(struct_params)
56
+ flat_outputs = tree.flatten(struct_outputs)
57
+ parameters = [p.output.get_node() for p in flat_params]
58
+ results = [ov_opset.result(r.output) for r in flat_outputs]
59
+ ov_model = ov.Model(results=results, parameters=parameters)
60
+ for ov_input in ov_model.inputs:
61
+ rank = ov_input.get_partial_shape().rank.get_length()
62
+ ov_input.get_node().set_partial_shape(ov.PartialShape([-1] * rank))
63
+ ov_model.validate_nodes_and_infer_types()
64
+ config = {"INFERENCE_PRECISION_HINT": model_dtype}
65
+ core = get_core()
66
+ if core is None:
67
+ raise RuntimeError("OpenVINO not available")
68
+ return core.compile_model(ov_model, device, config)
69
+
70
+
71
+ def get_outputs(inputs, struct_outputs, compiled_ov_model, unpack_singleton):
72
+ """Execute compiled OpenVINO model and return structured outputs.
73
+
74
+ Args:
75
+ inputs: Input tensors for inference.
76
+ struct_outputs: Expected output structure.
77
+ compiled_ov_model: Compiled OpenVINO model.
78
+ unpack_singleton: Function to unpack singleton outputs.
79
+
80
+ Returns:
81
+ Structured model outputs matching expected format.
82
+ """
83
+ flatten_inputs = tree.flatten(inputs)
84
+ raw = compiled_ov_model(flatten_inputs).to_tuple()
85
+ packed = tree.pack_sequence_as(struct_outputs, raw)
86
+ return unpack_singleton(packed)
87
+
88
+
89
+ def ov_infer(model, inputs, stop_token_ids, fn):
90
+ """High-level OpenVINO inference with model reuse and compilation.
91
+
92
+ This function manages OpenVINO model compilation and caching. It reuses
93
+ existing compiled models when possible, or compiles new ones as needed.
94
+ Handles device detection and automatic precision selection.
95
+
96
+ Args:
97
+ model: Keras model with OpenVINO backend support.
98
+ inputs: Input tensors for inference.
99
+ stop_token_ids: Token IDs that should stop generation.
100
+ fn: Function to execute with the parameterized inputs.
101
+
102
+ Returns:
103
+ Model outputs from OpenVINO inference.
104
+ """
105
+ device = get_device()
106
+
107
+ # Try to use existing compiled model for the same device
108
+ if (
109
+ getattr(model, "ov_compiled_model", None) is not None
110
+ and getattr(model, "ov_device", None) is not None
111
+ and device == model.ov_device
112
+ ):
113
+ try:
114
+ return get_outputs(
115
+ inputs,
116
+ model.struct_outputs,
117
+ model.ov_compiled_model,
118
+ model._unpack_singleton,
119
+ )
120
+ except RuntimeError as e:
121
+ print_msg(
122
+ "WARNING: OpenVINO inference \033[1mFAILED\033[0m, "
123
+ "recompiling model and trying again.\n" + str(e)
124
+ )
125
+ model.ov_compiled_model = None
126
+ model.struct_outputs = None
127
+
128
+ # Compile a new model
129
+ struct_params = model._parameterize_data(inputs)
130
+ model.struct_outputs = fn(struct_params, stop_token_ids)
131
+ model.ov_device = device
132
+ model_dtype = "f16" if model.dtype in ("float16", "bfloat16") else "f32"
133
+ model.ov_compiled_model = compile_model(
134
+ struct_params, model.struct_outputs, device, model_dtype
135
+ )
136
+ return get_outputs(
137
+ inputs,
138
+ model.struct_outputs,
139
+ model.ov_compiled_model,
140
+ model._unpack_singleton,
141
+ )
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.23.0.dev202508300415"
4
+ __version__ = "0.23.0.dev202509130423"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202508300415
3
+ Version: 0.23.0.dev202509130423
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -540,6 +540,7 @@ keras_hub/src/tokenizers/word_piece_tokenizer.py
540
540
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py
541
541
  keras_hub/src/utils/__init__.py
542
542
  keras_hub/src/utils/keras_utils.py
543
+ keras_hub/src/utils/openvino_utils.py
543
544
  keras_hub/src/utils/pipeline_model.py
544
545
  keras_hub/src/utils/preset_utils.py
545
546
  keras_hub/src/utils/python_utils.py