keras-hub-nightly 0.22.0.dev202508090416__tar.gz → 0.22.0.dev202508110431__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

Files changed (557) hide show
  1. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/api/models/__init__.py +16 -0
  3. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/api/tokenizers/__init__.py +1 -0
  4. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm/esm_attention.py +95 -0
  5. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm/esm_backbone.py +229 -0
  6. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm/esm_classifier.py +184 -0
  7. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm/esm_classifier_preprocessor.py +135 -0
  8. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm/esm_encoder.py +134 -0
  9. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm/esm_masked_plm.py +117 -0
  10. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm/esm_masked_plm_preprocessor.py +143 -0
  11. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm/esm_tokenizer.py +82 -0
  12. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +2 -1
  13. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/utils/timm/__init__.py +0 -0
  14. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/utils/transformers/__init__.py +0 -0
  15. keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/utils/transformers/convert_esm.py +159 -0
  16. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/preset_loader.py +3 -0
  17. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/version.py +1 -1
  18. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  19. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub_nightly.egg-info/SOURCES.txt +11 -0
  20. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/README.md +0 -0
  21. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/api/__init__.py +0 -0
  22. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/api/layers/__init__.py +0 -0
  23. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/api/metrics/__init__.py +0 -0
  24. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/api/samplers/__init__.py +0 -0
  25. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/api/utils/__init__.py +0 -0
  26. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/__init__.py +0 -0
  27. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/api_export.py +0 -0
  28. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/__init__.py +0 -0
  29. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/__init__.py +0 -0
  30. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  31. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  32. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  33. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  34. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  35. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  36. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  37. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  38. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  39. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  40. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  41. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  42. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  43. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  44. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  45. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  46. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  47. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  48. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  49. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  50. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  51. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  52. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  53. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  54. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  55. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/metrics/__init__.py +0 -0
  56. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/metrics/bleu.py +0 -0
  57. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/metrics/edit_distance.py +0 -0
  58. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/metrics/perplexity.py +0 -0
  59. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/metrics/rouge_base.py +0 -0
  60. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/metrics/rouge_l.py +0 -0
  61. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/metrics/rouge_n.py +0 -0
  62. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/__init__.py +0 -0
  63. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/albert/__init__.py +0 -0
  64. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  65. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  66. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  67. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/albert/albert_presets.py +0 -0
  68. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  69. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  70. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  71. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/audio_to_text.py +0 -0
  72. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  73. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/backbone.py +0 -0
  74. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bart/__init__.py +0 -0
  75. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  76. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bart/bart_presets.py +0 -0
  77. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  78. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  79. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  80. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/basnet/__init__.py +0 -0
  81. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/basnet/basnet.py +0 -0
  82. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  83. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  84. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  85. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  86. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bert/__init__.py +0 -0
  87. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  88. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  89. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  90. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bert/bert_presets.py +0 -0
  91. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  92. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  93. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  94. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bloom/__init__.py +0 -0
  95. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  96. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  97. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  98. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  99. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  100. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  101. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  102. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/causal_lm.py +0 -0
  103. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  104. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/clip/__init__.py +0 -0
  105. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  106. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  107. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/clip/clip_layers.py +0 -0
  108. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  109. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/clip/clip_presets.py +0 -0
  110. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  111. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  112. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  113. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/cspnet/__init__.py +0 -0
  114. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  115. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  116. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  117. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  118. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  119. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  120. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  121. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  122. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  123. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  124. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  125. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  126. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  127. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  128. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  129. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  130. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  131. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  132. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  133. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  134. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  135. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  136. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  137. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deit/__init__.py +0 -0
  138. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deit/deit_backbone.py +0 -0
  139. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deit/deit_image_classifier.py +0 -0
  140. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +0 -0
  141. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deit/deit_image_converter.py +0 -0
  142. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deit/deit_layers.py +0 -0
  143. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/deit/deit_presets.py +0 -0
  144. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/densenet/__init__.py +0 -0
  145. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  146. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  147. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  149. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  150. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/dinov2/__init__.py +0 -0
  151. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/dinov2/dinov2_backbone.py +0 -0
  152. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/dinov2/dinov2_image_converter.py +0 -0
  153. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/dinov2/dinov2_layers.py +0 -0
  154. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/dinov2/dinov2_presets.py +0 -0
  155. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  156. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  157. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  158. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  159. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  160. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  161. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  162. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  163. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  164. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/efficientnet/cba.py +0 -0
  165. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  166. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  167. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  168. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  169. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  170. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  171. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  172. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/electra/__init__.py +0 -0
  173. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  174. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/electra/electra_presets.py +0 -0
  175. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  176. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/models/gpt_neo_x → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm}/__init__.py +0 -0
  177. /keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/models/roformer_v2/__init__.py → /keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/esm/esm_presets.py +0 -0
  178. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/f_net/__init__.py +0 -0
  179. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  180. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  181. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  182. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  183. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  184. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  186. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/falcon/__init__.py +0 -0
  187. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  188. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  189. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  190. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  191. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  192. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  193. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  194. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  195. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/flux/__init__.py +0 -0
  196. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/flux/flux_layers.py +0 -0
  197. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/flux/flux_maths.py +0 -0
  198. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/flux/flux_model.py +0 -0
  199. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/flux/flux_presets.py +0 -0
  200. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  201. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  202. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma/__init__.py +0 -0
  203. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  204. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  205. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  206. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  207. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  208. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  209. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  210. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  211. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/__init__.py +0 -0
  212. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  213. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  214. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  215. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  216. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  217. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  218. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  219. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  220. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  221. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  222. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  223. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt2/__init__.py +0 -0
  224. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  225. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  226. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  227. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  228. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  229. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  230. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/models/vit_det → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/gpt_neo_x}/__init__.py +0 -0
  231. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  232. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  233. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  234. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  235. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  236. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  237. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/hgnetv2/__init__.py +0 -0
  238. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +0 -0
  239. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +0 -0
  240. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +0 -0
  241. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +0 -0
  242. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +0 -0
  243. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/hgnetv2/hgnetv2_layers.py +0 -0
  244. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/hgnetv2/hgnetv2_presets.py +0 -0
  245. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/image_classifier.py +0 -0
  246. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  247. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/image_segmenter.py +0 -0
  248. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  249. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/image_to_image.py +0 -0
  250. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/inpaint.py +0 -0
  251. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/__init__.py +0 -0
  252. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/llama_attention.py +0 -0
  253. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  254. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  255. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  256. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  257. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  258. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/llama_presets.py +0 -0
  259. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  260. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  261. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama3/__init__.py +0 -0
  262. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  263. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  264. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  265. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  266. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  267. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/masked_lm.py +0 -0
  268. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  269. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mistral/__init__.py +0 -0
  270. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  271. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  272. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  273. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  274. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  275. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  276. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  277. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  278. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mit/__init__.py +0 -0
  279. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  280. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  281. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  282. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  283. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mit/mit_layers.py +0 -0
  284. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mit/mit_presets.py +0 -0
  285. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mixtral/__init__.py +0 -0
  286. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  287. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  288. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  289. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  290. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  291. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  292. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
  293. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  294. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  295. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  296. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  297. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  298. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  299. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  300. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/mobilenet/util.py +0 -0
  301. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/__init__.py +0 -0
  302. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  303. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  304. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  305. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
  306. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  307. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  308. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  309. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  310. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  311. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  312. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/object_detector.py +0 -0
  313. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  314. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/opt/__init__.py +0 -0
  315. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  316. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  317. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/opt/opt_presets.py +0 -0
  319. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  320. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  321. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  322. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  323. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  324. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  325. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  326. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  327. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  328. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  329. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/__init__.py +0 -0
  330. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  331. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  332. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  333. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  334. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  335. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  336. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  337. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  338. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  339. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/preprocessor.py +0 -0
  340. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen/__init__.py +0 -0
  341. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  342. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  343. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  344. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  345. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  346. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  347. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  348. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  349. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen3/__init__.py +0 -0
  350. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
  351. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen3/qwen3_backbone.py +0 -0
  352. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen3/qwen3_causal_lm.py +0 -0
  353. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
  354. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
  355. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
  356. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen3/qwen3_presets.py +0 -0
  357. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
  358. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  359. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  360. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  361. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  362. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  363. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  364. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  365. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
  366. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  367. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/resnet/__init__.py +0 -0
  368. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  369. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  370. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  371. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  372. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  373. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/retinanet/__init__.py +0 -0
  374. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  375. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  376. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  377. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  378. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  379. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  380. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  381. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  382. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roberta/__init__.py +0 -0
  383. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  384. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  385. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  386. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  387. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  388. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  389. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  390. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/models/xlnet → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/roformer_v2}/__init__.py +0 -0
  391. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  392. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  393. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  394. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  395. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  396. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  397. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  398. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  399. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/__init__.py +0 -0
  400. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  401. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  402. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  403. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  404. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/sam_layers.py +0 -0
  405. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  406. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/sam_presets.py +0 -0
  407. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  408. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  409. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/segformer/__init__.py +0 -0
  410. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  411. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  412. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  413. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  414. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  415. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  416. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  417. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/__init__.py +0 -0
  418. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  419. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  420. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  421. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  422. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  423. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  424. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  425. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  426. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  427. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  428. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  429. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  430. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  431. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  432. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  433. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  434. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  435. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  436. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  437. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/t5/__init__.py +0 -0
  438. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  439. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  440. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  441. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  442. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/t5/t5_presets.py +0 -0
  443. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  444. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  445. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/task.py +0 -0
  446. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/text_classifier.py +0 -0
  447. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  448. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/text_to_image.py +0 -0
  449. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  450. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vae/__init__.py +0 -0
  451. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  452. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vae/vae_layers.py +0 -0
  453. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vgg/__init__.py +0 -0
  454. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  455. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  456. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  457. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  458. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  459. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vit/__init__.py +0 -0
  460. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  461. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  462. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  463. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  464. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vit/vit_layers.py +0 -0
  465. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vit/vit_presets.py +0 -0
  466. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/samplers → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/vit_det}/__init__.py +0 -0
  467. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  468. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  469. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/whisper/__init__.py +0 -0
  470. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  471. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  472. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  473. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  474. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  475. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  476. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  477. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xception/__init__.py +0 -0
  478. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  479. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  480. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  481. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  482. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xception/xception_presets.py +0 -0
  483. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  484. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  485. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  486. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  487. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  488. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  489. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  490. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  491. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/tests → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/models/xlnet}/__init__.py +0 -0
  492. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  493. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  494. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  495. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  496. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/tokenizers → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/samplers}/__init__.py +0 -0
  497. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/samplers/beam_sampler.py +0 -0
  498. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  499. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  500. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/samplers/random_sampler.py +0 -0
  501. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/samplers/sampler.py +0 -0
  502. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/samplers/serialization.py +0 -0
  503. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  504. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  505. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/utils → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/tests}/__init__.py +0 -0
  506. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  507. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tests/test_case.py +0 -0
  508. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/utils/coco → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/tokenizers}/__init__.py +0 -0
  509. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  510. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  511. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  512. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  513. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  514. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  515. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  516. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  517. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/utils/imagenet → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/utils}/__init__.py +0 -0
  518. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/utils/timm → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/utils/coco}/__init__.py +0 -0
  519. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  520. {keras_hub_nightly-0.22.0.dev202508090416/keras_hub/src/utils/transformers → keras_hub_nightly-0.22.0.dev202508110431/keras_hub/src/utils/imagenet}/__init__.py +0 -0
  521. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  522. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/keras_utils.py +0 -0
  523. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/pipeline_model.py +0 -0
  524. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/preset_utils.py +0 -0
  525. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/python_utils.py +0 -0
  526. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/tensor_utils.py +0 -0
  527. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  528. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  529. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  530. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  531. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  532. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  533. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  534. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  535. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  536. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  537. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_deit.py +0 -0
  538. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_dinov2.py +0 -0
  539. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  540. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  541. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  542. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  543. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  544. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  545. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  546. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  547. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
  548. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  549. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  550. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/export/gemma.py +0 -0
  551. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/export/hf_exporter.py +0 -0
  552. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  553. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  554. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub_nightly.egg-info/requires.txt +0 -0
  555. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  556. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/pyproject.toml +0 -0
  557. {keras_hub_nightly-0.22.0.dev202508090416 → keras_hub_nightly-0.22.0.dev202508110431}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.22.0.dev202508090416
3
+ Version: 0.22.0.dev202508110431
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -199,6 +199,22 @@ from keras_hub.src.models.electra.electra_backbone import (
199
199
  from keras_hub.src.models.electra.electra_tokenizer import (
200
200
  ElectraTokenizer as ElectraTokenizer,
201
201
  )
202
+ from keras_hub.src.models.esm.esm_backbone import ESMBackbone as ESM2Backbone
203
+ from keras_hub.src.models.esm.esm_backbone import ESMBackbone as ESMBackbone
204
+ from keras_hub.src.models.esm.esm_classifier import (
205
+ ESMProteinClassifier as ESMProteinClassifier,
206
+ )
207
+ from keras_hub.src.models.esm.esm_classifier_preprocessor import (
208
+ ESMProteinClassifierPreprocessor as ESMProteinClassifierPreprocessor,
209
+ )
210
+ from keras_hub.src.models.esm.esm_masked_plm import (
211
+ ESMMaskedPLM as ESM2MaskedPLM,
212
+ )
213
+ from keras_hub.src.models.esm.esm_masked_plm import ESMMaskedPLM as ESMMaskedPLM
214
+ from keras_hub.src.models.esm.esm_masked_plm_preprocessor import (
215
+ ESMMaskedPLMPreprocessor as ESMMaskedPLMPreprocessor,
216
+ )
217
+ from keras_hub.src.models.esm.esm_tokenizer import ESMTokenizer as ESMTokenizer
202
218
  from keras_hub.src.models.f_net.f_net_backbone import (
203
219
  FNetBackbone as FNetBackbone,
204
220
  )
@@ -28,6 +28,7 @@ from keras_hub.src.models.distil_bert.distil_bert_tokenizer import (
28
28
  from keras_hub.src.models.electra.electra_tokenizer import (
29
29
  ElectraTokenizer as ElectraTokenizer,
30
30
  )
31
+ from keras_hub.src.models.esm.esm_tokenizer import ESMTokenizer as ESMTokenizer
31
32
  from keras_hub.src.models.f_net.f_net_tokenizer import (
32
33
  FNetTokenizer as FNetTokenizer,
33
34
  )
@@ -0,0 +1,95 @@
1
+ import keras
2
+ from keras import ops
3
+ from packaging import version
4
+
5
+ from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
6
+ from keras_hub.src.models.roformer_v2.roformer_v2_attention import (
7
+ RoformerAttention,
8
+ )
9
+
10
+
11
+ class ESMRotaryEmbedding(RotaryEmbedding):
12
+ def _compute_cos_sin_embedding(self, x, position=1):
13
+ dim = x.shape[-1]
14
+ inv_freq = self.scaling_factor / (
15
+ self.max_wavelength ** (ops.arange(0, dim, 2, dtype=x.dtype) / dim)
16
+ )
17
+ t = ops.arange(x.shape[position], dtype=x.dtype)
18
+ freqs = ops.outer(t, inv_freq)
19
+ emb = ops.concatenate((freqs, freqs), axis=-1)
20
+
21
+ cos_emb = ops.cos(emb)[None, :, None, :]
22
+ sin_emb = ops.sin(emb)[None, :, None, :]
23
+ return cos_emb, sin_emb
24
+
25
+ def call(self, q, k, position=1):
26
+ cos_emb, sin_emb = self._compute_cos_sin_embedding(q, position)
27
+
28
+ return (
29
+ self.apply_rotary_pos_emb(q, cos_emb, sin_emb),
30
+ self.apply_rotary_pos_emb(k, cos_emb, sin_emb),
31
+ )
32
+
33
+ def rotate_half(self, x):
34
+ x1, x2 = ops.split(x, 2, -1)
35
+ return ops.concatenate((-x2, x1), axis=-1)
36
+
37
+ def apply_rotary_pos_emb(self, x, cos, sin):
38
+ cos = cos[:, : x.shape[1], :, :]
39
+ sin = sin[:, : x.shape[1], :, :]
40
+
41
+ return (x * cos) + (self.rotate_half(x) * sin)
42
+
43
+
44
+ class EsmSelfAttention(RoformerAttention):
45
+ """MultiHeadAttention by ESM2
46
+
47
+ Referred to the implementation of HuggingFace.
48
+ In fact, this part of the calculation is exactly the same as RoFormer.
49
+ Only the calculation of the rotary part is different.
50
+ """
51
+
52
+ def __init__(self, use_rotary=True, **kwargs):
53
+ super().__init__(**kwargs)
54
+ self.use_rotary = use_rotary
55
+
56
+ def build(self, input_shape):
57
+ super().build(input_shape)
58
+ if self.use_rotary:
59
+ self.rotary_embedding_layer = ESMRotaryEmbedding(
60
+ max_wavelength=self.max_wavelength, dtype=self.dtype_policy
61
+ )
62
+ self.rotary_embedding_layer.build([])
63
+
64
+ def call(self, x, attention_mask=None):
65
+ qw = self.q_dense(x)
66
+ kw = self.k_dense(x)
67
+ vw = self.v_dense(x)
68
+
69
+ b, s = ops.shape(qw)[:2]
70
+ qw = ops.reshape(qw, (b, s, self.heads, self.head_size))
71
+ kw = ops.reshape(kw, (b, s, self.heads, self.head_size))
72
+ vw = ops.reshape(vw, (b, s, self.heads, self.head_size))
73
+
74
+ if self.use_rotary:
75
+ qw, kw = self.rotary_embedding_layer(qw, kw)
76
+ if version.parse(keras.__version__) < version.parse("3.6"):
77
+ raise ValueError("Please make sure your Keras version is >=3.6.")
78
+ flash_attention = keras.config.is_flash_attention_enabled()
79
+ attention_mask = ops.reshape(attention_mask, [b, 1, s, 1])
80
+ if keras.config.backend() == "torch":
81
+ attention_mask = ops.repeat(attention_mask, s, -1)
82
+ attention_mask = ops.transpose(attention_mask, [0, 1, 3, 2])
83
+ o = ops.dot_product_attention(
84
+ qw, kw, vw, mask=attention_mask, flash_attention=flash_attention
85
+ )
86
+ return self.o_dense(ops.reshape(o, [b, s, -1]))
87
+
88
+ def get_config(self):
89
+ config = super().get_config()
90
+ config.update(
91
+ {
92
+ "use_rotary": self.use_rotary,
93
+ }
94
+ )
95
+ return config
@@ -0,0 +1,229 @@
1
+ import keras
2
+ from keras import activations
3
+
4
+ from keras_hub.src.api_export import keras_hub_export
5
+ from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
6
+ from keras_hub.src.models.backbone import Backbone
7
+ from keras_hub.src.models.esm.esm_encoder import ESMEncoder
8
+
9
+
10
+ def esm2_kernel_initializer(stddev=0.02):
11
+ return keras.initializers.TruncatedNormal(stddev=stddev)
12
+
13
+
14
+ @keras_hub_export(
15
+ ["keras_hub.models.ESM2Backbone", "keras_hub.models.ESMBackbone"]
16
+ )
17
+ class ESMBackbone(Backbone):
18
+ """A ESM2 and ESM encoder network.
19
+
20
+ This class implements a bi-directional Transformer-based encoder as
21
+ described in ["ESM"](https://github.com/facebookresearch/esm).
22
+
23
+ The default constructor gives a fully customizable, randomly initialized
24
+ ESM2 encoder with any number of layers, heads, and embed dim.To
25
+ load preset architectures and weights, use the `from_preset()` constructor.
26
+
27
+
28
+ Args:
29
+ vocabulary_size: int. The size of the token vocabulary.
30
+ num_layers: int. The number of transformer layers.
31
+ num_heads: int. The number of attention heads for each transformer.
32
+ The hidden size must be divisible by the number of attention heads.
33
+ hidden_dim: int. The size of the transformer encoding and pooler layers.
34
+ intermediate_dim: int. The output dimension of the first Dense layer in
35
+ a two-layer feedforward network for each transformer.
36
+ dropout: float. Dropout probability for the Transformer encoder.
37
+ Defaults to 0.1
38
+ use_pre_layer_norm:bool.If true, then layer norm will be used before
39
+ entering the transformer block.
40
+ Since it's pre-norm, the default is false.
41
+ max_sequence_length: int. The maximum sequence length that this encoder
42
+ can consume. If None, `max_sequence_length` uses the value from
43
+ sequence length. This determines the variable shape for positional
44
+ embeddings.
45
+ position_embedding_type: str. The position embedding type to use.
46
+ One of "absolute" and "rotary".
47
+ Use "absolute" for ESM1. Use "rotary" for ESM2. Defaults to "rotary"
48
+ max_wavelength : int. The maximum angular wavelength of
49
+ the sine/cosine curves, for rotary embeddings.
50
+ Defaults to `10000`.
51
+ activation :string or keras.activations. The activation to
52
+ use for the transformer.
53
+ Defaults to `"gelu"`.
54
+ pad_token_id: int.padding token id. Normally 0,
55
+ but is set to 1 in the esm2 model.
56
+ Defaults to 0.
57
+ dtype: None or str or keras.mixed_precision.DTypePolicy. The dtype to
58
+ use for model computations and weights. Note that some computations,
59
+ such as softmax and layer normalization, will always be done at
60
+ float32 precision regardless of dtype.
61
+
62
+ Examples:
63
+ ```python
64
+ input_data = {
65
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
66
+ }
67
+
68
+ # Pretrained ESM2 encoder.
69
+ model = keras_hub.models.ESM2Backbone.from_preset('hf://facebook/esm2_t6_8M_UR50D')
70
+ model(input_data)
71
+
72
+ # Randomly initialized ESM2 encoder with a custom config.
73
+ model = keras_hub.models.ESM2Backbone(
74
+ vocabulary_size=30552,
75
+ num_layers=4,
76
+ num_heads=4,
77
+ hidden_dim=256,
78
+ intermediate_dim=512,
79
+ )
80
+ model(input_data)
81
+ ```
82
+ """
83
+
84
+ def __init__(
85
+ self,
86
+ vocabulary_size,
87
+ num_layers,
88
+ num_heads,
89
+ hidden_dim,
90
+ intermediate_dim,
91
+ use_bias=True,
92
+ activation="gelu",
93
+ dropout=0.1,
94
+ dtype=None,
95
+ max_sequence_length=1024,
96
+ max_wavelength=10000,
97
+ layer_norm_eps=1e-12,
98
+ use_pre_layer_norm=False,
99
+ position_embedding_type="rotary",
100
+ pad_token_id=0,
101
+ **kwargs,
102
+ ):
103
+ if position_embedding_type not in (
104
+ "rotary",
105
+ "absolute",
106
+ ):
107
+ raise ValueError(
108
+ '`position_embedding_type` must be either `"rotary"`, or '
109
+ '`"absolute"`. Received '
110
+ f"position_embedding_type={position_embedding_type}."
111
+ )
112
+ head_size = hidden_dim // num_heads
113
+ # === Layers ===
114
+ self.token_embedding = keras.layers.Embedding(
115
+ input_dim=vocabulary_size,
116
+ output_dim=hidden_dim,
117
+ embeddings_initializer=esm2_kernel_initializer(),
118
+ dtype=dtype,
119
+ name="token_embedding",
120
+ )
121
+ if position_embedding_type == "absolute":
122
+ self.position_embedding = PositionEmbedding(
123
+ initializer=esm2_kernel_initializer(),
124
+ sequence_length=max_sequence_length,
125
+ dtype=dtype,
126
+ name="position_embedding",
127
+ )
128
+ self.embeddings_add = keras.layers.Add(
129
+ dtype=dtype,
130
+ name="embeddings_add",
131
+ )
132
+
133
+ self.output_layer_norm = keras.layers.LayerNormalization(
134
+ epsilon=layer_norm_eps,
135
+ dtype=dtype,
136
+ name="output_layer_norm",
137
+ )
138
+ if use_pre_layer_norm:
139
+ self.emb_layer_norm = keras.layers.LayerNormalization(
140
+ epsilon=layer_norm_eps,
141
+ dtype=dtype,
142
+ name="emb_layer_norm",
143
+ )
144
+ self.transformer_layers = []
145
+ for i in range(num_layers):
146
+ layer = ESMEncoder(
147
+ heads=num_heads,
148
+ head_size=head_size,
149
+ intermediate_size=intermediate_dim,
150
+ use_bias=use_bias,
151
+ max_wavelength=max_wavelength,
152
+ dropout=dropout,
153
+ activation=activation,
154
+ kernel_initializer=esm2_kernel_initializer(),
155
+ layer_norm_eps=layer_norm_eps,
156
+ dtype=dtype,
157
+ use_rotary=position_embedding_type == "rotary",
158
+ name=f"transformer_layer_{i}",
159
+ )
160
+ self.transformer_layers.append(layer)
161
+
162
+ # === Functional Model ===
163
+ token_id_input = keras.Input(
164
+ shape=(None,), dtype="int32", name="token_ids"
165
+ )
166
+
167
+ attention_mask = keras.ops.not_equal(token_id_input, pad_token_id)
168
+
169
+ token_vector = self.token_embedding(token_id_input)
170
+ if position_embedding_type == "absolute":
171
+ position_vector = self.position_embedding(
172
+ token_vector, start_index=pad_token_id
173
+ )
174
+ x = self.embeddings_add([token_vector, position_vector])
175
+ else:
176
+ x = token_vector
177
+ if use_pre_layer_norm:
178
+ x = self.emb_layer_norm(x)
179
+ for transformer_layer in self.transformer_layers:
180
+ x = transformer_layer(x, attention_mask=attention_mask)
181
+ output = self.output_layer_norm(x)
182
+ super().__init__(
183
+ inputs={
184
+ "token_ids": token_id_input,
185
+ },
186
+ outputs=output,
187
+ dtype=dtype,
188
+ **kwargs,
189
+ )
190
+
191
+ # === Config ===
192
+ self.vocabulary_size = vocabulary_size
193
+ self.num_layers = num_layers
194
+ self.num_heads = num_heads
195
+ self.hidden_dim = hidden_dim
196
+ self.intermediate_dim = intermediate_dim
197
+ self.dropout = dropout
198
+ self.max_wavelength = max_wavelength
199
+ self.head_size = head_size
200
+ self.activation = activations.get(activation)
201
+ self.use_bias = use_bias
202
+ self.start_token_index = 0
203
+ self.layer_norm_eps = layer_norm_eps
204
+ self.max_sequence_length = max_sequence_length
205
+ self.use_pre_layer_norm = use_pre_layer_norm
206
+ self.position_embedding_type = position_embedding_type
207
+ self.pad_token_id = pad_token_id
208
+
209
+ def get_config(self):
210
+ config = super().get_config()
211
+ config.update(
212
+ {
213
+ "vocabulary_size": self.vocabulary_size,
214
+ "num_layers": self.num_layers,
215
+ "num_heads": self.num_heads,
216
+ "hidden_dim": self.hidden_dim,
217
+ "intermediate_dim": self.intermediate_dim,
218
+ "dropout": self.dropout,
219
+ "max_wavelength": self.max_wavelength,
220
+ "use_bias": self.use_bias,
221
+ "activation": activations.serialize(self.activation),
222
+ "layer_norm_eps": self.layer_norm_eps,
223
+ "use_pre_layer_norm": self.use_pre_layer_norm,
224
+ "position_embedding_type": self.position_embedding_type,
225
+ "max_sequence_length": self.max_sequence_length,
226
+ "pad_token_id": self.pad_token_id,
227
+ }
228
+ )
229
+ return config
@@ -0,0 +1,184 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.esm.esm_backbone import ESMBackbone
5
+ from keras_hub.src.models.esm.esm_backbone import esm2_kernel_initializer
6
+ from keras_hub.src.models.esm.esm_classifier_preprocessor import (
7
+ ESMProteinClassifierPreprocessor,
8
+ )
9
+ from keras_hub.src.models.text_classifier import TextClassifier
10
+
11
+
12
+ @keras_hub_export("keras_hub.models.ESMProteinClassifier")
13
+ class ESMProteinClassifier(TextClassifier):
14
+ """An end-to-end ESM model for classification tasks.
15
+
16
+ This model attaches a classification head to
17
+ `keras_hub.models.ESMBackbone`, mapping from the backbone outputs
18
+ to logits suitable for a classification task. For usage of this model with
19
+ pre-trained weights, use the `from_preset()` constructor.
20
+
21
+ This model can optionally be configured with a `preprocessor` layer, in
22
+ which case it will automatically apply preprocessing to raw inputs during
23
+ `fit()`, `predict()`, and `evaluate()`. This is done by default when
24
+ creating the model with `from_preset()`.
25
+
26
+ Args:
27
+ backbone: A `keras_hub.models.ESMBackbone` instance.
28
+ num_classes: int. Number of classes to predict.
29
+ preprocessor: A `keras_hub.models.ESMProteinClassifierPreprocessor`
30
+ or `None`. If `None`, this model will not apply preprocessing, and
31
+ inputs should be preprocessed before calling the model.
32
+ activation: Optional `str` or callable. The
33
+ activation function to use on the model outputs. Set
34
+ `activation="softmax"` to return output probabilities.
35
+ Defaults to `None`.
36
+ dropout: float. The dropout probability value, applied after the dense
37
+ layer.
38
+
39
+ Examples:
40
+
41
+ Raw string data.
42
+ ```python
43
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
44
+ labels = [0, 3]
45
+
46
+ # Pretrained classifier.
47
+ classifier = keras_hub.models.ESMProteinClassifier.from_preset(
48
+ hf://facebook/esm2_t6_8M_UR50D,
49
+ num_classes=4,
50
+ )
51
+ classifier.fit(x=features, y=labels, batch_size=2)
52
+ classifier.predict(x=features, batch_size=2)
53
+
54
+ # Re-compile (e.g., with a new learning rate).
55
+ classifier.compile(
56
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
57
+ optimizer=keras.optimizers.Adam(5e-5),
58
+ jit_compile=True,
59
+ )
60
+ # Access backbone programmatically (e.g., to change `trainable`).
61
+ classifier.backbone.trainable = False
62
+ # Fit again.
63
+ classifier.fit(x=features, y=labels, batch_size=2)
64
+ ```
65
+
66
+ Preprocessed integer data.
67
+ ```python
68
+ features = {
69
+ "token_ids": np.ones(shape=(2, 12), dtype="int32"),
70
+ }
71
+ labels = [0, 3]
72
+
73
+ # Pretrained classifier without preprocessing.
74
+ classifier = keras_hub.models.ESMProteinClassifier.from_preset(
75
+ hf://facebook/esm2_t6_8M_UR50D,
76
+ num_classes=4,
77
+ preprocessor=None,
78
+ )
79
+ classifier.fit(x=features, y=labels, batch_size=2)
80
+ ```
81
+
82
+ Custom backbone and vocabulary.
83
+ ```python
84
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
85
+ labels = [0, 3]
86
+
87
+ vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
88
+ vocab += ["The", "quick", "brown", "fox", "jumped", "."]
89
+ tokenizer = keras_hub.models.ESMTokenizer(
90
+ vocabulary=vocab,
91
+ )
92
+ preprocessor = keras_hub.models.ESMProteinClassifierPreprocessor(
93
+ tokenizer=tokenizer,
94
+ sequence_length=128,
95
+ )
96
+ backbone = keras_hub.models.ESMBackbone(
97
+ vocabulary_size=30552,
98
+ num_layers=4,
99
+ num_heads=4,
100
+ hidden_dim=256,
101
+ intermediate_dim=512,
102
+ max_wavelength=128,
103
+ num_head=4,
104
+ )
105
+ classifier = keras_hub.models.ESMProteinClassifier(
106
+ backbone=backbone,
107
+ preprocessor=preprocessor,
108
+ num_classes=4,
109
+ )
110
+ classifier.fit(x=features, y=labels, batch_size=2)
111
+ ```
112
+ """
113
+
114
+ backbone_cls = ESMBackbone
115
+ preprocessor_cls = ESMProteinClassifierPreprocessor
116
+
117
+ def __init__(
118
+ self,
119
+ backbone,
120
+ num_classes,
121
+ preprocessor=None,
122
+ activation=None,
123
+ hidden_dim=None,
124
+ dropout=0.0,
125
+ **kwargs,
126
+ ):
127
+ # === Layers ===
128
+ self.backbone = backbone
129
+ self.preprocessor = preprocessor
130
+ self.pooled_dropout = keras.layers.Dropout(
131
+ dropout,
132
+ dtype=backbone.dtype_policy,
133
+ name="pooled_dropout",
134
+ )
135
+ hidden_dim = hidden_dim or backbone.hidden_dim
136
+ self.pooled_dense = keras.layers.Dense(
137
+ hidden_dim,
138
+ activation="tanh",
139
+ dtype=backbone.dtype_policy,
140
+ name="pooled_dense",
141
+ )
142
+ self.output_dropout = keras.layers.Dropout(
143
+ dropout,
144
+ dtype=backbone.dtype_policy,
145
+ name="output_dropout",
146
+ )
147
+ self.output_dense = keras.layers.Dense(
148
+ num_classes,
149
+ kernel_initializer=esm2_kernel_initializer(),
150
+ activation=activation,
151
+ dtype=backbone.dtype_policy,
152
+ name="logits",
153
+ )
154
+
155
+ # === Functional Model ===
156
+ inputs = backbone.input
157
+ x = backbone(inputs)[:, backbone.start_token_index, :]
158
+ x = self.pooled_dropout(x)
159
+ x = self.pooled_dense(x)
160
+ x = self.output_dropout(x)
161
+ outputs = self.output_dense(x)
162
+ super().__init__(
163
+ inputs=inputs,
164
+ outputs=outputs,
165
+ **kwargs,
166
+ )
167
+
168
+ # === Config ===
169
+ self.num_classes = num_classes
170
+ self.activation = keras.activations.get(activation)
171
+ self.hidden_dim = hidden_dim
172
+ self.dropout = dropout
173
+
174
+ def get_config(self):
175
+ config = super().get_config()
176
+ config.update(
177
+ {
178
+ "num_classes": self.num_classes,
179
+ "activation": keras.activations.serialize(self.activation),
180
+ "hidden_dim": self.hidden_dim,
181
+ "dropout": self.dropout,
182
+ }
183
+ )
184
+ return config
@@ -0,0 +1,135 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
5
+ from keras_hub.src.models.esm.esm_backbone import ESMBackbone
6
+ from keras_hub.src.models.esm.esm_tokenizer import ESMTokenizer
7
+ from keras_hub.src.models.text_classifier_preprocessor import (
8
+ TextClassifierPreprocessor,
9
+ )
10
+ from keras_hub.src.utils.tensor_utils import preprocessing_function
11
+
12
+
13
+ @keras_hub_export("keras_hub.models.ESMProteinClassifierPreprocessor")
14
+ class ESMProteinClassifierPreprocessor(TextClassifierPreprocessor):
15
+ """A ESM preprocessing layer which tokenizes and packs inputs.
16
+
17
+ This preprocessing layer will do three things:
18
+
19
+ 1. Tokenize any number of input segments using the `tokenizer`.
20
+ 2. Pack the inputs together using a `keras_hub.layers.StartEndPacker`.
21
+ with the appropriate start, end and pad tokens.
22
+ 3. Construct a dictionary with the key `"token_ids"`, that can be passed
23
+ directly to an ESM model.
24
+ This layer can be used directly with `tf.data.Dataset.map` to preprocess
25
+ string data in the `(x, y, sample_weight)` format used by
26
+ `keras.Model.fit`.
27
+
28
+ Args:
29
+ tokenizer: A `keras_hub.models.ESMTokenizer` instance.
30
+ sequence_length: The length of the packed inputs.
31
+ truncate: string. The algorithm to truncate a list of batched segments
32
+ to fit within `sequence_length`. The value can be either
33
+ `round_robin` or `waterfall`:
34
+ - `"round_robin"`: Available space is assigned one token at a
35
+ time in a round-robin fashion to the inputs that still need
36
+ some, until the limit is reached.
37
+ - `"waterfall"`: The allocation of the budget is done using a
38
+ "waterfall" algorithm that allocates quota in a
39
+ left-to-right manner and fills up the buckets until we run
40
+ out of budget. It supports an arbitrary number of segments.
41
+
42
+ Call arguments:
43
+ x: A tensor of single string sequences, or a tuple of multiple
44
+ tensor sequences to be packed together. Inputs may be batched or
45
+ unbatched. For single sequences, raw python inputs will be converted
46
+ to tensors. For multiple sequences, pass tensors directly.
47
+ y: Any label data. Will be passed through unaltered.
48
+ sample_weight: Any label weight data. Will be passed through unaltered.
49
+
50
+ Examples:
51
+
52
+ Directly calling the layer on data.
53
+ ```python
54
+ preprocessor = keras_hub.models.ESMProteinClassifierPreprocessor.from_preset
55
+ (
56
+ hf://facebook/esm2_t6_8M_UR50D
57
+ )
58
+
59
+ # Tokenize and pack a single sentence.
60
+ preprocessor("The quick brown fox jumped.")
61
+
62
+ # Tokenize a batch of single sentences.
63
+ preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
64
+
65
+ # Preprocess a batch of sentence pairs.
66
+ # When handling multiple sequences, always convert to tensors first!
67
+ first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
68
+ second = tf.constant(["The fox tripped.", "Oh look, a whale."])
69
+ preprocessor((first, second))
70
+
71
+ # Custom vocabulary.
72
+ vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
73
+ vocab += ["The", "quick", "brown", "fox", "jumped", "."]
74
+ tokenizer = keras_hub.models.ESMTokenizer(vocabulary=vocab)
75
+ preprocessor =
76
+ keras_hub.models.ESMProteinClassifierPreprocessor(tokenizer)
77
+ preprocessor("The quick brown fox jumped.")
78
+ ```
79
+
80
+ Mapping with `tf.data.Dataset`.
81
+ ```python
82
+ preprocessor = keras_hub.models.ESMProteinClassifierPreprocessor.from_preset
83
+ (
84
+ hf://facebook/esm2_t6_8M_UR50D
85
+ )
86
+
87
+ first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
88
+ second = tf.constant(["The fox tripped.", "Oh look, a whale."])
89
+ label = tf.constant([1, 1])
90
+
91
+ # Map labeled single sentences.
92
+ ds = tf.data.Dataset.from_tensor_slices((first, label))
93
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
94
+
95
+ # Map unlabeled single sentences.
96
+ ds = tf.data.Dataset.from_tensor_slices(first)
97
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
98
+
99
+ # Map labeled sentence pairs.
100
+ ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
101
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
102
+
103
+ # Map unlabeled sentence pairs.
104
+ ds = tf.data.Dataset.from_tensor_slices((first, second))
105
+ # Watch out for tf.data's default unpacking of tuples here!
106
+ # Best to invoke the `preprocessor` directly in this case.
107
+ ds = ds.map(
108
+ lambda first, second: preprocessor(x=(first, second)),
109
+ num_parallel_calls=tf.data.AUTOTUNE,
110
+ )
111
+ ```
112
+ """
113
+
114
+ backbone_cls = ESMBackbone
115
+ tokenizer_cls = ESMTokenizer
116
+
117
+ def build(self, input_shape):
118
+ super().build(input_shape)
119
+ # Defer masker creation to `build()` so that we can be sure tokenizer
120
+ # assets have loaded when restoring a saved model.
121
+ self.packer = StartEndPacker(
122
+ start_value=self.tokenizer.start_token_id,
123
+ end_value=self.tokenizer.end_token_id,
124
+ pad_value=self.tokenizer.pad_token_id,
125
+ sequence_length=self.sequence_length,
126
+ )
127
+
128
+ @preprocessing_function
129
+ def call(self, x, y=None, sample_weight=None):
130
+ x = self.tokenizer(x)
131
+ token_ids = self.packer(x)
132
+ x = {
133
+ "token_ids": token_ids,
134
+ }
135
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)