keras-hub-nightly 0.22.0.dev202507150421__tar.gz → 0.22.0.dev202507170424__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (549) hide show
  1. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/api/layers/__init__.py +3 -0
  3. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/api/models/__init__.py +3 -0
  4. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/clip/clip_backbone.py +3 -102
  5. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/clip/clip_layers.py +295 -0
  6. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/clip/clip_preprocessor.py +57 -48
  7. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/clip/clip_text_encoder.py +2 -2
  8. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/clip/clip_vision_encoder.py +3 -3
  9. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/dinov2/__init__.py +5 -0
  10. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/dinov2/dinov2_backbone.py +228 -0
  11. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/dinov2/dinov2_image_converter.py +8 -0
  12. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/dinov2/dinov2_layers.py +886 -0
  13. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/dinov2/dinov2_presets.py +4 -0
  14. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +6 -2
  15. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/hgnetv2/__init__.py +5 -0
  16. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/hgnetv2/hgnetv2_presets.py +5 -5
  17. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +16 -7
  18. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/mmdit.py +61 -4
  19. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +23 -32
  20. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +1 -0
  21. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +1 -0
  22. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +1 -0
  23. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +6 -2
  24. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/preset_utils.py +4 -1
  25. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/utils/transformers/convert_dinov2.py +180 -0
  26. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/utils/transformers/export/gemma.py +89 -0
  27. keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/utils/transformers/export/hf_exporter.py +98 -0
  28. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/preset_loader.py +4 -1
  29. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/version.py +1 -1
  30. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  31. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub_nightly.egg-info/SOURCES.txt +9 -2
  32. keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/models/clip/clip_encoder_block.py +0 -111
  33. keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/models/clip/clip_vision_embedding.py +0 -101
  34. keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/utils/transformers/__init__.py +0 -0
  35. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/README.md +0 -0
  36. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/api/__init__.py +0 -0
  37. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/api/metrics/__init__.py +0 -0
  38. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/api/samplers/__init__.py +0 -0
  39. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/api/tokenizers/__init__.py +0 -0
  40. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/api/utils/__init__.py +0 -0
  41. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/__init__.py +0 -0
  42. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/api_export.py +0 -0
  43. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/__init__.py +0 -0
  44. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/__init__.py +0 -0
  45. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  46. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  47. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  48. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  49. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  50. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  51. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  52. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  53. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  54. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  55. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  56. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  57. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  58. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  59. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  60. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  61. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  62. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  63. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  64. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  65. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  66. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  67. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  68. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  69. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  70. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/metrics/__init__.py +0 -0
  71. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/metrics/bleu.py +0 -0
  72. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/metrics/edit_distance.py +0 -0
  73. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/metrics/perplexity.py +0 -0
  74. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/metrics/rouge_base.py +0 -0
  75. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/metrics/rouge_l.py +0 -0
  76. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/metrics/rouge_n.py +0 -0
  77. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/__init__.py +0 -0
  78. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/albert/__init__.py +0 -0
  79. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  80. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  81. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  82. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/albert/albert_presets.py +0 -0
  83. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  84. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  85. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  86. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/audio_to_text.py +0 -0
  87. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  88. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/backbone.py +0 -0
  89. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bart/__init__.py +0 -0
  90. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  91. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bart/bart_presets.py +0 -0
  92. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  93. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  94. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  95. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/basnet/__init__.py +0 -0
  96. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/basnet/basnet.py +0 -0
  97. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  98. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  99. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  100. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  101. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bert/__init__.py +0 -0
  102. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  103. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  104. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  105. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bert/bert_presets.py +0 -0
  106. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  107. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  108. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  109. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bloom/__init__.py +0 -0
  110. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  111. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  112. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  113. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  114. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  115. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  116. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  117. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/causal_lm.py +0 -0
  118. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  119. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/clip/__init__.py +0 -0
  120. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  121. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/clip/clip_presets.py +0 -0
  122. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  123. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/cspnet/__init__.py +0 -0
  124. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  125. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  126. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  127. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  128. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  129. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  130. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  131. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  132. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  133. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  134. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  135. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  136. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  137. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  138. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  139. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  140. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  141. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  142. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  143. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  144. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  145. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  146. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  147. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deit/__init__.py +0 -0
  148. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deit/deit_backbone.py +0 -0
  149. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deit/deit_image_classifier.py +0 -0
  150. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +0 -0
  151. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deit/deit_image_converter.py +0 -0
  152. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deit/deit_layers.py +0 -0
  153. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/deit/deit_presets.py +0 -0
  154. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/densenet/__init__.py +0 -0
  155. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  156. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  157. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  158. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  159. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  160. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  161. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  162. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  163. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  164. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  165. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  166. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  167. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  168. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  169. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/efficientnet/cba.py +0 -0
  170. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  171. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  172. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  173. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  174. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  175. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  176. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  177. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/electra/__init__.py +0 -0
  178. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  179. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/electra/electra_presets.py +0 -0
  180. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  181. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/f_net/__init__.py +0 -0
  182. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  183. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  184. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  186. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  187. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  188. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  189. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/falcon/__init__.py +0 -0
  190. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  191. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  192. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  193. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  194. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  195. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  196. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  197. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  198. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/flux/__init__.py +0 -0
  199. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/flux/flux_layers.py +0 -0
  200. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/flux/flux_maths.py +0 -0
  201. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/flux/flux_model.py +0 -0
  202. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/flux/flux_presets.py +0 -0
  203. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  204. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma/__init__.py +0 -0
  205. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  206. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  207. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  208. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  209. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  210. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  211. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  212. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  213. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/__init__.py +0 -0
  214. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  215. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  216. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  217. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  218. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  219. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  220. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  221. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  222. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  223. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  224. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  225. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt2/__init__.py +0 -0
  226. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  227. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  228. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  229. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  230. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  231. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  232. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  233. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  234. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  235. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  236. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  237. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  238. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  239. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +0 -0
  240. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +0 -0
  241. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +0 -0
  242. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +0 -0
  243. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +0 -0
  244. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/hgnetv2/hgnetv2_layers.py +0 -0
  245. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/image_classifier.py +0 -0
  246. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  247. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/image_segmenter.py +0 -0
  248. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  249. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/image_to_image.py +0 -0
  250. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/inpaint.py +0 -0
  251. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/__init__.py +0 -0
  252. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/llama_attention.py +0 -0
  253. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  254. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  255. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  256. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  257. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  258. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/llama_presets.py +0 -0
  259. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  260. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  261. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama3/__init__.py +0 -0
  262. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  263. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  264. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  265. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  266. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  267. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/masked_lm.py +0 -0
  268. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  269. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mistral/__init__.py +0 -0
  270. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  271. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  272. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  273. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  274. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  275. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  276. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  277. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  278. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mit/__init__.py +0 -0
  279. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  280. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  281. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  282. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  283. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mit/mit_layers.py +0 -0
  284. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mit/mit_presets.py +0 -0
  285. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mixtral/__init__.py +0 -0
  286. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  287. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  288. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  289. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  290. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  291. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  292. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
  293. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  294. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  295. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  296. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  297. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  298. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  299. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  300. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/mobilenet/util.py +0 -0
  301. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/__init__.py +0 -0
  302. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  303. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  304. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  305. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
  306. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  307. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  308. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  309. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  310. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  311. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  312. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/object_detector.py +0 -0
  313. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  314. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/opt/__init__.py +0 -0
  315. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  316. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  317. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/opt/opt_presets.py +0 -0
  319. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  320. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  321. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  322. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  323. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  324. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  325. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  326. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  327. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  328. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  329. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/__init__.py +0 -0
  330. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  331. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  332. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  333. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  334. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  335. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  336. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  337. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  338. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  339. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/preprocessor.py +0 -0
  340. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen/__init__.py +0 -0
  341. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  342. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  343. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  344. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  345. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  346. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  347. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  348. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  349. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen3/__init__.py +0 -0
  350. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
  351. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen3/qwen3_backbone.py +0 -0
  352. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen3/qwen3_causal_lm.py +0 -0
  353. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
  354. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
  355. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
  356. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen3/qwen3_presets.py +0 -0
  357. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
  358. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  359. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  360. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  361. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  362. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  363. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  364. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  365. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
  366. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  367. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/resnet/__init__.py +0 -0
  368. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  369. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  370. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  371. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  372. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  373. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/retinanet/__init__.py +0 -0
  374. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  375. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  376. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  377. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  378. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  379. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  380. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  381. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  382. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roberta/__init__.py +0 -0
  383. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  384. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  385. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  386. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  387. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  388. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  389. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  390. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/models/hgnetv2 → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/roformer_v2}/__init__.py +0 -0
  391. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  392. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  393. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  394. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  395. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  396. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  397. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  398. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  399. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  400. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/__init__.py +0 -0
  401. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  402. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  403. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  404. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  405. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/sam_layers.py +0 -0
  406. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  407. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/sam_presets.py +0 -0
  408. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  409. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  410. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/segformer/__init__.py +0 -0
  411. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  412. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  413. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  414. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  415. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  416. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  417. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  418. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/__init__.py +0 -0
  419. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  420. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  421. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  422. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  423. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  424. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  425. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  426. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  427. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  428. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  429. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  430. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  431. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/t5/__init__.py +0 -0
  432. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  433. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  434. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  435. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  436. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/t5/t5_presets.py +0 -0
  437. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  438. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  439. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/task.py +0 -0
  440. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/text_classifier.py +0 -0
  441. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  442. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/text_to_image.py +0 -0
  443. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  444. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vae/__init__.py +0 -0
  445. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  446. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vae/vae_layers.py +0 -0
  447. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vgg/__init__.py +0 -0
  448. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  449. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  450. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  451. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  452. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  453. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vit/__init__.py +0 -0
  454. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  455. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  456. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  457. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  458. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vit/vit_layers.py +0 -0
  459. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vit/vit_presets.py +0 -0
  460. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/models/roformer_v2 → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/vit_det}/__init__.py +0 -0
  461. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  462. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  463. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/whisper/__init__.py +0 -0
  464. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  465. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  466. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  467. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  468. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  469. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  470. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  471. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xception/__init__.py +0 -0
  472. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  473. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  474. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  475. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  476. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xception/xception_presets.py +0 -0
  477. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  478. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  479. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  480. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  481. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  482. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  483. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  484. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  485. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/models/vit_det → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/models/xlnet}/__init__.py +0 -0
  486. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  487. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  488. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  489. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  490. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/models/xlnet → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/samplers}/__init__.py +0 -0
  491. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/samplers/beam_sampler.py +0 -0
  492. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  493. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  494. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/samplers/random_sampler.py +0 -0
  495. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/samplers/sampler.py +0 -0
  496. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/samplers/serialization.py +0 -0
  497. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  498. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  499. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/samplers → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/tests}/__init__.py +0 -0
  500. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  501. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tests/test_case.py +0 -0
  502. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/tests → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/tokenizers}/__init__.py +0 -0
  503. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  504. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  505. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  506. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  507. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  508. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  509. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  510. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  511. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/tokenizers → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/utils}/__init__.py +0 -0
  512. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/utils → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/utils/coco}/__init__.py +0 -0
  513. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  514. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/utils/coco → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/utils/imagenet}/__init__.py +0 -0
  515. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  516. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/keras_utils.py +0 -0
  517. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/pipeline_model.py +0 -0
  518. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/python_utils.py +0 -0
  519. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/tensor_utils.py +0 -0
  520. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/utils/imagenet → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/utils/timm}/__init__.py +0 -0
  521. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  522. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  523. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  524. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  525. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  526. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  527. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  528. {keras_hub_nightly-0.22.0.dev202507150421/keras_hub/src/utils/timm → keras_hub_nightly-0.22.0.dev202507170424/keras_hub/src/utils/transformers}/__init__.py +0 -0
  529. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  530. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  531. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  532. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_deit.py +0 -0
  533. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  534. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  535. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  536. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  537. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  538. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  539. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  540. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  541. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
  542. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  543. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  544. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  545. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  546. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub_nightly.egg-info/requires.txt +0 -0
  547. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  548. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/pyproject.toml +0 -0
  549. {keras_hub_nightly-0.22.0.dev202507150421 → keras_hub_nightly-0.22.0.dev202507170424}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.22.0.dev202507150421
3
+ Version: 0.22.0.dev202507170424
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -84,6 +84,9 @@ from keras_hub.src.models.deit.deit_image_converter import (
84
84
  from keras_hub.src.models.densenet.densenet_image_converter import (
85
85
  DenseNetImageConverter as DenseNetImageConverter,
86
86
  )
87
+ from keras_hub.src.models.dinov2.dinov2_image_converter import (
88
+ DINOV2ImageConverter as DINOV2ImageConverter,
89
+ )
87
90
  from keras_hub.src.models.efficientnet.efficientnet_image_converter import (
88
91
  EfficientNetImageConverter as EfficientNetImageConverter,
89
92
  )
@@ -157,6 +157,9 @@ from keras_hub.src.models.densenet.densenet_image_classifier import (
157
157
  from keras_hub.src.models.densenet.densenet_image_classifier_preprocessor import (
158
158
  DenseNetImageClassifierPreprocessor as DenseNetImageClassifierPreprocessor,
159
159
  )
160
+ from keras_hub.src.models.dinov2.dinov2_backbone import (
161
+ DINOV2Backbone as DINOV2Backbone,
162
+ )
160
163
  from keras_hub.src.models.distil_bert.distil_bert_backbone import (
161
164
  DistilBertBackbone as DistilBertBackbone,
162
165
  )
@@ -1,109 +1,10 @@
1
- import math
2
-
3
1
  from keras import layers
4
- from keras import ops
5
2
 
6
3
  from keras_hub.src.api_export import keras_hub_export
7
4
  from keras_hub.src.models.backbone import Backbone
8
-
9
-
10
- class CLIPVisionPooler(layers.Layer):
11
- """The vision pooler layer of CLIP.
12
-
13
- `CLIPVisionPooler` will extracts the first token (index `0`) from the
14
- sequence of the vision embeddings as the pooled outputs.
15
-
16
- Call arguments:
17
- vision_embeddings: A tensor of shape
18
- `(batch_size, sequence_length, hidden_dim)`.
19
- """
20
-
21
- def call(self, vision_embeddings):
22
- return vision_embeddings[:, 0, :]
23
-
24
- def compute_output_shape(self, input_shape):
25
- return (input_shape[0], input_shape[-1])
26
-
27
-
28
- class CLIPTextPooler(layers.Layer):
29
- """The text pooler layer of CLIP.
30
-
31
- `CLIPTextPooler` extracts the text embeddings at the positions of EOS tokens
32
- as the pooled outputs.
33
-
34
- Call arguments:
35
- text_embeddings: A tensor of shape
36
- `(batch_size, sequence_length, hidden_dim)`.
37
- token_ids: A tensor of shape `(batch_size, max_tokens)`, used to
38
- identify the positions of EOS tokens.
39
- """
40
-
41
- def call(self, text_embeddings, token_ids):
42
- # `keepdims` is not supported in `keras<=3.1`.
43
- eos_index = ops.argmax(token_ids, axis=-1)
44
- eos_index = ops.expand_dims(eos_index, axis=-1)
45
- eos_index = ops.expand_dims(eos_index, axis=-1)
46
- pooled_outputs = ops.take_along_axis(text_embeddings, eos_index, axis=1)
47
- return ops.squeeze(pooled_outputs, axis=1)
48
-
49
- def compute_output_shape(self, input_shape):
50
- return (input_shape[0], input_shape[-1])
51
-
52
-
53
- class CLIPHead(layers.Layer):
54
- """The head layer of CLIP.
55
-
56
- `CLIPHead` takes `vision_embedding` and `text_embedding` as inputs to
57
- compute the corresponding logits. Both embeddings are L2 normalized and used
58
- to compute pairwise cosine similarity. The resulting logits are then scaled
59
- by a learnable `logit_scale` parameter.
60
-
61
- Call arguments:
62
- vision_embedding: A tensor of shape `(batch_size, hidden_dim)`.
63
- text_embedding: A tensor of shape `(batch_size, hidden_dim)`.
64
- """
65
-
66
- def build(self, input_shape):
67
- self.logit_scale = self.add_weight(
68
- shape=(),
69
- initializer=lambda *a, **kw: math.log(1 / 0.07),
70
- trainable=True,
71
- dtype=self.variable_dtype,
72
- name="logit_scale",
73
- )
74
-
75
- def call(self, vision_embedding, text_embedding):
76
- normalized_vision_embedding = ops.sqrt(
77
- ops.sum(ops.power(vision_embedding, 2), axis=-1, keepdims=True)
78
- )
79
- normalized_text_embedding = ops.sqrt(
80
- ops.sum(ops.power(text_embedding, 2), axis=-1, keepdims=True)
81
- )
82
- vision_embedding = vision_embedding / normalized_vision_embedding
83
- text_embedding = text_embedding / normalized_text_embedding
84
- logit_scale = ops.exp(self.logit_scale)
85
- text_logits = (
86
- ops.matmul(
87
- text_embedding,
88
- ops.transpose(vision_embedding),
89
- )
90
- * logit_scale
91
- )
92
- vision_logits = ops.transpose(text_logits)
93
- return vision_logits, text_logits
94
-
95
- def compute_output_shape(
96
- self, vision_embedding_shape, text_embedding_shape
97
- ):
98
- vision_logits_shape = (
99
- vision_embedding_shape[0],
100
- text_embedding_shape[0],
101
- )
102
- text_logits_shape = (
103
- text_embedding_shape[0],
104
- vision_embedding_shape[0],
105
- )
106
- return vision_logits_shape, text_logits_shape
5
+ from keras_hub.src.models.clip.clip_layers import CLIPHead
6
+ from keras_hub.src.models.clip.clip_layers import CLIPTextPooler
7
+ from keras_hub.src.models.clip.clip_layers import CLIPVisionPooler
107
8
 
108
9
 
109
10
  @keras_hub_export("keras_hub.models.CLIPBackbone")
@@ -0,0 +1,295 @@
1
+ import math
2
+
3
+ from keras import layers
4
+ from keras import ops
5
+
6
+ from keras_hub.src.utils.keras_utils import standardize_data_format
7
+
8
+
9
+ def quick_gelu(x):
10
+ return x * ops.sigmoid(1.702 * x)
11
+
12
+
13
+ class CLIPVisionEmbedding(layers.Layer):
14
+ def __init__(
15
+ self,
16
+ hidden_dim,
17
+ patch_size,
18
+ image_size,
19
+ data_format=None,
20
+ dtype=None,
21
+ **kwargs,
22
+ ):
23
+ super().__init__(dtype=dtype, **kwargs)
24
+ self.hidden_dim = int(hidden_dim)
25
+ self.patch_size = int(patch_size)
26
+ self.image_size = int(image_size)
27
+ data_format = standardize_data_format(data_format)
28
+ self.data_format = data_format
29
+ num_patches = (image_size // patch_size) ** 2
30
+ self.num_positions = num_patches + 1
31
+
32
+ self.patch_embedding = layers.Conv2D(
33
+ hidden_dim,
34
+ kernel_size=patch_size,
35
+ strides=patch_size,
36
+ data_format=data_format,
37
+ use_bias=False,
38
+ dtype=dtype,
39
+ name="patch_embedding",
40
+ )
41
+ self.position_embedding = layers.Embedding(
42
+ num_patches + 1, hidden_dim, dtype=dtype, name="position_embedding"
43
+ )
44
+
45
+ def build(self, input_shape):
46
+ self.class_embedding = self.add_weight(
47
+ shape=(self.hidden_dim,),
48
+ initializer="random_normal",
49
+ dtype=self.variable_dtype,
50
+ name="class_embedding",
51
+ )
52
+ self.position_ids = self.add_weight(
53
+ shape=(1, self.num_positions),
54
+ initializer="zeros",
55
+ # Let the backend determine the int dtype. For example, tf
56
+ # requires int64 for correct device placement, whereas jax and torch
57
+ # don't.
58
+ dtype=int,
59
+ trainable=False,
60
+ name="position_ids",
61
+ )
62
+ self.patch_embedding.build(input_shape)
63
+ self.position_embedding.build(self.position_ids.shape)
64
+
65
+ def call(self, inputs, training=None):
66
+ x = inputs
67
+ batch_size = ops.shape(x)[0]
68
+ patch_embeddings = self.patch_embedding(x, training=training)
69
+ if self.data_format == "channels_last":
70
+ patch_embeddings = ops.reshape(
71
+ patch_embeddings, (batch_size, -1, self.hidden_dim)
72
+ )
73
+ else:
74
+ patch_embeddings = ops.reshape(
75
+ patch_embeddings, (batch_size, self.hidden_dim, -1)
76
+ )
77
+ patch_embeddings = ops.transpose(patch_embeddings, (0, 2, 1))
78
+ class_embeddings = ops.expand_dims(self.class_embedding, axis=(0, 1))
79
+ class_embeddings = ops.tile(class_embeddings, (batch_size, 1, 1))
80
+ position_embeddings = self.position_embedding(self.position_ids)
81
+ embeddings = ops.concatenate(
82
+ [class_embeddings, patch_embeddings], axis=1
83
+ )
84
+ return ops.add(embeddings, position_embeddings)
85
+
86
+ def get_config(self):
87
+ config = super().get_config()
88
+ config.update(
89
+ {
90
+ "hidden_dim": self.hidden_dim,
91
+ "patch_size": self.patch_size,
92
+ "image_size": self.image_size,
93
+ }
94
+ )
95
+ return config
96
+
97
+ def compute_output_shape(self, input_shape):
98
+ output_shape = [input_shape[0], None, self.hidden_dim]
99
+ if self.data_format == "channels_last":
100
+ if input_shape[1] is not None and input_shape[2] is not None:
101
+ patch_num = input_shape[1] // self.patch_size
102
+ output_shape[1] = patch_num**2 + 1
103
+ else:
104
+ if input_shape[2] is not None and input_shape[3] is not None:
105
+ patch_num = input_shape[2] // self.patch_size
106
+ output_shape[1] = patch_num**2 + 1
107
+ return output_shape
108
+
109
+
110
+ class CLIPEncoderLayer(layers.Layer):
111
+ def __init__(
112
+ self,
113
+ hidden_dim,
114
+ num_heads,
115
+ intermediate_dim,
116
+ intermediate_activation="quick_gelu",
117
+ use_causal_mask=True,
118
+ **kwargs,
119
+ ):
120
+ super().__init__(**kwargs)
121
+ if hidden_dim % num_heads != 0:
122
+ raise ValueError(
123
+ "`hidden_dim` must be divisible by `num_heads`. "
124
+ f"Received: hidden_dim={hidden_dim}, num_heads={num_heads}"
125
+ )
126
+ self.hidden_dim = hidden_dim
127
+ self.num_heads = num_heads
128
+ self.intermediate_dim = intermediate_dim
129
+ self.intermediate_activation = intermediate_activation
130
+ self.use_causal_mask = use_causal_mask
131
+
132
+ if intermediate_activation == "quick_gelu":
133
+ intermediate_activation = quick_gelu
134
+
135
+ self.layer_norm_1 = layers.LayerNormalization(
136
+ epsilon=1e-5, dtype=self.dtype_policy, name="layer_norm_1"
137
+ )
138
+ self.attention = layers.MultiHeadAttention(
139
+ num_heads,
140
+ hidden_dim // num_heads,
141
+ dtype=self.dtype_policy,
142
+ name="attention",
143
+ )
144
+ self.layer_norm_2 = layers.LayerNormalization(
145
+ epsilon=1e-5, dtype=self.dtype_policy, name="layer_norm_2"
146
+ )
147
+ self.dense_1 = layers.Dense(
148
+ self.intermediate_dim, dtype=self.dtype_policy, name="dense_1"
149
+ )
150
+ self.activation = layers.Activation(
151
+ intermediate_activation, dtype=self.dtype_policy, name="activation"
152
+ )
153
+ self.dense_2 = layers.Dense(
154
+ self.hidden_dim, dtype=self.dtype_policy, name="dense_2"
155
+ )
156
+
157
+ def build(self, input_shape):
158
+ self.layer_norm_1.build(input_shape)
159
+ self.attention.build(input_shape, input_shape, input_shape)
160
+ self.layer_norm_2.build(input_shape)
161
+ self.dense_1.build(input_shape)
162
+ input_shape = self.dense_1.compute_output_shape(input_shape)
163
+ self.dense_2.build(input_shape)
164
+
165
+ def compute_output_shape(self, inputs_shape):
166
+ outputs_shape = list(inputs_shape)
167
+ outputs_shape[-1] = self.hidden_dim
168
+ return outputs_shape
169
+
170
+ def call(self, x, training=None):
171
+ residual = x
172
+ x = self.layer_norm_1(x)
173
+ x = self.attention(
174
+ x, x, x, training=training, use_causal_mask=self.use_causal_mask
175
+ )
176
+ x = ops.add(residual, x)
177
+
178
+ residual = x
179
+ x = self.dense_1(self.layer_norm_2(residual))
180
+ x = self.activation(x)
181
+ x = self.dense_2(x)
182
+ x = ops.add(residual, x)
183
+ return x
184
+
185
+ def get_config(self):
186
+ config = super().get_config()
187
+ config.update(
188
+ {
189
+ "hidden_dim": self.hidden_dim,
190
+ "num_heads": self.num_heads,
191
+ "intermediate_dim": self.intermediate_dim,
192
+ "intermediate_activation": self.intermediate_activation,
193
+ "use_causal_mask": self.use_causal_mask,
194
+ }
195
+ )
196
+ return config
197
+
198
+
199
+ class CLIPVisionPooler(layers.Layer):
200
+ """The vision pooler layer of CLIP.
201
+
202
+ `CLIPVisionPooler` will extracts the first token (index `0`) from the
203
+ sequence of the vision embeddings as the pooled outputs.
204
+
205
+ Call arguments:
206
+ vision_embeddings: A tensor of shape
207
+ `(batch_size, sequence_length, hidden_dim)`.
208
+ """
209
+
210
+ def call(self, vision_embeddings):
211
+ return vision_embeddings[:, 0, :]
212
+
213
+ def compute_output_shape(self, input_shape):
214
+ return (input_shape[0], input_shape[-1])
215
+
216
+
217
+ class CLIPTextPooler(layers.Layer):
218
+ """The text pooler layer of CLIP.
219
+
220
+ `CLIPTextPooler` extracts the text embeddings at the positions of EOS tokens
221
+ as the pooled outputs.
222
+
223
+ Call arguments:
224
+ text_embeddings: A tensor of shape
225
+ `(batch_size, sequence_length, hidden_dim)`.
226
+ token_ids: A tensor of shape `(batch_size, max_tokens)`, used to
227
+ identify the positions of EOS tokens.
228
+ """
229
+
230
+ def call(self, text_embeddings, token_ids):
231
+ # `keepdims` is not supported in `keras<=3.1`.
232
+ eos_index = ops.argmax(token_ids, axis=-1)
233
+ eos_index = ops.expand_dims(eos_index, axis=-1)
234
+ eos_index = ops.expand_dims(eos_index, axis=-1)
235
+ pooled_outputs = ops.take_along_axis(text_embeddings, eos_index, axis=1)
236
+ return ops.squeeze(pooled_outputs, axis=1)
237
+
238
+ def compute_output_shape(self, input_shape):
239
+ return (input_shape[0], input_shape[-1])
240
+
241
+
242
+ class CLIPHead(layers.Layer):
243
+ """The head layer of CLIP.
244
+
245
+ `CLIPHead` takes `vision_embedding` and `text_embedding` as inputs to
246
+ compute the corresponding logits. Both embeddings are L2 normalized and used
247
+ to compute pairwise cosine similarity. The resulting logits are then scaled
248
+ by a learnable `logit_scale` parameter.
249
+
250
+ Call arguments:
251
+ vision_embedding: A tensor of shape `(batch_size, hidden_dim)`.
252
+ text_embedding: A tensor of shape `(batch_size, hidden_dim)`.
253
+ """
254
+
255
+ def build(self, input_shape):
256
+ self.logit_scale = self.add_weight(
257
+ shape=(),
258
+ initializer=lambda *a, **kw: math.log(1 / 0.07),
259
+ trainable=True,
260
+ dtype=self.variable_dtype,
261
+ name="logit_scale",
262
+ )
263
+
264
+ def call(self, vision_embedding, text_embedding):
265
+ normalized_vision_embedding = ops.sqrt(
266
+ ops.sum(ops.power(vision_embedding, 2), axis=-1, keepdims=True)
267
+ )
268
+ normalized_text_embedding = ops.sqrt(
269
+ ops.sum(ops.power(text_embedding, 2), axis=-1, keepdims=True)
270
+ )
271
+ vision_embedding = vision_embedding / normalized_vision_embedding
272
+ text_embedding = text_embedding / normalized_text_embedding
273
+ logit_scale = ops.exp(self.logit_scale)
274
+ text_logits = (
275
+ ops.matmul(
276
+ text_embedding,
277
+ ops.transpose(vision_embedding),
278
+ )
279
+ * logit_scale
280
+ )
281
+ vision_logits = ops.transpose(text_logits)
282
+ return vision_logits, text_logits
283
+
284
+ def compute_output_shape(
285
+ self, vision_embedding_shape, text_embedding_shape
286
+ ):
287
+ vision_logits_shape = (
288
+ vision_embedding_shape[0],
289
+ text_embedding_shape[0],
290
+ )
291
+ text_logits_shape = (
292
+ text_embedding_shape[0],
293
+ vision_embedding_shape[0],
294
+ )
295
+ return vision_logits_shape, text_logits_shape
@@ -2,8 +2,10 @@ import keras
2
2
 
3
3
  from keras_hub.src.api_export import keras_hub_export
4
4
  from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
5
+ from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
6
+ from keras_hub.src.models.clip.clip_backbone import CLIPBackbone
7
+ from keras_hub.src.models.clip.clip_image_converter import CLIPImageConverter
5
8
  from keras_hub.src.models.clip.clip_tokenizer import CLIPTokenizer
6
- from keras_hub.src.models.preprocessor import Preprocessor
7
9
  from keras_hub.src.utils.tensor_utils import preprocessing_function
8
10
 
9
11
  try:
@@ -13,32 +15,18 @@ except ImportError:
13
15
 
14
16
 
15
17
  @keras_hub_export("keras_hub.models.CLIPPreprocessor")
16
- class CLIPPreprocessor(Preprocessor):
17
- """CLIP preprocessing layer which tokenizes and packs inputs.
18
+ class CLIPPreprocessor(CausalLMPreprocessor):
19
+ """CLIP preprocessor.
18
20
 
19
21
  This preprocessing layer will do 2 things:
20
22
 
21
- - Tokenize the inputs using the `tokenizer`.
22
- - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`.
23
-
24
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
25
- string data in the `(x, y, sample_weight)` format used by
26
- `keras.Model.fit`.
27
-
28
- The call method of this layer accepts three arguments, `x`, `y`, and
29
- `sample_weight`. `x` can be a python string or tensor representing a single
30
- segment, a list of python strings representing a batch of single segments,
31
- or a list of tensors representing multiple segments to be packed together.
32
- `y` and `sample_weight` are both optional, can have any format, and will be
33
- passed through unaltered.
34
-
35
- `CLIPPreprocessor` forces the input to have only one segment, as CLIP is
36
- mainly used for generation tasks. For tasks having multi-segment inputs
37
- like "glue/mnli", please use a model designed for classification purposes
38
- such as BERT or RoBERTa.
23
+ This preprocessing layer is meant for use with
24
+ `keras_hub.models.CLIPBackbone`. By default, it will take in batches of
25
+ strings and images, and return token ids and resized images.
39
26
 
40
27
  Args:
41
28
  tokenizer: A `keras_hub.models.CLIPTokenizer` instance.
29
+ image_converter: A `keras_hub.models.CLIPImageConverter` instance.
42
30
  sequence_length: The length of the packed inputs.
43
31
  add_start_token: If `True`, the preprocessor will prepend the tokenizer
44
32
  start token to each input sequence.
@@ -47,32 +35,62 @@ class CLIPPreprocessor(Preprocessor):
47
35
  to_lower: bool. Whether to lower the inputs.
48
36
 
49
37
  Call arguments:
50
- x: A string, `tf.Tensor` or list of python strings.
51
- y: Any label data. Will be passed through unaltered.
52
- sample_weight: Any label weight data. Will be passed through unaltered.
38
+ x: A dict with `"prompts"` and `"images"` keys, where `"prompts"` is
39
+ `tf.Tensor` or list of python strings and `"images"` are the image
40
+ tensors.
41
+ y: Label data. Should always be `None` since SigLIP doesn't need the
42
+ label to calculate the loss.
43
+ sample_weight: Label weights.
53
44
  sequence_length: Pass to override the configured `sequence_length` of
54
45
  the layer.
55
- """
56
46
 
57
- # TODO: Add example once we have a CLIP model.
47
+ Examples:
48
+ ```python
49
+ # Load the preprocessor from a preset.
50
+ preprocessor = keras_hub.models.CLIPPreprocessor.from_preset(
51
+ "clip_vit_base_patch16"
52
+ )
53
+
54
+ # Tokenize the sentence and preprocess the image.
55
+ preprocessor(
56
+ {
57
+ "prompts": "The quick brown fox jumped.",
58
+ "images": np.ones(shape=(123, 123, 3)),
59
+ }
60
+ )
61
+
62
+ # Tokenize a batch of sentences and preprocess a batch of images.
63
+ preprocessor(
64
+ {
65
+ "prompts": ["The quick brown fox jumped.", "The fox slept."],
66
+ "images": np.ones(shape=(2, 123, 123, 3)),
67
+ }
68
+ )
69
+ ```
70
+ """
58
71
 
72
+ backbone_cls = CLIPBackbone
59
73
  tokenizer_cls = CLIPTokenizer
74
+ image_converter_cls = CLIPImageConverter
60
75
 
61
76
  def __init__(
62
77
  self,
63
78
  tokenizer,
79
+ image_converter=None,
64
80
  sequence_length=77,
65
81
  add_start_token=True,
66
82
  add_end_token=True,
67
83
  to_lower=True,
68
84
  **kwargs,
69
85
  ):
70
- super().__init__(**kwargs)
71
- self.tokenizer = tokenizer
72
- self.packer = None
73
- self.sequence_length = sequence_length
74
- self.add_start_token = add_start_token
75
- self.add_end_token = add_end_token
86
+ super().__init__(
87
+ tokenizer=tokenizer,
88
+ sequence_length=sequence_length,
89
+ add_start_token=add_start_token,
90
+ add_end_token=add_end_token,
91
+ **kwargs,
92
+ )
93
+ self.image_converter = image_converter
76
94
  self.to_lower = to_lower
77
95
 
78
96
  def build(self, input_shape):
@@ -96,10 +114,14 @@ class CLIPPreprocessor(Preprocessor):
96
114
  sequence_length=None,
97
115
  ):
98
116
  sequence_length = sequence_length or self.sequence_length
117
+ images, prompts = x["images"], x["prompts"]
99
118
  if self.to_lower:
100
- x = tf.strings.lower(x)
119
+ prompts = tf.strings.lower(prompts)
120
+ prompts = self.tokenizer(prompts)
121
+ if images is not None and self.image_converter:
122
+ images = self.image_converter(images)
101
123
  token_ids, padding_mask = self.packer(
102
- self.tokenizer(x),
124
+ prompts,
103
125
  sequence_length=sequence_length,
104
126
  add_start_value=self.add_start_token,
105
127
  add_end_value=self.add_end_token,
@@ -107,6 +129,7 @@ class CLIPPreprocessor(Preprocessor):
107
129
  x = {
108
130
  "token_ids": token_ids,
109
131
  "padding_mask": padding_mask,
132
+ "images": images,
110
133
  }
111
134
  return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
112
135
 
@@ -114,21 +137,7 @@ class CLIPPreprocessor(Preprocessor):
114
137
  config = super().get_config()
115
138
  config.update(
116
139
  {
117
- "sequence_length": self.sequence_length,
118
- "add_start_token": self.add_start_token,
119
- "add_end_token": self.add_end_token,
120
140
  "to_lower": self.to_lower,
121
141
  }
122
142
  )
123
143
  return config
124
-
125
- @property
126
- def sequence_length(self):
127
- """The padded length of model input sequences."""
128
- return self._sequence_length
129
-
130
- @sequence_length.setter
131
- def sequence_length(self, value):
132
- self._sequence_length = value
133
- if self.packer is not None:
134
- self.packer.sequence_length = value
@@ -5,7 +5,7 @@ from keras_hub.src.layers.modeling.token_and_position_embedding import (
5
5
  TokenAndPositionEmbedding,
6
6
  )
7
7
  from keras_hub.src.models.backbone import Backbone
8
- from keras_hub.src.models.clip.clip_encoder_block import CLIPEncoderBlock
8
+ from keras_hub.src.models.clip.clip_layers import CLIPEncoderLayer
9
9
 
10
10
 
11
11
  @keras_hub_export("keras_hub.models.CLIPTextEncoder")
@@ -71,7 +71,7 @@ class CLIPTextEncoder(Backbone):
71
71
  name=f"{prefix}embedding",
72
72
  )
73
73
  self.encoder_layers = [
74
- CLIPEncoderBlock(
74
+ CLIPEncoderLayer(
75
75
  hidden_dim,
76
76
  num_heads,
77
77
  intermediate_dim,
@@ -2,8 +2,8 @@ from keras import layers
2
2
 
3
3
  from keras_hub.src.api_export import keras_hub_export
4
4
  from keras_hub.src.models.backbone import Backbone
5
- from keras_hub.src.models.clip.clip_encoder_block import CLIPEncoderBlock
6
- from keras_hub.src.models.clip.clip_vision_embedding import CLIPVisionEmbedding
5
+ from keras_hub.src.models.clip.clip_layers import CLIPEncoderLayer
6
+ from keras_hub.src.models.clip.clip_layers import CLIPVisionEmbedding
7
7
  from keras_hub.src.utils.keras_utils import standardize_data_format
8
8
 
9
9
 
@@ -91,7 +91,7 @@ class CLIPVisionEncoder(Backbone):
91
91
  epsilon=1e-5, dtype=dtype, name=f"{prefix}pre_layer_norm"
92
92
  )
93
93
  self.encoder_layers = [
94
- CLIPEncoderBlock(
94
+ CLIPEncoderLayer(
95
95
  hidden_dim,
96
96
  num_heads,
97
97
  intermediate_dim,
@@ -0,0 +1,5 @@
1
+ from keras_hub.src.models.dinov2.dinov2_backbone import DINOV2Backbone
2
+ from keras_hub.src.models.dinov2.dinov2_presets import backbone_presets
3
+ from keras_hub.src.utils.preset_utils import register_presets
4
+
5
+ register_presets(backbone_presets, DINOV2Backbone)