keras-hub-nightly 0.22.0.dev202507110420__tar.gz → 0.22.0.dev202507120419__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (539) hide show
  1. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/api/layers/__init__.py +3 -0
  3. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/api/models/__init__.py +9 -0
  4. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma/gemma_attention.py +1 -1
  5. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +193 -0
  6. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +148 -0
  7. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +216 -0
  8. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +14 -0
  9. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +8 -0
  10. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/hgnetv2/hgnetv2_layers.py +918 -0
  11. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/hgnetv2/hgnetv2_presets.py +58 -0
  12. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/qwen3/__init__.py +5 -0
  13. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/qwen3/qwen3_presets.py +73 -0
  14. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +1 -0
  15. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/keras_utils.py +17 -0
  16. keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/utils/transformers/__init__.py +0 -0
  17. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/version.py +1 -1
  18. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  19. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub_nightly.egg-info/SOURCES.txt +10 -0
  20. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/README.md +0 -0
  21. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/api/__init__.py +0 -0
  22. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/api/metrics/__init__.py +0 -0
  23. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/api/samplers/__init__.py +0 -0
  24. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/api/tokenizers/__init__.py +0 -0
  25. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/api/utils/__init__.py +0 -0
  26. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/__init__.py +0 -0
  27. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/api_export.py +0 -0
  28. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/__init__.py +0 -0
  29. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/__init__.py +0 -0
  30. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  31. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  32. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  33. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  34. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  35. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  36. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  37. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  38. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  39. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  40. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  41. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  42. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  43. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  44. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  45. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  46. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  47. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  48. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  49. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  50. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  51. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  52. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  53. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  54. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  55. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/metrics/__init__.py +0 -0
  56. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/metrics/bleu.py +0 -0
  57. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/metrics/edit_distance.py +0 -0
  58. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/metrics/perplexity.py +0 -0
  59. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/metrics/rouge_base.py +0 -0
  60. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/metrics/rouge_l.py +0 -0
  61. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/metrics/rouge_n.py +0 -0
  62. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/__init__.py +0 -0
  63. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/albert/__init__.py +0 -0
  64. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  65. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  66. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  67. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/albert/albert_presets.py +0 -0
  68. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  69. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  70. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  71. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/audio_to_text.py +0 -0
  72. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  73. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/backbone.py +0 -0
  74. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bart/__init__.py +0 -0
  75. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  76. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bart/bart_presets.py +0 -0
  77. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  78. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  79. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  80. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/basnet/__init__.py +0 -0
  81. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/basnet/basnet.py +0 -0
  82. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  83. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  84. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  85. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  86. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bert/__init__.py +0 -0
  87. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  88. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  89. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  90. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bert/bert_presets.py +0 -0
  91. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  92. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  93. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  94. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bloom/__init__.py +0 -0
  95. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  96. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  97. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  98. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  99. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  100. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  101. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  102. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/causal_lm.py +0 -0
  103. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  104. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/__init__.py +0 -0
  105. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  106. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  107. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  108. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  109. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/clip_presets.py +0 -0
  110. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  111. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  112. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  113. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  114. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/cspnet/__init__.py +0 -0
  115. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  116. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  117. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  118. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  119. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  120. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  121. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  122. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  123. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  124. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  125. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  126. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  127. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  128. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  129. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  130. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  131. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  132. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  133. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  134. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  135. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  136. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  137. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  138. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deit/__init__.py +0 -0
  139. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deit/deit_backbone.py +0 -0
  140. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deit/deit_image_classifier.py +0 -0
  141. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +0 -0
  142. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deit/deit_image_converter.py +0 -0
  143. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deit/deit_layers.py +0 -0
  144. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/deit/deit_presets.py +0 -0
  145. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/densenet/__init__.py +0 -0
  146. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  147. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  148. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  149. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  150. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  151. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  152. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  153. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  154. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  155. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  156. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  157. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  158. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  159. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  160. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/efficientnet/cba.py +0 -0
  161. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  162. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  163. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  164. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  165. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  166. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  167. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  168. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/electra/__init__.py +0 -0
  169. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  170. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/electra/electra_presets.py +0 -0
  171. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  172. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/f_net/__init__.py +0 -0
  173. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  174. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  175. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  176. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  177. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  178. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  179. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  180. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/falcon/__init__.py +0 -0
  181. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  182. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  183. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  184. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  186. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  187. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  188. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  189. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/flux/__init__.py +0 -0
  190. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/flux/flux_layers.py +0 -0
  191. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/flux/flux_maths.py +0 -0
  192. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/flux/flux_model.py +0 -0
  193. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/flux/flux_presets.py +0 -0
  194. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  195. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  196. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma/__init__.py +0 -0
  197. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  198. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  199. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  200. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  201. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  202. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  203. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  204. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/__init__.py +0 -0
  205. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  206. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  207. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  208. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  209. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  210. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  211. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  212. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  213. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  214. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  215. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  216. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt2/__init__.py +0 -0
  217. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  218. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  219. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  220. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  221. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  222. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  223. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  224. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  225. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  226. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  227. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  228. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  229. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  230. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/models/roformer_v2 → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/hgnetv2}/__init__.py +0 -0
  231. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/image_classifier.py +0 -0
  232. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  233. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/image_segmenter.py +0 -0
  234. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  235. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/image_to_image.py +0 -0
  236. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/inpaint.py +0 -0
  237. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/__init__.py +0 -0
  238. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/llama_attention.py +0 -0
  239. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  240. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  241. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  242. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  243. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  244. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/llama_presets.py +0 -0
  245. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  246. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  247. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama3/__init__.py +0 -0
  248. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  249. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  250. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  251. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  252. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  253. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/masked_lm.py +0 -0
  254. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  255. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mistral/__init__.py +0 -0
  256. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  257. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  258. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  259. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  260. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  261. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  262. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  263. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  264. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mit/__init__.py +0 -0
  265. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  266. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  267. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  268. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  269. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mit/mit_layers.py +0 -0
  270. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mit/mit_presets.py +0 -0
  271. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mixtral/__init__.py +0 -0
  272. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  273. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  274. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  275. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  276. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  277. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  278. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
  279. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  280. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  281. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  282. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  283. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  284. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  285. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  286. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/mobilenet/util.py +0 -0
  287. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/__init__.py +0 -0
  288. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  289. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  290. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  291. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
  292. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  293. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  294. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  295. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  296. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  297. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  298. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/object_detector.py +0 -0
  299. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  300. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/opt/__init__.py +0 -0
  301. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  302. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  303. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  304. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/opt/opt_presets.py +0 -0
  305. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  306. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  307. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  308. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  309. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  310. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  311. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  312. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  313. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  314. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  315. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/__init__.py +0 -0
  316. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  317. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  318. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  319. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  320. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  321. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  322. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  323. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  324. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  325. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/preprocessor.py +0 -0
  326. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen/__init__.py +0 -0
  327. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  328. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  329. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  330. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  331. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  332. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  333. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  334. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  335. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
  336. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen3/qwen3_backbone.py +0 -0
  337. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen3/qwen3_causal_lm.py +0 -0
  338. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
  339. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
  340. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
  341. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
  342. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  343. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  344. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  345. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  346. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  347. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  348. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
  349. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  350. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/resnet/__init__.py +0 -0
  351. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  352. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  353. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  354. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  355. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  356. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/retinanet/__init__.py +0 -0
  357. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  358. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  359. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  360. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  361. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  362. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  363. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  364. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  365. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roberta/__init__.py +0 -0
  366. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  367. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  368. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  369. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  370. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  371. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  372. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  373. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/models/vit_det → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/roformer_v2}/__init__.py +0 -0
  374. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  375. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  376. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  377. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  378. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  379. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  380. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  381. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  382. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  383. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/__init__.py +0 -0
  384. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  385. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  386. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  387. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  388. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/sam_layers.py +0 -0
  389. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  390. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/sam_presets.py +0 -0
  391. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  392. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  393. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/segformer/__init__.py +0 -0
  394. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  395. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  396. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  397. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  398. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  399. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  400. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  401. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/__init__.py +0 -0
  402. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  403. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  404. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  405. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  406. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  407. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  408. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  409. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  410. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  411. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  412. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  413. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  414. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  415. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  416. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  417. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  418. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  419. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  420. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  421. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/t5/__init__.py +0 -0
  422. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  423. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  424. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  425. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  426. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/t5/t5_presets.py +0 -0
  427. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  428. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  429. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/task.py +0 -0
  430. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/text_classifier.py +0 -0
  431. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  432. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/text_to_image.py +0 -0
  433. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  434. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vae/__init__.py +0 -0
  435. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  436. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vae/vae_layers.py +0 -0
  437. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vgg/__init__.py +0 -0
  438. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  439. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  440. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  441. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  442. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  443. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vit/__init__.py +0 -0
  444. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  445. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  446. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  447. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  448. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vit/vit_layers.py +0 -0
  449. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vit/vit_presets.py +0 -0
  450. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/models/xlnet → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/vit_det}/__init__.py +0 -0
  451. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  452. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  453. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/whisper/__init__.py +0 -0
  454. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  455. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  456. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  457. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  458. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  459. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  460. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  461. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xception/__init__.py +0 -0
  462. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  463. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  464. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  465. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  466. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xception/xception_presets.py +0 -0
  467. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  468. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  469. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  470. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  471. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  472. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  473. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  474. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  475. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/samplers → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/models/xlnet}/__init__.py +0 -0
  476. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  477. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  478. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  479. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  480. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/tests → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/samplers}/__init__.py +0 -0
  481. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/samplers/beam_sampler.py +0 -0
  482. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  483. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  484. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/samplers/random_sampler.py +0 -0
  485. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/samplers/sampler.py +0 -0
  486. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/samplers/serialization.py +0 -0
  487. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  488. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  489. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/tokenizers → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/tests}/__init__.py +0 -0
  490. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  491. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tests/test_case.py +0 -0
  492. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/utils → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/tokenizers}/__init__.py +0 -0
  493. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  494. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  495. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  496. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  497. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  498. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  499. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  500. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  501. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/utils/coco → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/utils}/__init__.py +0 -0
  502. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/utils/imagenet → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/utils/coco}/__init__.py +0 -0
  503. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  504. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/utils/timm → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/utils/imagenet}/__init__.py +0 -0
  505. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  506. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/pipeline_model.py +0 -0
  507. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/preset_utils.py +0 -0
  508. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/python_utils.py +0 -0
  509. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/tensor_utils.py +0 -0
  510. {keras_hub_nightly-0.22.0.dev202507110420/keras_hub/src/utils/transformers → keras_hub_nightly-0.22.0.dev202507120419/keras_hub/src/utils/timm}/__init__.py +0 -0
  511. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  512. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  513. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  514. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  515. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  516. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  517. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  518. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  519. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  520. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  521. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_deit.py +0 -0
  522. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  523. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  524. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  525. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  526. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  527. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  528. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  529. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  530. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
  531. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  532. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  533. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  534. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  535. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  536. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub_nightly.egg-info/requires.txt +0 -0
  537. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  538. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/pyproject.toml +0 -0
  539. {keras_hub_nightly-0.22.0.dev202507110420 → keras_hub_nightly-0.22.0.dev202507120419}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.22.0.dev202507110420
3
+ Version: 0.22.0.dev202507120419
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -90,6 +90,9 @@ from keras_hub.src.models.efficientnet.efficientnet_image_converter import (
90
90
  from keras_hub.src.models.gemma3.gemma3_image_converter import (
91
91
  Gemma3ImageConverter as Gemma3ImageConverter,
92
92
  )
93
+ from keras_hub.src.models.hgnetv2.hgnetv2_image_converter import (
94
+ HGNetV2ImageConverter as HGNetV2ImageConverter,
95
+ )
93
96
  from keras_hub.src.models.mit.mit_image_converter import (
94
97
  MiTImageConverter as MiTImageConverter,
95
98
  )
@@ -294,6 +294,15 @@ from keras_hub.src.models.gpt_neo_x.gpt_neo_x_causal_lm_preprocessor import (
294
294
  from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import (
295
295
  GPTNeoXTokenizer as GPTNeoXTokenizer,
296
296
  )
297
+ from keras_hub.src.models.hgnetv2.hgnetv2_backbone import (
298
+ HGNetV2Backbone as HGNetV2Backbone,
299
+ )
300
+ from keras_hub.src.models.hgnetv2.hgnetv2_image_classifier import (
301
+ HGNetV2ImageClassifier as HGNetV2ImageClassifier,
302
+ )
303
+ from keras_hub.src.models.hgnetv2.hgnetv2_image_classifier_preprocessor import (
304
+ HGNetV2ImageClassifierPreprocessor as HGNetV2ImageClassifierPreprocessor,
305
+ )
297
306
  from keras_hub.src.models.image_classifier import (
298
307
  ImageClassifier as ImageClassifier,
299
308
  )
@@ -152,7 +152,7 @@ class CachedGemmaAttention(keras.layers.Layer):
152
152
  attention_mask = ops.expand_dims(attention_mask, axis=1)
153
153
  attention_mask = ops.cast(attention_mask, dtype="bool")
154
154
  # Only pass soft cap if needed as not all keras versions support.
155
- if self.logit_soft_cap:
155
+ if self.logit_soft_cap is not None:
156
156
  kwargs = {"attn_logits_soft_cap": self.logit_soft_cap}
157
157
  else:
158
158
  kwargs = {}
@@ -0,0 +1,193 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.backbone import Backbone
5
+ from keras_hub.src.models.hgnetv2.hgnetv2_encoder import HGNetV2Encoder
6
+ from keras_hub.src.models.hgnetv2.hgnetv2_layers import HGNetV2Embeddings
7
+ from keras_hub.src.utils.keras_utils import standardize_data_format
8
+
9
+
10
+ @keras_hub_export("keras_hub.models.HGNetV2Backbone")
11
+ class HGNetV2Backbone(Backbone):
12
+ """This class represents a Keras Backbone of the HGNetV2 model.
13
+
14
+ This class implements an HGNetV2 backbone architecture, a convolutional
15
+ neural network (CNN) optimized for GPU efficiency. HGNetV2 is frequently
16
+ used as a lightweight CNN backbone in object detection pipelines like
17
+ RT-DETR and YOLO variants, delivering strong performance on classification
18
+ and detection tasks, with speed-ups and accuracy gains compared to larger
19
+ CNN backbones.
20
+
21
+ Args:
22
+ depths: list of ints, the number of blocks in each stage.
23
+ embedding_size: int, the size of the embedding layer.
24
+ hidden_sizes: list of ints, the sizes of the hidden layers.
25
+ stem_channels: list of ints, the channels for the stem part.
26
+ hidden_act: str, the activation function for hidden layers.
27
+ use_learnable_affine_block: bool, whether to use learnable affine
28
+ transformations.
29
+ stackwise_stage_filters: list of tuples, where each tuple contains
30
+ configuration for a stage: (stage_in_channels, stage_mid_channels,
31
+ stage_out_channels, stage_num_blocks, stage_num_of_layers,
32
+ stage_kernel_size).
33
+ - stage_in_channels: int, input channels for the stage
34
+ - stage_mid_channels: int, middle channels for the stage
35
+ - stage_out_channels: int, output channels for the stage
36
+ - stage_num_blocks: int, number of blocks in the stage
37
+ - stage_num_of_layers: int, number of layers in each block
38
+ - stage_kernel_size: int, kernel size for the stage
39
+ apply_downsample: list of bools, whether to downsample in each stage.
40
+ use_lightweight_conv_block: list of bools, whether to use HGNetV2
41
+ lightweight convolutional blocks in each stage.
42
+ image_shape: tuple, the shape of the input image without the batch size.
43
+ Defaults to `(None, None, 3)`.
44
+ data_format: `None` or str, the data format ('channels_last' or
45
+ 'channels_first'). If not specified, defaults to the
46
+ `image_data_format` value in your Keras config.
47
+ out_features: list of str or `None`, the names of the output features to
48
+ return. If `None`, returns all available features from all stages.
49
+ Defaults to `None`.
50
+ dtype: `None` or str or `keras.mixed_precision.DTypePolicy`, the data
51
+ type for computations and weights.
52
+
53
+ Examples:
54
+ ```python
55
+ import numpy as np
56
+ from keras_hub.src.models.hgnetv2.hgnetv2_backbone import HGNetV2Backbone
57
+ input_data = np.ones(shape=(8, 224, 224, 3))
58
+
59
+ # Pretrained backbone.
60
+ model = keras_hub.models.HGNetV2Backbone.from_preset(
61
+ "hgnetv2_b5_ssld_stage2_ft_in1k"
62
+ )
63
+ model(input_data)
64
+
65
+ # Randomly initialized backbone with a custom config.
66
+ model = HGNetV2Backbone(
67
+ depths=[1, 2, 4],
68
+ embedding_size=32,
69
+ hidden_sizes=[64, 128, 256],
70
+ stem_channels=[3, 16, 32],
71
+ hidden_act="relu",
72
+ use_learnable_affine_block=False,
73
+ stackwise_stage_filters=[
74
+ (32, 16, 64, 1, 1, 3), # Stage 0
75
+ (64, 32, 128, 2, 1, 3), # Stage 1
76
+ (128, 64, 256, 4, 1, 3), # Stage 2
77
+ ],
78
+ apply_downsample=[False, True, True],
79
+ use_lightweight_conv_block=[False, False, False],
80
+ image_shape=(224, 224, 3),
81
+ )
82
+ model(input_data)
83
+ ```
84
+ """
85
+
86
+ def __init__(
87
+ self,
88
+ depths,
89
+ embedding_size,
90
+ hidden_sizes,
91
+ stem_channels,
92
+ hidden_act,
93
+ use_learnable_affine_block,
94
+ stackwise_stage_filters,
95
+ apply_downsample,
96
+ use_lightweight_conv_block,
97
+ image_shape=(None, None, 3),
98
+ data_format=None,
99
+ out_features=None,
100
+ dtype=None,
101
+ **kwargs,
102
+ ):
103
+ name = kwargs.get("name", None)
104
+ data_format = standardize_data_format(data_format)
105
+ channel_axis = -1 if data_format == "channels_last" else 1
106
+ self.image_shape = image_shape
107
+ (
108
+ stage_in_channels,
109
+ stage_mid_channels,
110
+ stage_out_filters,
111
+ stage_num_blocks,
112
+ stage_num_of_layers,
113
+ stage_kernel_size,
114
+ ) = zip(*stackwise_stage_filters)
115
+
116
+ # === Layers ===
117
+ self.embedder_layer = HGNetV2Embeddings(
118
+ stem_channels=stem_channels,
119
+ hidden_act=hidden_act,
120
+ use_learnable_affine_block=use_learnable_affine_block,
121
+ data_format=data_format,
122
+ channel_axis=channel_axis,
123
+ name=f"{name}_embedder" if name else "embedder",
124
+ dtype=dtype,
125
+ )
126
+ self.encoder_layer = HGNetV2Encoder(
127
+ stage_in_channels=stage_in_channels,
128
+ stage_mid_channels=stage_mid_channels,
129
+ stage_out_channels=stage_out_filters,
130
+ stage_num_blocks=stage_num_blocks,
131
+ stage_num_of_layers=stage_num_of_layers,
132
+ apply_downsample=apply_downsample,
133
+ use_lightweight_conv_block=use_lightweight_conv_block,
134
+ stage_kernel_size=stage_kernel_size,
135
+ use_learnable_affine_block=use_learnable_affine_block,
136
+ data_format=data_format,
137
+ channel_axis=channel_axis,
138
+ name=f"{name}_encoder" if name else "encoder",
139
+ dtype=dtype,
140
+ )
141
+ self.stage_names = ["stem"] + [
142
+ f"stage{i + 1}" for i in range(len(stackwise_stage_filters))
143
+ ]
144
+ self.out_features = (
145
+ out_features if out_features is not None else self.stage_names
146
+ )
147
+
148
+ # === Functional Model ===
149
+ pixel_values = keras.layers.Input(
150
+ shape=image_shape, name="pixel_values_input"
151
+ )
152
+ embedding_output = self.embedder_layer(pixel_values)
153
+ all_encoder_hidden_states_tuple = self.encoder_layer(embedding_output)
154
+ feature_maps_output = {
155
+ stage_name: all_encoder_hidden_states_tuple[idx]
156
+ for idx, stage_name in enumerate(self.stage_names)
157
+ if stage_name in self.out_features
158
+ }
159
+ super().__init__(
160
+ inputs=pixel_values, outputs=feature_maps_output, **kwargs
161
+ )
162
+
163
+ # === Config ===
164
+ self.depths = depths
165
+ self.embedding_size = embedding_size
166
+ self.hidden_sizes = hidden_sizes
167
+ self.stem_channels = stem_channels
168
+ self.hidden_act = hidden_act
169
+ self.use_learnable_affine_block = use_learnable_affine_block
170
+ self.stackwise_stage_filters = stackwise_stage_filters
171
+ self.apply_downsample = apply_downsample
172
+ self.use_lightweight_conv_block = use_lightweight_conv_block
173
+ self.data_format = data_format
174
+
175
+ def get_config(self):
176
+ config = super().get_config()
177
+ config.update(
178
+ {
179
+ "depths": self.depths,
180
+ "embedding_size": self.embedding_size,
181
+ "hidden_sizes": self.hidden_sizes,
182
+ "stem_channels": self.stem_channels,
183
+ "hidden_act": self.hidden_act,
184
+ "use_learnable_affine_block": self.use_learnable_affine_block,
185
+ "stackwise_stage_filters": self.stackwise_stage_filters,
186
+ "apply_downsample": self.apply_downsample,
187
+ "use_lightweight_conv_block": self.use_lightweight_conv_block,
188
+ "image_shape": self.image_shape,
189
+ "out_features": self.out_features,
190
+ "data_format": self.data_format,
191
+ }
192
+ )
193
+ return config
@@ -0,0 +1,148 @@
1
+ import keras
2
+
3
+ from keras_hub.src.models.hgnetv2.hgnetv2_layers import HGNetV2Stage
4
+
5
+
6
+ @keras.saving.register_keras_serializable(package="keras_hub")
7
+ class HGNetV2Encoder(keras.layers.Layer):
8
+ """This class represents the encoder of the HGNetV2 model.
9
+
10
+ This class implements the encoder part of the HGNetV2 architecture, which
11
+ consists of multiple stages. Each stage is an instance of `HGNetV2Stage`,
12
+ and the encoder processes the input through these stages sequentially,
13
+ collecting the hidden states at each stage.
14
+
15
+ Args:
16
+ stage_in_channels: A list of integers, specifying the input channels
17
+ for each stage.
18
+ stage_mid_channels: A list of integers, specifying the mid channels for
19
+ each stage.
20
+ stage_out_channels: A list of integers, specifying the output channels
21
+ for each stage.
22
+ stage_num_blocks: A list of integers, specifying the number of blocks
23
+ in each stage.
24
+ stage_num_of_layers: A list of integers, specifying the number of
25
+ layers in each block of each stage.
26
+ apply_downsample: A list of booleans or integers, indicating whether to
27
+ downsample in each stage.
28
+ use_lightweight_conv_block: A list of booleans, indicating whether to
29
+ use HGNetV2 lightweight convolutional blocks in each stage.
30
+ stage_kernel_size: A list of integers or tuples, specifying the kernel
31
+ size for each stage.
32
+ use_learnable_affine_block: A boolean, indicating whether to use
33
+ learnable affine transformations in the blocks.
34
+ data_format: `None` or str. If specified, either `"channels_last"` or
35
+ `"channels_first"`. The ordering of the dimensions in the inputs.
36
+ `"channels_last"` corresponds to inputs with shape
37
+ `(batch_size, height, width, channels)` while `"channels_first"`
38
+ corresponds to inputs with shape `(batch_size, channels, height,
39
+ width)`. It defaults to the `image_data_format` value found in your
40
+ Keras config file at `~/.keras/keras.json`. If you never set it,
41
+ then it will be `"channels_last"`.
42
+ channel_axis: int, the axis that represents the channels.
43
+ **kwargs: Additional keyword arguments passed to the parent class.
44
+ """
45
+
46
+ def __init__(
47
+ self,
48
+ stage_in_channels,
49
+ stage_mid_channels,
50
+ stage_out_channels,
51
+ stage_num_blocks,
52
+ stage_num_of_layers,
53
+ apply_downsample,
54
+ use_lightweight_conv_block,
55
+ stage_kernel_size,
56
+ use_learnable_affine_block,
57
+ data_format=None,
58
+ channel_axis=None,
59
+ **kwargs,
60
+ ):
61
+ super().__init__(**kwargs)
62
+ self.stage_in_channels = stage_in_channels
63
+ self.stage_mid_channels = stage_mid_channels
64
+ self.stage_out_channels = stage_out_channels
65
+ self.stage_num_blocks = stage_num_blocks
66
+ self.stage_num_of_layers = stage_num_of_layers
67
+ self.apply_downsample = apply_downsample
68
+ self.use_lightweight_conv_block = use_lightweight_conv_block
69
+ self.stage_kernel_size = stage_kernel_size
70
+ self.use_learnable_affine_block = use_learnable_affine_block
71
+ self.data_format = data_format
72
+ self.channel_axis = channel_axis
73
+
74
+ self.stages_list = []
75
+ for stage_idx in range(len(self.stage_in_channels)):
76
+ stage_layer = HGNetV2Stage(
77
+ stage_in_channels=self.stage_in_channels,
78
+ stage_mid_channels=self.stage_mid_channels,
79
+ stage_out_channels=self.stage_out_channels,
80
+ stage_num_blocks=self.stage_num_blocks,
81
+ stage_num_of_layers=self.stage_num_of_layers,
82
+ apply_downsample=self.apply_downsample,
83
+ use_lightweight_conv_block=self.use_lightweight_conv_block,
84
+ stage_kernel_size=self.stage_kernel_size,
85
+ use_learnable_affine_block=self.use_learnable_affine_block,
86
+ stage_index=stage_idx,
87
+ data_format=self.data_format,
88
+ channel_axis=self.channel_axis,
89
+ drop_path=0.0,
90
+ name=f"{self.name}_stage_{stage_idx}"
91
+ if self.name
92
+ else f"stage_{stage_idx}",
93
+ dtype=self.dtype,
94
+ )
95
+ self.stages_list.append(stage_layer)
96
+
97
+ def build(self, input_shape):
98
+ super().build(input_shape)
99
+ current_input_shape = input_shape
100
+ for stage_keras_layer in self.stages_list:
101
+ stage_keras_layer.build(current_input_shape)
102
+ current_input_shape = stage_keras_layer.compute_output_shape(
103
+ current_input_shape
104
+ )
105
+
106
+ def call(
107
+ self,
108
+ hidden_state,
109
+ training=None,
110
+ ):
111
+ all_hidden_states_list = []
112
+ current_hidden_state = hidden_state
113
+ for stage_keras_layer in self.stages_list:
114
+ all_hidden_states_list.append(current_hidden_state)
115
+ current_hidden_state = stage_keras_layer(
116
+ current_hidden_state, training=training
117
+ )
118
+ all_hidden_states_list.append(current_hidden_state)
119
+ return tuple(all_hidden_states_list)
120
+
121
+ def compute_output_shape(self, input_shape):
122
+ current_shape = input_shape
123
+ all_hidden_shapes = [input_shape]
124
+ for stage_keras_layer in self.stages_list:
125
+ current_shape = stage_keras_layer.compute_output_shape(
126
+ current_shape
127
+ )
128
+ all_hidden_shapes.append(current_shape)
129
+ return tuple(all_hidden_shapes)
130
+
131
+ def get_config(self):
132
+ config = super().get_config()
133
+ config.update(
134
+ {
135
+ "stage_in_channels": self.stage_in_channels,
136
+ "stage_mid_channels": self.stage_mid_channels,
137
+ "stage_out_channels": self.stage_out_channels,
138
+ "stage_num_blocks": self.stage_num_blocks,
139
+ "stage_num_of_layers": self.stage_num_of_layers,
140
+ "apply_downsample": self.apply_downsample,
141
+ "use_lightweight_conv_block": self.use_lightweight_conv_block,
142
+ "stage_kernel_size": self.stage_kernel_size,
143
+ "use_learnable_affine_block": self.use_learnable_affine_block,
144
+ "data_format": self.data_format,
145
+ "channel_axis": self.channel_axis,
146
+ }
147
+ )
148
+ return config
@@ -0,0 +1,216 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.hgnetv2.hgnetv2_backbone import HGNetV2Backbone
5
+ from keras_hub.src.models.hgnetv2.hgnetv2_image_classifier_preprocessor import (
6
+ HGNetV2ImageClassifierPreprocessor,
7
+ )
8
+ from keras_hub.src.models.hgnetv2.hgnetv2_layers import HGNetV2ConvLayer
9
+ from keras_hub.src.models.image_classifier import ImageClassifier
10
+ from keras_hub.src.models.task import Task
11
+
12
+
13
+ @keras_hub_export("keras_hub.models.HGNetV2ImageClassifier")
14
+ class HGNetV2ImageClassifier(ImageClassifier):
15
+ """HGNetV2 image classification model.
16
+
17
+ `HGNetV2ImageClassifier` wraps a `HGNetV2Backbone` and
18
+ a `HGNetV2ImageClassifierPreprocessor` to create a model that can be used
19
+ for image classification tasks. This model implements the HGNetV2
20
+ architecture with an additional classification head including a 1x1
21
+ convolution layer, global pooling, and a dense output layer.
22
+
23
+ The model takes an additional `num_classes` argument, controlling the number
24
+ of predicted output classes, and optionally, a `head_filters` argument to
25
+ specify the number of filters in the classification head's convolution
26
+ layer. To fine-tune with `fit()`, pass a dataset containing tuples of
27
+ `(x, y)` labels where `x` is an image tensor and `y` is an integer from
28
+ `[0, num_classes)`.
29
+
30
+ Args:
31
+ backbone: A `HGNetV2Backbone` instance.
32
+ preprocessor: A `HGNetV2ImageClassifierPreprocessor` instance,
33
+ a `keras.Layer` instance, or a callable. If `None` no preprocessing
34
+ will be applied to the inputs.
35
+ num_classes: int. The number of classes to predict.
36
+ head_filters: int, optional. The number of filters in the
37
+ classification head's 1x1 convolution layer. If `None`, it defaults
38
+ to the last value of `hidden_sizes` from the backbone.
39
+ pooling: `"avg"` or `"max"`. The type of global pooling to apply after
40
+ the head convolution. Defaults to `"avg"`.
41
+ activation: `None`, str, or callable. The activation function to use on
42
+ the final `Dense` layer. Set `activation=None` to return the output
43
+ logits. Defaults to `None`.
44
+ dropout: float. Dropout rate applied before the final dense layer.
45
+ Defaults to 0.0.
46
+ head_dtype: `None`, str, or `keras.mixed_precision.DTypePolicy`. The
47
+ dtype to use for the classification head's computations and weights.
48
+
49
+ Examples:
50
+
51
+ Call `predict()` to run inference.
52
+ ```python
53
+ # Load preset and predict.
54
+ images = np.random.randint(0, 256, size=(2, 224, 224, 3))
55
+ classifier = keras_hub.models.HGNetV2ImageClassifier.from_preset(
56
+ "hgnetv2_b5_ssld_stage2_ft_in1k"
57
+ )
58
+ classifier.predict(images)
59
+ ```
60
+
61
+ Call `fit()` on a single batch.
62
+ ```python
63
+ # Load preset and train.
64
+ images = np.random.randint(0, 256, size=(2, 224, 224, 3))
65
+ labels = [0, 3]
66
+ classifier = keras_hub.models.HGNetV2ImageClassifier.from_preset(
67
+ "hgnetv2_b5_ssld_stage2_ft_in1k"
68
+ )
69
+ classifier.fit(x=images, y=labels, batch_size=2)
70
+ ```
71
+
72
+ Call `fit()` with custom loss, optimizer and frozen backbone.
73
+ ```python
74
+ classifier = keras_hub.models.HGNetV2ImageClassifier.from_preset(
75
+ "hgnetv2_b5_ssld_stage2_ft_in1k"
76
+ )
77
+ classifier.compile(
78
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
79
+ optimizer=keras.optimizers.Adam(5e-5),
80
+ )
81
+ classifier.backbone.trainable = False
82
+ classifier.fit(x=images, y=labels, batch_size=2)
83
+ ```
84
+
85
+ Create a custom HGNetV2 classifier with specific head configuration.
86
+ ```python
87
+ backbone = keras_hub.models.HGNetV2Backbone.from_preset(
88
+ "hgnetv2_b5_ssld_stage2_ft_in1k"
89
+ )
90
+ preproc = keras_hub.models.HGNetV2ImageClassifierPreprocessor.from_preset(
91
+ "hgnetv2_b5_ssld_stage2_ft_in1k"
92
+ )
93
+ classifier = keras_hub.models.HGNetV2ImageClassifier(
94
+ backbone=backbone,
95
+ preprocessor=preproc,
96
+ num_classes=10,
97
+ pooling="avg",
98
+ dropout=0.2,
99
+ )
100
+ ```
101
+ """
102
+
103
+ backbone_cls = HGNetV2Backbone
104
+ preprocessor_cls = HGNetV2ImageClassifierPreprocessor
105
+
106
+ def __init__(
107
+ self,
108
+ backbone,
109
+ preprocessor,
110
+ num_classes,
111
+ head_filters=None,
112
+ pooling="avg",
113
+ activation=None,
114
+ dropout=0.0,
115
+ head_dtype=None,
116
+ **kwargs,
117
+ ):
118
+ name = kwargs.get("name", "hgnetv2_image_classifier")
119
+ head_dtype = head_dtype or backbone.dtype_policy
120
+ data_format = getattr(backbone, "data_format", "channels_last")
121
+ channel_axis = -1 if data_format == "channels_last" else 1
122
+ self.head_filters = (
123
+ head_filters
124
+ if head_filters is not None
125
+ else backbone.hidden_sizes[-1]
126
+ )
127
+ self.activation = activation
128
+
129
+ # === Layers ===
130
+ self.backbone = backbone
131
+ self.preprocessor = preprocessor
132
+ self.last_conv = HGNetV2ConvLayer(
133
+ in_channels=backbone.hidden_sizes[-1],
134
+ out_channels=self.head_filters,
135
+ kernel_size=1,
136
+ stride=1,
137
+ groups=1,
138
+ activation="relu",
139
+ use_learnable_affine_block=self.backbone.use_learnable_affine_block,
140
+ data_format=data_format,
141
+ channel_axis=channel_axis,
142
+ name="head_last",
143
+ dtype=head_dtype,
144
+ )
145
+ if pooling == "avg":
146
+ self.pooler = keras.layers.GlobalAveragePooling2D(
147
+ data_format=data_format,
148
+ dtype=head_dtype,
149
+ name=f"{name}_avg_pool" if name else "avg_pool",
150
+ )
151
+ elif pooling == "max":
152
+ self.pooler = keras.layers.GlobalMaxPooling2D(
153
+ data_format=data_format,
154
+ dtype=head_dtype,
155
+ name=f"{name}_max_pool" if name else "max_pool",
156
+ )
157
+ # Check valid pooling.
158
+ else:
159
+ raise ValueError(
160
+ "Unknown `pooling` type. Polling should be either `'avg'` or "
161
+ f"`'max'`. Received: pooling={pooling}."
162
+ )
163
+
164
+ self.flatten_layer = keras.layers.Flatten(
165
+ dtype=head_dtype,
166
+ name=f"{name}_flatten" if name else "flatten",
167
+ )
168
+ self.output_dropout = keras.layers.Dropout(
169
+ rate=dropout,
170
+ dtype=head_dtype,
171
+ name=f"{name}_output_dropout" if name else "output_dropout",
172
+ )
173
+ if num_classes > 0:
174
+ self.output_dense = keras.layers.Dense(
175
+ units=num_classes,
176
+ activation=activation,
177
+ dtype=head_dtype,
178
+ name="predictions",
179
+ )
180
+ else:
181
+ self.output_dense = keras.layers.Identity(name="predictions")
182
+
183
+ # === Functional Model ===
184
+ inputs = backbone.input
185
+ feature_maps = backbone(inputs)
186
+ last_stage_name = backbone.stage_names[-1]
187
+ last_hidden_state_for_pooling = feature_maps[last_stage_name]
188
+ x = self.last_conv(last_hidden_state_for_pooling)
189
+ x = self.pooler(x)
190
+ x = self.flatten_layer(x)
191
+ x = self.output_dropout(x)
192
+ outputs = self.output_dense(x)
193
+ Task.__init__(
194
+ self,
195
+ inputs=inputs,
196
+ outputs=outputs,
197
+ **kwargs,
198
+ )
199
+
200
+ # === Config ===
201
+ self.pooling = pooling
202
+ self.dropout = dropout
203
+ self.num_classes = num_classes
204
+
205
+ def get_config(self):
206
+ config = Task.get_config(self)
207
+ config.update(
208
+ {
209
+ "num_classes": self.num_classes,
210
+ "pooling": self.pooling,
211
+ "activation": self.activation,
212
+ "dropout": self.dropout,
213
+ "head_filters": self.head_filters,
214
+ }
215
+ )
216
+ return config
@@ -0,0 +1,14 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.hgnetv2.hgnetv2_backbone import HGNetV2Backbone
3
+ from keras_hub.src.models.hgnetv2.hgnetv2_image_converter import (
4
+ HGNetV2ImageConverter,
5
+ )
6
+ from keras_hub.src.models.image_classifier_preprocessor import (
7
+ ImageClassifierPreprocessor,
8
+ )
9
+
10
+
11
+ @keras_hub_export("keras_hub.models.HGNetV2ImageClassifierPreprocessor")
12
+ class HGNetV2ImageClassifierPreprocessor(ImageClassifierPreprocessor):
13
+ backbone_cls = HGNetV2Backbone
14
+ image_converter_cls = HGNetV2ImageConverter
@@ -0,0 +1,8 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
+ from keras_hub.src.models.hgnetv2.hgnetv2_backbone import HGNetV2Backbone
4
+
5
+
6
+ @keras_hub_export("keras_hub.layers.HGNetV2ImageConverter")
7
+ class HGNetV2ImageConverter(ImageConverter):
8
+ backbone_cls = HGNetV2Backbone