keras-hub-nightly 0.22.0.dev202505300409__tar.gz → 0.22.0.dev202505310408__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (528) hide show
  1. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/api/layers/__init__.py +3 -0
  3. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/api/models/__init__.py +7 -0
  4. keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/deit/deit_backbone.py +154 -0
  5. keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/deit/deit_image_classifier.py +171 -0
  6. keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +12 -0
  7. keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/deit/deit_image_converter.py +8 -0
  8. keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/deit/deit_layers.py +519 -0
  9. keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/deit/deit_presets.py +49 -0
  10. keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/utils/transformers/__init__.py +0 -0
  11. keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/utils/transformers/convert_deit.py +155 -0
  12. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/preset_loader.py +4 -1
  13. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/version.py +1 -1
  14. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  15. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub_nightly.egg-info/SOURCES.txt +8 -0
  16. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/README.md +0 -0
  17. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/api/__init__.py +0 -0
  18. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/api/metrics/__init__.py +0 -0
  19. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/api/samplers/__init__.py +0 -0
  20. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/api/tokenizers/__init__.py +0 -0
  21. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/api/utils/__init__.py +0 -0
  22. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/__init__.py +0 -0
  23. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/api_export.py +0 -0
  24. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/__init__.py +0 -0
  25. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/__init__.py +0 -0
  26. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  27. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  28. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  29. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  30. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  31. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  32. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  33. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  34. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  35. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  36. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  37. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  38. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  39. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  40. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  41. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  42. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  43. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  44. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  45. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  46. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  47. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  48. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  49. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  50. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  51. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/metrics/__init__.py +0 -0
  52. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/metrics/bleu.py +0 -0
  53. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/metrics/edit_distance.py +0 -0
  54. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/metrics/perplexity.py +0 -0
  55. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/metrics/rouge_base.py +0 -0
  56. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/metrics/rouge_l.py +0 -0
  57. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/metrics/rouge_n.py +0 -0
  58. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/__init__.py +0 -0
  59. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/albert/__init__.py +0 -0
  60. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  61. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  62. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  63. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/albert/albert_presets.py +0 -0
  64. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  65. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  66. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  67. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/audio_to_text.py +0 -0
  68. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  69. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/backbone.py +0 -0
  70. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bart/__init__.py +0 -0
  71. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  72. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bart/bart_presets.py +0 -0
  73. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  74. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  75. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  76. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/basnet/__init__.py +0 -0
  77. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/basnet/basnet.py +0 -0
  78. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  79. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  80. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  81. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  82. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bert/__init__.py +0 -0
  83. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  84. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  85. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  86. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bert/bert_presets.py +0 -0
  87. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  88. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  89. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  90. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bloom/__init__.py +0 -0
  91. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  92. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  93. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  94. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  95. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  96. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  97. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  98. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/causal_lm.py +0 -0
  99. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  100. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/__init__.py +0 -0
  101. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  102. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  103. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  104. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  105. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/clip_presets.py +0 -0
  106. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  107. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  108. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  109. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  110. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/cspnet/__init__.py +0 -0
  111. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  112. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  113. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  114. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  115. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  116. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  117. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  118. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  119. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  120. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  121. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  122. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  123. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  124. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  125. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  126. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  127. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  128. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  129. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  130. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  131. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  132. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  133. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  134. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/gpt_neo_x → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/deit}/__init__.py +0 -0
  135. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/densenet/__init__.py +0 -0
  136. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  137. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  138. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  139. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  140. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  141. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  142. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  143. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  144. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  145. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  146. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  147. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  149. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  150. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/efficientnet/cba.py +0 -0
  151. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  152. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  153. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  154. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  155. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  156. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  157. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  158. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/electra/__init__.py +0 -0
  159. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  160. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/electra/electra_presets.py +0 -0
  161. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  162. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/f_net/__init__.py +0 -0
  163. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  164. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  165. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  166. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  167. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  168. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  169. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  170. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/falcon/__init__.py +0 -0
  171. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  172. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  173. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  174. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  175. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  176. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  177. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  178. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  179. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/flux/__init__.py +0 -0
  180. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/flux/flux_layers.py +0 -0
  181. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/flux/flux_maths.py +0 -0
  182. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/flux/flux_model.py +0 -0
  183. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/flux/flux_presets.py +0 -0
  184. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  185. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  186. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma/__init__.py +0 -0
  187. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  188. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  189. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  190. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  191. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  192. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  193. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  194. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  195. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/__init__.py +0 -0
  196. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  197. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  198. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  199. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  200. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  201. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  202. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  203. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  204. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  205. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  206. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  207. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt2/__init__.py +0 -0
  208. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  209. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  210. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  211. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  212. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  213. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  214. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/roformer_v2 → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/gpt_neo_x}/__init__.py +0 -0
  215. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  216. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  217. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  218. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  219. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  220. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  221. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/image_classifier.py +0 -0
  222. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  223. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/image_segmenter.py +0 -0
  224. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  225. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/image_to_image.py +0 -0
  226. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/inpaint.py +0 -0
  227. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/__init__.py +0 -0
  228. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/llama_attention.py +0 -0
  229. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  230. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  231. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  232. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  233. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  234. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/llama_presets.py +0 -0
  235. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  236. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  237. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama3/__init__.py +0 -0
  238. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  239. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  240. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  241. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  242. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  243. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/masked_lm.py +0 -0
  244. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  245. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mistral/__init__.py +0 -0
  246. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  247. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  248. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  249. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  250. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  251. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  252. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  253. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  254. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mit/__init__.py +0 -0
  255. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  256. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  257. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  258. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  259. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mit/mit_layers.py +0 -0
  260. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mit/mit_presets.py +0 -0
  261. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mixtral/__init__.py +0 -0
  262. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  263. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  264. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  265. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  266. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  267. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  268. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
  269. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  270. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  271. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  272. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  273. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  274. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  275. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  276. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/mobilenet/util.py +0 -0
  277. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/__init__.py +0 -0
  278. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  279. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  280. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  281. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
  282. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  283. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  284. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  285. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  286. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  287. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  288. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/object_detector.py +0 -0
  289. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  290. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/opt/__init__.py +0 -0
  291. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  292. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  293. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  294. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/opt/opt_presets.py +0 -0
  295. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  296. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  297. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  298. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  299. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  300. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  301. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  302. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  303. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  304. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  305. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/__init__.py +0 -0
  306. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  307. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  308. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  309. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  310. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  311. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  312. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  313. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  314. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  315. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/preprocessor.py +0 -0
  316. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen/__init__.py +0 -0
  317. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  318. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  319. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  320. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  321. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  322. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  323. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  324. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  325. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen3/qwen3_attention.py +0 -0
  326. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen3/qwen3_backbone.py +0 -0
  327. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +0 -0
  328. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen3/qwen3_decoder.py +0 -0
  329. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen3/qwen3_layernorm.py +0 -0
  330. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen3/qwen3_tokenizer.py +0 -0
  331. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  332. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  333. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  334. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  335. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  336. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  337. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  338. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
  339. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  340. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/resnet/__init__.py +0 -0
  341. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  342. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  343. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  344. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  345. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  346. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/retinanet/__init__.py +0 -0
  347. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  348. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  349. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  350. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  351. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  352. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  353. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  354. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  355. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roberta/__init__.py +0 -0
  356. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  357. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  358. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  359. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  360. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  361. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  362. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  363. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/vit_det → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/roformer_v2}/__init__.py +0 -0
  364. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  365. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  366. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  367. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  368. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  369. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  370. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  371. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  372. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  373. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/__init__.py +0 -0
  374. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  375. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  376. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  377. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  378. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/sam_layers.py +0 -0
  379. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  380. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/sam_presets.py +0 -0
  381. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  382. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  383. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/segformer/__init__.py +0 -0
  384. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  385. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  386. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  387. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  388. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  389. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  390. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  391. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/__init__.py +0 -0
  392. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  393. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  394. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  395. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  396. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  397. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  398. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  399. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  400. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  401. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  402. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  403. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  404. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  405. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  406. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  407. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  408. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  409. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  410. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  411. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/t5/__init__.py +0 -0
  412. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  413. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  414. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  415. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  416. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/t5/t5_presets.py +0 -0
  417. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  418. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  419. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/task.py +0 -0
  420. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/text_classifier.py +0 -0
  421. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  422. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/text_to_image.py +0 -0
  423. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  424. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vae/__init__.py +0 -0
  425. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  426. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vae/vae_layers.py +0 -0
  427. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vgg/__init__.py +0 -0
  428. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  429. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  430. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  431. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  432. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  433. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vit/__init__.py +0 -0
  434. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  435. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  436. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  437. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  438. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vit/vit_layers.py +0 -0
  439. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vit/vit_presets.py +0 -0
  440. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/xlnet → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/vit_det}/__init__.py +0 -0
  441. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  442. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  443. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/whisper/__init__.py +0 -0
  444. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  445. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  446. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  447. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  448. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  449. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  450. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  451. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xception/__init__.py +0 -0
  452. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  453. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  454. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  455. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  456. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xception/xception_presets.py +0 -0
  457. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  458. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  459. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  460. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  461. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  462. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  463. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  464. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  465. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/samplers → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/models/xlnet}/__init__.py +0 -0
  466. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  467. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  468. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  469. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  470. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/tests → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/samplers}/__init__.py +0 -0
  471. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/samplers/beam_sampler.py +0 -0
  472. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  473. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  474. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/samplers/random_sampler.py +0 -0
  475. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/samplers/sampler.py +0 -0
  476. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/samplers/serialization.py +0 -0
  477. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  478. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  479. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/tokenizers → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/tests}/__init__.py +0 -0
  480. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  481. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tests/test_case.py +0 -0
  482. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/utils → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/tokenizers}/__init__.py +0 -0
  483. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  484. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  485. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  486. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  487. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  488. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  489. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  490. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  491. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/utils/coco → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/utils}/__init__.py +0 -0
  492. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/utils/imagenet → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/utils/coco}/__init__.py +0 -0
  493. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  494. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/utils/timm → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/utils/imagenet}/__init__.py +0 -0
  495. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  496. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/keras_utils.py +0 -0
  497. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/pipeline_model.py +0 -0
  498. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/preset_utils.py +0 -0
  499. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/python_utils.py +0 -0
  500. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/tensor_utils.py +0 -0
  501. {keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/utils/transformers → keras_hub_nightly-0.22.0.dev202505310408/keras_hub/src/utils/timm}/__init__.py +0 -0
  502. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  503. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  504. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  505. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  506. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  507. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  508. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  509. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  510. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  511. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  512. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  513. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  514. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  515. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  516. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  517. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  518. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  519. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  520. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_qwen3.py +0 -0
  521. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  522. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  523. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  524. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  525. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub_nightly.egg-info/requires.txt +0 -0
  526. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  527. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/pyproject.toml +0 -0
  528. {keras_hub_nightly-0.22.0.dev202505300409 → keras_hub_nightly-0.22.0.dev202505310408}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.22.0.dev202505300409
3
+ Version: 0.22.0.dev202505310408
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -78,6 +78,9 @@ from keras_hub.src.models.cspnet.cspnet_image_converter import (
78
78
  from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
79
79
  DeepLabV3ImageConverter as DeepLabV3ImageConverter,
80
80
  )
81
+ from keras_hub.src.models.deit.deit_image_converter import (
82
+ DeiTImageConverter as DeiTImageConverter,
83
+ )
81
84
  from keras_hub.src.models.densenet.densenet_image_converter import (
82
85
  DenseNetImageConverter as DenseNetImageConverter,
83
86
  )
@@ -141,6 +141,13 @@ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_segmeter_preprocessor impo
141
141
  from keras_hub.src.models.deeplab_v3.deeplab_v3_segmenter import (
142
142
  DeepLabV3ImageSegmenter as DeepLabV3ImageSegmenter,
143
143
  )
144
+ from keras_hub.src.models.deit.deit_backbone import DeiTBackbone as DeiTBackbone
145
+ from keras_hub.src.models.deit.deit_image_classifier import (
146
+ DeiTImageClassifier as DeiTImageClassifier,
147
+ )
148
+ from keras_hub.src.models.deit.deit_image_classifier_preprocessor import (
149
+ DeiTImageClassifierPreprocessor as DeiTImageClassifierPreprocessor,
150
+ )
144
151
  from keras_hub.src.models.densenet.densenet_backbone import (
145
152
  DenseNetBackbone as DenseNetBackbone,
146
153
  )
@@ -0,0 +1,154 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.backbone import Backbone
5
+ from keras_hub.src.models.deit.deit_layers import DeiTEmbeddings
6
+ from keras_hub.src.models.deit.deit_layers import DeiTEncoder
7
+ from keras_hub.src.utils.keras_utils import standardize_data_format
8
+
9
+
10
+ @keras_hub_export("keras_hub.models.DeiTBackbone")
11
+ class DeiTBackbone(Backbone):
12
+ """DeiT backbone.
13
+
14
+ This backbone implements the Data-efficient Image Transformer (DeiT)
15
+ architecture as described in [Training data-efficient image
16
+ transformers & distillation through attention]
17
+ (https://arxiv.org/abs/2012.12877).
18
+
19
+ Args:
20
+ image_shape: A tuple or list of 3 integers representing the shape of the
21
+ input image `(height, width, channels)`.
22
+ patch_size: tuple or int. The size of each image patch. If an int is
23
+ provided, it will be used for both height and width. The input image
24
+ will be split into patches of shape `(patch_size_h, patch_size_w)`.
25
+ num_layers: int. The number of transformer encoder layers.
26
+ num_heads: int. The number of attention heads in each Transformer
27
+ encoder layer.
28
+ hidden_dim: int. The dimensionality of the hidden representations.
29
+ intermediate_dim: int. The dimensionality of the intermediate MLP layer
30
+ in each Transformer encoder layer.
31
+ dropout_rate: float. The dropout rate for the Transformer encoder
32
+ layers.
33
+ attention_dropout: float. The dropout rate for the attention mechanism
34
+ in each Transformer encoder layer.
35
+ layer_norm_epsilon: float. Value used for numerical stability in layer
36
+ normalization.
37
+ use_mha_bias: bool. Whether to use bias in the multi-head attention
38
+ layers.
39
+ data_format: str. `"channels_last"` or `"channels_first"`, specifying
40
+ the data format for the input image. If `None`, defaults to
41
+ `"channels_last"`.
42
+ dtype: The dtype of the layer weights. Defaults to None.
43
+ **kwargs: Additional keyword arguments to be passed to the parent
44
+ `Backbone` class.
45
+ """
46
+
47
+ def __init__(
48
+ self,
49
+ image_shape,
50
+ patch_size,
51
+ num_layers,
52
+ num_heads,
53
+ hidden_dim,
54
+ intermediate_dim,
55
+ dropout_rate=0.0,
56
+ attention_dropout=0.0,
57
+ layer_norm_epsilon=1e-6,
58
+ use_mha_bias=True,
59
+ data_format=None,
60
+ dtype=None,
61
+ **kwargs,
62
+ ):
63
+ # === Laters ===
64
+ data_format = standardize_data_format(data_format)
65
+ if isinstance(patch_size, int):
66
+ patch_size = (patch_size, patch_size)
67
+ h_axis, w_axis, channels_axis = (
68
+ (-3, -2, -1) if data_format == "channels_last" else (-2, -1, -3)
69
+ )
70
+ # Check that the input image is well specified.
71
+ if image_shape[h_axis] is None or image_shape[w_axis] is None:
72
+ raise ValueError(
73
+ f"Image shape must have defined height and width. Found `None` "
74
+ f"at index {h_axis} (height) or {w_axis} (width). "
75
+ f"Image shape: {image_shape}"
76
+ )
77
+ # Check that image dimensions be divisible by patch size
78
+ if image_shape[h_axis] % patch_size[0] != 0:
79
+ raise ValueError(
80
+ f"Input height {image_shape[h_axis]} should be divisible by "
81
+ f"patch size {patch_size}."
82
+ )
83
+ if image_shape[w_axis] % patch_size[1] != 0:
84
+ raise ValueError(
85
+ f"Input height {image_shape[w_axis]} should be divisible by "
86
+ f"patch size {patch_size}."
87
+ )
88
+
89
+ num_channels = image_shape[channels_axis]
90
+
91
+ # === Functional Model ===
92
+ inputs = keras.layers.Input(shape=image_shape)
93
+
94
+ x = DeiTEmbeddings(
95
+ image_size=(image_shape[h_axis], image_shape[w_axis]),
96
+ patch_size=patch_size,
97
+ hidden_dim=hidden_dim,
98
+ num_channels=num_channels,
99
+ data_format=data_format,
100
+ dropout_rate=dropout_rate,
101
+ dtype=dtype,
102
+ name="deit_patching_and_embedding",
103
+ )(inputs)
104
+
105
+ output, _, _ = DeiTEncoder(
106
+ num_layers=num_layers,
107
+ num_heads=num_heads,
108
+ hidden_dim=hidden_dim,
109
+ intermediate_dim=intermediate_dim,
110
+ use_mha_bias=use_mha_bias,
111
+ dropout_rate=dropout_rate,
112
+ attention_dropout=attention_dropout,
113
+ layer_norm_epsilon=layer_norm_epsilon,
114
+ dtype=dtype,
115
+ name="deit_encoder",
116
+ )(x)
117
+
118
+ super().__init__(
119
+ inputs=inputs,
120
+ outputs=output,
121
+ dtype=dtype,
122
+ **kwargs,
123
+ )
124
+
125
+ # === Config ===
126
+ self.image_shape = image_shape
127
+ self.patch_size = patch_size
128
+ self.num_layers = num_layers
129
+ self.num_heads = num_heads
130
+ self.hidden_dim = hidden_dim
131
+ self.intermediate_dim = intermediate_dim
132
+ self.dropout_rate = dropout_rate
133
+ self.attention_dropout = attention_dropout
134
+ self.layer_norm_epsilon = layer_norm_epsilon
135
+ self.use_mha_bias = use_mha_bias
136
+ self.data_format = data_format
137
+
138
+ def get_config(self):
139
+ config = super().get_config()
140
+ config.update(
141
+ {
142
+ "image_shape": self.image_shape,
143
+ "patch_size": self.patch_size,
144
+ "num_layers": self.num_layers,
145
+ "num_heads": self.num_heads,
146
+ "hidden_dim": self.hidden_dim,
147
+ "intermediate_dim": self.intermediate_dim,
148
+ "dropout_rate": self.dropout_rate,
149
+ "attention_dropout": self.attention_dropout,
150
+ "layer_norm_epsilon": self.layer_norm_epsilon,
151
+ "use_mha_bias": self.use_mha_bias,
152
+ }
153
+ )
154
+ return config
@@ -0,0 +1,171 @@
1
+ import keras
2
+ from keras import ops
3
+
4
+ from keras_hub.src.api_export import keras_hub_export
5
+ from keras_hub.src.models.deit.deit_backbone import DeiTBackbone
6
+ from keras_hub.src.models.deit.deit_image_classifier_preprocessor import (
7
+ DeiTImageClassifierPreprocessor,
8
+ )
9
+ from keras_hub.src.models.image_classifier import ImageClassifier
10
+ from keras_hub.src.models.task import Task
11
+
12
+
13
+ @keras_hub_export("keras_hub.models.DeiTImageClassifier")
14
+ class DeiTImageClassifier(ImageClassifier):
15
+ """DeiT image classification task.
16
+
17
+ `DeiTImageClassifier` tasks wrap a `keras_hub.models.DeiTBackbone` and
18
+ a `keras_hub.models.Preprocessor` to create a model that can be used for
19
+ image classification. `DeiTImageClassifier` tasks take an additional
20
+ `num_classes` argument, controlling the number of predicted output classes.
21
+
22
+ To fine-tune with `fit()`, pass a dataset containing tuples of `(x, y)`
23
+ labels where `x` is a string and `y` is a integer from `[0, num_classes)`.
24
+
25
+ Not that unlike `keras_hub.model.ImageClassifier`, the `DeiTImageClassifier`
26
+ we pluck out `cls_token` which is first seqence from the backbone.
27
+
28
+ Args:
29
+ backbone: A `keras_hub.models.DeiTBackbone` instance or a `keras.Model`.
30
+ num_classes: int. The number of classes to predict.
31
+ preprocessor: `None`, a `keras_hub.models.Preprocessor` instance,
32
+ a `keras.Layer` instance, or a callable. If `None` no preprocessing
33
+ will be applied to the inputs.
34
+ pooling: String specifying the classification strategy. The choice
35
+ impacts the dimensionality and nature of the feature vector used for
36
+ classification.
37
+ `"token"`: A single vector (class token) representing the
38
+ overall image features.
39
+ `"gap"`: A single vector representing the average features
40
+ across the spatial dimensions.
41
+ activation: `None`, str, or callable. The activation function to use on
42
+ the `Dense` layer. Set `activation=None` to return the output
43
+ logits. Defaults to `None`.
44
+ head_dtype: `None`, str, or `keras.mixed_precision.DTypePolicy`. The
45
+ dtype to use for the classification head's computations and weights.
46
+
47
+ Examples:
48
+
49
+ Call `predict()` to run inference.
50
+ ```python
51
+ # Load preset and train
52
+ images = np.random.randint(0, 256, size=(2, 384, 384, 3))
53
+ classifier = keras_hub.models.DeiTImageClassifier.from_preset(
54
+ "hf://facebook/deit-base-distilled-patch16-384"
55
+ )
56
+ classifier.predict(images)
57
+ ```
58
+
59
+ Call `fit()` on a single batch.
60
+ ```python
61
+ # Load preset and train
62
+ images = np.random.randint(0, 256, size=(2, 384, 384, 3))
63
+ labels = [0, 3]
64
+ classifier = keras_hub.models.DeiTImageClassifier.from_preset(
65
+ "hf://facebook/deit-base-distilled-patch16-384"
66
+ )
67
+ classifier.fit(x=images, y=labels, batch_size=2)
68
+ ```
69
+
70
+ Call `fit()` with custom loss, optimizer and backbone.
71
+ ```python
72
+ classifier = keras_hub.models.DeiTImageClassifier.from_preset(
73
+ "hf://facebook/deit-base-distilled-patch16-384"
74
+ )
75
+ classifier.compile(
76
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
77
+ optimizer=keras.optimizers.Adam(5e-5),
78
+ )
79
+ classifier.backbone.trainable = False
80
+ classifier.fit(x=images, y=labels, batch_size=2)
81
+ ```
82
+
83
+ Custom backbone.
84
+ ```python
85
+ images = np.random.randint(0, 256, size=(2, 384, 384, 3))
86
+ labels = [0, 3]
87
+ backbone = keras_hub.models.DeiTBackbone(
88
+ image_shape = (384, 384, 3),
89
+ patch_size=16,
90
+ num_layers=6,
91
+ num_heads=3,
92
+ hidden_dim=768,
93
+ intermediate_dim=2048
94
+ )
95
+ classifier = keras_hub.models.DeiTImageClassifier(
96
+ backbone=backbone,
97
+ num_classes=4,
98
+ )
99
+ classifier.fit(x=images, y=labels, batch_size=2)
100
+ ```
101
+ """
102
+
103
+ backbone_cls = DeiTBackbone
104
+ preprocessor_cls = DeiTImageClassifierPreprocessor
105
+
106
+ def __init__(
107
+ self,
108
+ backbone,
109
+ num_classes,
110
+ preprocessor=None,
111
+ pooling="token",
112
+ activation=None,
113
+ dropout=0.0,
114
+ head_dtype=None,
115
+ **kwargs,
116
+ ):
117
+ head_dtype = head_dtype or backbone.dtype_policy
118
+
119
+ # === Layers ===
120
+ self.backbone = backbone
121
+ self.preprocessor = preprocessor
122
+ self.dropout = keras.layers.Dropout(
123
+ rate=dropout,
124
+ dtype=head_dtype,
125
+ name="output_dropout",
126
+ )
127
+
128
+ self.output_dense = keras.layers.Dense(
129
+ num_classes,
130
+ activation=activation,
131
+ dtype=head_dtype,
132
+ name="predictions",
133
+ )
134
+
135
+ # === Functional Model ===
136
+ inputs = self.backbone.input
137
+ x = self.backbone(inputs)
138
+ if pooling == "token":
139
+ x = x[:, 0]
140
+ elif pooling == "gap":
141
+ ndim = len(ops.shape(x))
142
+ x = ops.mean(x, axis=list(range(1, ndim - 1))) # (1,) or (1,2)
143
+
144
+ outputs = self.output_dense(x)
145
+
146
+ # Skip the parent class functional model.
147
+ Task.__init__(
148
+ self,
149
+ inputs=inputs,
150
+ outputs=outputs,
151
+ **kwargs,
152
+ )
153
+
154
+ # === config ===
155
+ self.num_classes = num_classes
156
+ self.pooling = pooling
157
+ self.activation = activation
158
+ self.dropout = dropout
159
+
160
+ def get_config(self):
161
+ # Backbone serialized in `super`
162
+ config = super().get_config()
163
+ config.update(
164
+ {
165
+ "num_classes": self.num_classes,
166
+ "pooling": self.pooling,
167
+ "activation": self.activation,
168
+ "dropout": self.dropout,
169
+ }
170
+ )
171
+ return config
@@ -0,0 +1,12 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.deit.deit_backbone import DeiTBackbone
3
+ from keras_hub.src.models.deit.deit_image_converter import DeiTImageConverter
4
+ from keras_hub.src.models.image_classifier_preprocessor import (
5
+ ImageClassifierPreprocessor,
6
+ )
7
+
8
+
9
+ @keras_hub_export("keras_hub.models.DeiTImageClassifierPreprocessor")
10
+ class DeiTImageClassifierPreprocessor(ImageClassifierPreprocessor):
11
+ backbone_cls = DeiTBackbone
12
+ image_converter_cls = DeiTImageConverter
@@ -0,0 +1,8 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
+ from keras_hub.src.models.deit.deit_backbone import DeiTBackbone
4
+
5
+
6
+ @keras_hub_export("keras_hub.layers.DeiTImageConverter")
7
+ class DeiTImageConverter(ImageConverter):
8
+ backbone_cls = DeiTBackbone