keras-hub-nightly 0.21.0.dev202505280410__tar.gz → 0.22.0.dev202505300409__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (521) hide show
  1. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/api/models/__init__.py +9 -0
  3. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mixtral/mixtral_presets.py +4 -4
  4. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen/qwen_presets.py +6 -6
  5. keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/qwen3/qwen3_attention.py +369 -0
  6. keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/qwen3/qwen3_backbone.py +191 -0
  7. keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +10 -0
  8. keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/qwen3/qwen3_decoder.py +309 -0
  9. keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/qwen3/qwen3_layernorm.py +38 -0
  10. keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/qwen3/qwen3_tokenizer.py +48 -0
  11. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +2 -2
  12. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vit/vit_backbone.py +31 -11
  13. keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/models/vit/vit_image_converter.py +8 -0
  14. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vit/vit_layers.py +33 -18
  15. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vit/vit_presets.py +11 -11
  16. keras_hub_nightly-0.22.0.dev202505300409/keras_hub/src/utils/transformers/convert_qwen3.py +145 -0
  17. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/preset_loader.py +3 -0
  18. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/version.py +1 -1
  19. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  20. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub_nightly.egg-info/SOURCES.txt +7 -0
  21. keras_hub_nightly-0.21.0.dev202505280410/keras_hub/src/models/vit/vit_image_converter.py +0 -78
  22. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/README.md +0 -0
  23. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/api/__init__.py +0 -0
  24. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/api/layers/__init__.py +0 -0
  25. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/api/metrics/__init__.py +0 -0
  26. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/api/samplers/__init__.py +0 -0
  27. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/api/tokenizers/__init__.py +0 -0
  28. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/api/utils/__init__.py +0 -0
  29. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/__init__.py +0 -0
  30. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/api_export.py +0 -0
  31. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/__init__.py +0 -0
  32. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/__init__.py +0 -0
  33. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  34. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  35. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  36. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  37. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  38. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  39. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  40. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  41. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  42. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  43. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  44. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  45. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  46. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  47. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  48. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  49. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  50. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  51. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  52. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  53. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  54. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  55. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  56. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  57. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  58. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/metrics/__init__.py +0 -0
  59. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/metrics/bleu.py +0 -0
  60. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/metrics/edit_distance.py +0 -0
  61. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/metrics/perplexity.py +0 -0
  62. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/metrics/rouge_base.py +0 -0
  63. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/metrics/rouge_l.py +0 -0
  64. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/metrics/rouge_n.py +0 -0
  65. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/__init__.py +0 -0
  66. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/albert/__init__.py +0 -0
  67. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  68. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  69. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  70. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/albert/albert_presets.py +0 -0
  71. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  72. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  73. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  74. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/audio_to_text.py +0 -0
  75. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  76. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/backbone.py +0 -0
  77. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bart/__init__.py +0 -0
  78. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  79. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bart/bart_presets.py +0 -0
  80. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  81. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  82. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  83. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/basnet/__init__.py +0 -0
  84. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/basnet/basnet.py +0 -0
  85. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  86. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  87. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  88. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  89. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bert/__init__.py +0 -0
  90. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  91. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  92. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  93. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bert/bert_presets.py +0 -0
  94. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  95. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  96. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  97. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bloom/__init__.py +0 -0
  98. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  99. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  100. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  101. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  102. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  103. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  104. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  105. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/causal_lm.py +0 -0
  106. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  107. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/__init__.py +0 -0
  108. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  109. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  110. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  111. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  112. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/clip_presets.py +0 -0
  113. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  114. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  115. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  116. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  117. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/cspnet/__init__.py +0 -0
  118. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  119. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  120. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  121. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  122. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  123. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  124. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  125. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  126. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  127. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  128. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  129. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  130. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  131. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  132. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  133. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  134. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  135. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  136. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  137. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  138. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  139. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  140. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  141. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/densenet/__init__.py +0 -0
  142. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  143. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  144. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  145. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  146. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  147. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  148. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  149. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  150. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  151. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  152. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  153. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  154. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  155. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  156. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/efficientnet/cba.py +0 -0
  157. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  158. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  159. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  160. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  161. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  162. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  163. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  164. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/electra/__init__.py +0 -0
  165. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  166. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/electra/electra_presets.py +0 -0
  167. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  168. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/f_net/__init__.py +0 -0
  169. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  170. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  171. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  172. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  173. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  174. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  175. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  176. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/falcon/__init__.py +0 -0
  177. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  178. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  179. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  180. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  181. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  182. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  183. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  184. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  185. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/flux/__init__.py +0 -0
  186. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/flux/flux_layers.py +0 -0
  187. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/flux/flux_maths.py +0 -0
  188. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/flux/flux_model.py +0 -0
  189. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/flux/flux_presets.py +0 -0
  190. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  191. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  192. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma/__init__.py +0 -0
  193. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  194. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  195. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  196. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  197. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  198. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  199. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  200. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  201. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/__init__.py +0 -0
  202. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  203. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  204. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  205. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  206. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  207. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  208. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  209. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  210. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  211. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  212. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  213. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt2/__init__.py +0 -0
  214. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  215. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  216. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  217. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  218. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  219. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  220. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  221. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  222. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  223. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  224. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  225. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  226. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  227. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/image_classifier.py +0 -0
  228. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  229. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/image_segmenter.py +0 -0
  230. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  231. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/image_to_image.py +0 -0
  232. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/inpaint.py +0 -0
  233. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/__init__.py +0 -0
  234. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/llama_attention.py +0 -0
  235. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  236. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  237. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  238. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  239. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  240. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/llama_presets.py +0 -0
  241. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  242. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  243. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama3/__init__.py +0 -0
  244. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  245. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  246. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  247. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  248. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  249. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/masked_lm.py +0 -0
  250. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  251. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mistral/__init__.py +0 -0
  252. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  253. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  254. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  255. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  256. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  257. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  258. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  259. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  260. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mit/__init__.py +0 -0
  261. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  262. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  263. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  264. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  265. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mit/mit_layers.py +0 -0
  266. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mit/mit_presets.py +0 -0
  267. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mixtral/__init__.py +0 -0
  268. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  269. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  270. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  271. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  272. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  273. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  274. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  275. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  276. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  277. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  278. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  279. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  280. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  281. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/mobilenet/util.py +0 -0
  282. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/__init__.py +0 -0
  283. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  284. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  285. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  286. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
  287. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  288. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  289. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  290. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  291. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  292. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  293. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/object_detector.py +0 -0
  294. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  295. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/opt/__init__.py +0 -0
  296. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  297. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  298. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  299. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/opt/opt_presets.py +0 -0
  300. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  301. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  302. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  303. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  304. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  305. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  306. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  307. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  308. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  309. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  310. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/__init__.py +0 -0
  311. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  312. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  313. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  314. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  315. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  316. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  317. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  318. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  319. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  320. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/preprocessor.py +0 -0
  321. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen/__init__.py +0 -0
  322. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  323. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  324. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  325. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  326. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  327. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  328. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  329. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  330. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  331. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  332. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  333. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  334. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  335. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  336. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  337. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/resnet/__init__.py +0 -0
  338. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  339. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  340. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  341. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  342. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  343. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/retinanet/__init__.py +0 -0
  344. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  345. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  346. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  347. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  348. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  349. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  350. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  351. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  352. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roberta/__init__.py +0 -0
  353. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  354. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  355. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  356. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  357. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  358. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  359. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  360. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
  361. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  362. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  363. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  364. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  365. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  366. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  367. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  368. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  369. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  370. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/__init__.py +0 -0
  371. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  372. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  373. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  374. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  375. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/sam_layers.py +0 -0
  376. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  377. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/sam_presets.py +0 -0
  378. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  379. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  380. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/segformer/__init__.py +0 -0
  381. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  382. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  383. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  384. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  385. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  386. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  387. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  388. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/__init__.py +0 -0
  389. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  390. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  391. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  392. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  393. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  394. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  395. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  396. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  397. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  398. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  399. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  400. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  401. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  402. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  403. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  404. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  405. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  406. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  407. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  408. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/t5/__init__.py +0 -0
  409. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  410. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  411. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  412. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  413. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/t5/t5_presets.py +0 -0
  414. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  415. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  416. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/task.py +0 -0
  417. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/text_classifier.py +0 -0
  418. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  419. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/text_to_image.py +0 -0
  420. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  421. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vae/__init__.py +0 -0
  422. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  423. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vae/vae_layers.py +0 -0
  424. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vgg/__init__.py +0 -0
  425. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  426. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  427. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  428. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  429. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  430. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vit/__init__.py +0 -0
  431. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  432. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  433. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vit_det/__init__.py +0 -0
  434. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  435. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  436. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/whisper/__init__.py +0 -0
  437. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  438. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  439. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  440. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  441. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  442. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  443. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  444. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xception/__init__.py +0 -0
  445. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  446. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  447. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  448. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  449. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xception/xception_presets.py +0 -0
  450. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  451. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  452. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  453. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  454. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  455. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  456. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  457. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  458. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlnet/__init__.py +0 -0
  459. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  460. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  461. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  462. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  463. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/samplers/__init__.py +0 -0
  464. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/samplers/beam_sampler.py +0 -0
  465. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  466. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  467. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/samplers/random_sampler.py +0 -0
  468. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/samplers/sampler.py +0 -0
  469. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/samplers/serialization.py +0 -0
  470. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  471. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  472. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tests/__init__.py +0 -0
  473. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  474. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tests/test_case.py +0 -0
  475. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tokenizers/__init__.py +0 -0
  476. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  477. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  478. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  479. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  480. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  481. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  482. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  483. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  484. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/__init__.py +0 -0
  485. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/coco/__init__.py +0 -0
  486. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  487. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  488. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  489. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/keras_utils.py +0 -0
  490. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/pipeline_model.py +0 -0
  491. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/preset_utils.py +0 -0
  492. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/python_utils.py +0 -0
  493. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/tensor_utils.py +0 -0
  494. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/timm/__init__.py +0 -0
  495. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  496. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  497. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  498. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  499. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  500. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  501. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  502. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/__init__.py +0 -0
  503. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  504. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  505. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  506. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  507. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  508. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  509. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  510. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  511. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  512. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  513. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  514. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  515. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  516. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  517. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  518. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub_nightly.egg-info/requires.txt +0 -0
  519. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  520. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/pyproject.toml +0 -0
  521. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505300409}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.21.0.dev202505280410
3
+ Version: 0.22.0.dev202505300409
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -444,6 +444,15 @@ from keras_hub.src.models.qwen.qwen_tokenizer import (
444
444
  from keras_hub.src.models.qwen.qwen_tokenizer import (
445
445
  QwenTokenizer as QwenTokenizer,
446
446
  )
447
+ from keras_hub.src.models.qwen3.qwen3_backbone import (
448
+ Qwen3Backbone as Qwen3Backbone,
449
+ )
450
+ from keras_hub.src.models.qwen3.qwen3_causal_lm_preprocessor import (
451
+ Qwen3CausalLMPreprocessor as Qwen3CausalLMPreprocessor,
452
+ )
453
+ from keras_hub.src.models.qwen3.qwen3_tokenizer import (
454
+ Qwen3Tokenizer as Qwen3Tokenizer,
455
+ )
447
456
  from keras_hub.src.models.qwen_moe.qwen_moe_backbone import (
448
457
  QwenMoeBackbone as QwenMoeBackbone,
449
458
  )
@@ -4,8 +4,8 @@ backbone_presets = {
4
4
  "mixtral_8_7b_en": {
5
5
  "metadata": {
6
6
  "description": (
7
- "32-layer Mixtral MoE model with 7 billion",
8
- "active parameters and 8 experts per MoE layer.",
7
+ "32-layer Mixtral MoE model with 7 billion"
8
+ "active parameters and 8 experts per MoE layer."
9
9
  ),
10
10
  "params": 46702792704,
11
11
  "path": "mixtral",
@@ -15,8 +15,8 @@ backbone_presets = {
15
15
  "mixtral_8_instruct_7b_en": {
16
16
  "metadata": {
17
17
  "description": (
18
- "Instruction fine-tuned 32-layer Mixtral MoE model",
19
- "with 7 billion active parameters and 8 experts per MoE layer.",
18
+ "Instruction fine-tuned 32-layer Mixtral MoE model"
19
+ "with 7 billion active parameters and 8 experts per MoE layer."
20
20
  ),
21
21
  "params": 46702792704,
22
22
  "path": "mixtral",
@@ -28,8 +28,8 @@ backbone_presets = {
28
28
  "qwen2.5_instruct_0.5b_en": {
29
29
  "metadata": {
30
30
  "description": (
31
- "Instruction fine-tuned 24-layer Qwen model with 0.5 ",
32
- "billion parameters.",
31
+ "Instruction fine-tuned 24-layer Qwen model with 0.5 "
32
+ "billion parameters."
33
33
  ),
34
34
  "params": 494032768,
35
35
  "path": "qwen",
@@ -39,8 +39,8 @@ backbone_presets = {
39
39
  "qwen2.5_instruct_32b_en": {
40
40
  "metadata": {
41
41
  "description": (
42
- "Instruction fine-tuned 64-layer Qwen model with 32 ",
43
- "billion parameters.",
42
+ "Instruction fine-tuned 64-layer Qwen model with 32 "
43
+ "billion parameters."
44
44
  ),
45
45
  "params": 32763876352,
46
46
  "path": "qwen",
@@ -50,8 +50,8 @@ backbone_presets = {
50
50
  "qwen2.5_instruct_72b_en": {
51
51
  "metadata": {
52
52
  "description": (
53
- "Instruction fine-tuned 80-layer Qwen model with 72 ",
54
- "billion parameters.",
53
+ "Instruction fine-tuned 80-layer Qwen model with 72 "
54
+ "billion parameters."
55
55
  ),
56
56
  "params": 72706203648,
57
57
  "path": "qwen",
@@ -0,0 +1,369 @@
1
+ import math
2
+
3
+ import keras
4
+ from keras import ops
5
+
6
+ from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
+ from keras_hub.src.models.qwen3.qwen3_layernorm import Qwen3LayerNorm
8
+ from keras_hub.src.utils.keras_utils import clone_initializer
9
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
10
+
11
+
12
+ class Qwen3Attention(keras.layers.Layer):
13
+ """A multi-head attention layer for Qwen3 models
14
+
15
+ This attention implementation supports grouped-query attention (GQA) where
16
+ the number of key-value heads can be less than the number of query heads.
17
+
18
+ Args:
19
+ num_query_heads: Number of query heads.
20
+ num_key_value_heads: Number of key/value heads (for GQA).
21
+ rope_max_wavelength: Maximum wavelength for RoPE (Rotary Position
22
+ Embedding).
23
+ rope_scaling_factor: Scaling factor for RoPE, used for extending
24
+ context length.
25
+ kernel_initializer: Initializer for the kernel weights.
26
+ dropout: Dropout rate for attention weights.
27
+ sliding_window_size: Size of the sliding window for attention.
28
+ **kwargs: Additional keyword arguments to pass to the Layer.
29
+ """
30
+
31
+ def __init__(
32
+ self,
33
+ num_query_heads,
34
+ num_key_value_heads,
35
+ head_dim,
36
+ rope_max_wavelength=10000,
37
+ rope_scaling_factor=1,
38
+ kernel_initializer="glorot_uniform",
39
+ dropout=0.0,
40
+ layer_norm_epsilon=1e-5,
41
+ sliding_window_size=None,
42
+ **kwargs,
43
+ ):
44
+ super().__init__(
45
+ **kwargs,
46
+ )
47
+ self.num_query_heads = num_query_heads
48
+ self.num_key_value_heads = num_key_value_heads
49
+ self.head_dim = head_dim
50
+ self.dropout = dropout
51
+
52
+ self.layer_norm_epsilon = layer_norm_epsilon
53
+
54
+ self.num_key_value_groups = num_query_heads // num_key_value_heads
55
+ self.rope_max_wavelength = rope_max_wavelength
56
+
57
+ self.kernel_initializer = keras.initializers.get(
58
+ clone_initializer(kernel_initializer)
59
+ )
60
+
61
+ self.rope_scaling_factor = rope_scaling_factor
62
+ self.sliding_window_size = sliding_window_size
63
+
64
+ def build(self, inputs_shape):
65
+ # Einsum variables:
66
+ # b = batch size
67
+ # q = query length
68
+ # k = key/value length
69
+ # m = model dim
70
+ # u = num query heads
71
+ # v = num key/value heads
72
+ # h = head dim
73
+ hidden_dim = inputs_shape[-1]
74
+ if not self.head_dim:
75
+ self.head_dim = hidden_dim // self.num_query_heads
76
+
77
+ self._inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
78
+ self._query_dense = keras.layers.EinsumDense(
79
+ equation="bqm,muh->bquh",
80
+ output_shape=(None, self.num_query_heads, self.head_dim),
81
+ kernel_initializer=self.kernel_initializer,
82
+ dtype=self.dtype_policy,
83
+ name="query",
84
+ )
85
+ self._query_dense.build(inputs_shape)
86
+
87
+ self._query_dense_layer_norm = Qwen3LayerNorm(
88
+ epsilon=self.layer_norm_epsilon,
89
+ dtype=self.dtype_policy,
90
+ head_dim=self.head_dim,
91
+ name="query_dense_layernorm",
92
+ )
93
+ self._query_dense_layer_norm.build(inputs_shape)
94
+
95
+ self._key_dense = keras.layers.EinsumDense(
96
+ equation="bkm,mvh->bkvh",
97
+ output_shape=(
98
+ None,
99
+ self.num_key_value_heads,
100
+ self.head_dim,
101
+ ),
102
+ kernel_initializer=self.kernel_initializer,
103
+ dtype=self.dtype_policy,
104
+ name="key",
105
+ )
106
+ self._key_dense.build(inputs_shape)
107
+
108
+ self._key_dense_layer_norm = Qwen3LayerNorm(
109
+ epsilon=self.layer_norm_epsilon,
110
+ dtype=self.dtype_policy,
111
+ head_dim=self.head_dim,
112
+ name="key_dense_layernorm",
113
+ )
114
+ self._key_dense_layer_norm.build(inputs_shape)
115
+
116
+ self._value_dense = keras.layers.EinsumDense(
117
+ equation="bkm,mvh->bkvh",
118
+ output_shape=(
119
+ None,
120
+ self.num_key_value_heads,
121
+ self.head_dim,
122
+ ),
123
+ kernel_initializer=self.kernel_initializer,
124
+ dtype=self.dtype_policy,
125
+ name="value",
126
+ )
127
+ self._value_dense.build(inputs_shape)
128
+
129
+ self._softmax = keras.layers.Softmax(
130
+ axis=-1,
131
+ dtype="float32",
132
+ name="attention_softmax",
133
+ )
134
+
135
+ self._dropout_layer = keras.layers.Dropout(
136
+ rate=self.dropout,
137
+ dtype=self.dtype_policy,
138
+ )
139
+
140
+ self._output_dense = keras.layers.EinsumDense(
141
+ equation="bquh,uhm->bqm",
142
+ output_shape=(None, hidden_dim),
143
+ kernel_initializer=self.kernel_initializer,
144
+ dtype=self.dtype_policy,
145
+ name="attention_output",
146
+ )
147
+ self._output_dense.build(
148
+ (None, None, self.num_query_heads, self.head_dim)
149
+ )
150
+
151
+ self.rotary_embedding_layer = RotaryEmbedding(
152
+ max_wavelength=self.rope_max_wavelength,
153
+ scaling_factor=self.rope_scaling_factor,
154
+ dtype=self.dtype_policy,
155
+ )
156
+
157
+ self._dot_product_equation = "bquh,bkuh->buqk"
158
+ self._combine_equation = "buqk,bkuh->bquh"
159
+
160
+ self.built = True
161
+
162
+ def call(
163
+ self,
164
+ hidden_states,
165
+ attention_mask=None,
166
+ cache=None,
167
+ cache_update_index=None,
168
+ training=None,
169
+ ):
170
+ """Applies attention mechanism to the input hidden states.
171
+
172
+ Args:
173
+ hidden_states: Input tensor of shape [batch_size, seq_length,
174
+ hidden_size].
175
+ attention_mask: Mask tensor of shape [batch_size, seq_length,
176
+ seq_length].
177
+ cache: Optional cached key and value tensors.
178
+ cache_update_index: Index at which to update the cache.
179
+ training: Boolean indicating whether in training mode.
180
+
181
+ Returns:
182
+ attention_output: Output tensor after applying attention.
183
+ cache: Updated cache tensors (if cache is provided).
184
+ """
185
+ start_index = (
186
+ cache_update_index if cache_update_index is not None else 0
187
+ )
188
+
189
+ query = self._query_dense(hidden_states)
190
+ query = self._query_dense_layer_norm(query)
191
+
192
+ # Compute RoPE for queries
193
+ query = self.rotary_embedding_layer(query, start_index=start_index)
194
+
195
+ def _compute_key_value(x):
196
+ key = self._key_dense(x)
197
+ key = self._key_dense_layer_norm(key)
198
+ key = self.rotary_embedding_layer(key, start_index=start_index)
199
+
200
+ value = self._value_dense(x)
201
+
202
+ return key, value
203
+
204
+ if cache is not None:
205
+ key_cache = cache[:, 0, ...]
206
+ value_cache = cache[:, 1, ...]
207
+ if cache_update_index is None:
208
+ key = key_cache
209
+ value = value_cache
210
+ else:
211
+ key_update, value_update = _compute_key_value(hidden_states)
212
+ start = [0, cache_update_index, 0, 0]
213
+ key = ops.slice_update(key_cache, start, key_update)
214
+ value = ops.slice_update(value_cache, start, value_update)
215
+ cache = ops.stack((key, value), axis=1)
216
+ else:
217
+ if cache_update_index is not None:
218
+ raise ValueError(
219
+ "`cache_update_index` should not be set if `cache` is "
220
+ f"`None`. Received: cache={cache}, "
221
+ f"cache_update_index={cache_update_index}"
222
+ )
223
+ key, value = _compute_key_value(hidden_states)
224
+
225
+ # [batch_shape, seq_len, num_key_value_heads, head_dim]
226
+ # -> [batch_shape, seq_len, num_heads, head_dim]
227
+ key = ops.repeat(key, repeats=self.num_key_value_groups, axis=2)
228
+ value = ops.repeat(value, repeats=self.num_key_value_groups, axis=2)
229
+
230
+ attention_output = self._compute_attention(
231
+ query,
232
+ key,
233
+ value,
234
+ attention_mask,
235
+ cache_update_index=cache_update_index,
236
+ )
237
+
238
+ attention_output = self._dropout_layer(
239
+ attention_output, training=training
240
+ )
241
+
242
+ attention_output = self._output_dense(attention_output)
243
+
244
+ if cache is not None:
245
+ return attention_output, cache
246
+ return attention_output
247
+
248
+ def _masked_softmax(self, attention_scores, attention_mask=None):
249
+ """Applies softmax with optional masking.
250
+
251
+ Args:
252
+ attention_scores: Attention score tensor.
253
+ attention_mask: Optional mask tensor.
254
+
255
+ Returns:
256
+ Masked softmax attention weights.
257
+ """
258
+ if attention_mask is not None:
259
+ return self._softmax(
260
+ attention_scores, attention_mask[:, None, :, :]
261
+ )
262
+ return self._softmax(attention_scores)
263
+
264
+ def _compute_attention(
265
+ self, query, key, value, attention_mask=None, cache_update_index=None
266
+ ):
267
+ """Computes attention using query, key, and value tensors.
268
+
269
+ Uses Flash Attention when available for better performance.
270
+
271
+ Args:
272
+ query: Query tensor.
273
+ key: Key tensor.
274
+ value: Value tensor.
275
+ attention_mask: Optional mask tensor.
276
+ cache_update_index: Index for sliding window computation.
277
+
278
+ Returns:
279
+ attention_output: Output tensor after applying attention.
280
+ """
281
+ if fused_attention_op_available():
282
+ # Use `dot_product_attention` with Flash Attention support if
283
+ # available.
284
+ if attention_mask is not None:
285
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
286
+ attention_mask = ops.cast(attention_mask, dtype="bool")
287
+ attention_output = ops.dot_product_attention(
288
+ query,
289
+ key,
290
+ value,
291
+ mask=attention_mask,
292
+ scale=self._inv_norm_factor,
293
+ )
294
+ return attention_output
295
+
296
+ attention_scores = ops.einsum(self._dot_product_equation, query, key)
297
+
298
+ attention_scores = ops.multiply(
299
+ attention_scores,
300
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
301
+ )
302
+ if not self.sliding_window_size:
303
+ attention_mask = self._mask_sliding_window(
304
+ attention_mask,
305
+ cache_update_index=cache_update_index
306
+ if cache_update_index
307
+ else 0,
308
+ )
309
+ attention_scores = self._masked_softmax(
310
+ attention_scores, attention_mask
311
+ )
312
+ attention_scores = ops.cast(attention_scores, self.compute_dtype)
313
+ attention_output = ops.einsum(
314
+ self._combine_equation, attention_scores, value
315
+ )
316
+
317
+ return attention_output
318
+
319
+ def _mask_sliding_window(
320
+ self,
321
+ attention_mask,
322
+ cache_update_index=0,
323
+ ):
324
+ """Creates and combines a sliding window mask with the attention mask.
325
+
326
+ Args:
327
+ attention_mask: Original attention mask.
328
+ cache_update_index: Starting index for the sliding window.
329
+
330
+ Returns:
331
+ Combined attention mask with sliding window constraints.
332
+ """
333
+ _, query_len, key_len = ops.shape(attention_mask)
334
+ # Compute the sliding window for square attention.
335
+ all_ones = ops.ones((key_len, key_len), "bool")
336
+ if keras.config.backend() == "tensorflow":
337
+ # TODO: trui/tril has issues with dynamic shape on the tensorflow
338
+ # backend. We should fix, but use `band_part` for now.
339
+ import tensorflow as tf
340
+
341
+ band_size = ops.minimum(key_len, self.sliding_window_size - 1)
342
+ band_size = ops.cast(band_size, "int32")
343
+ sliding_mask = tf.linalg.band_part(all_ones, band_size, band_size)
344
+ else:
345
+ sliding_mask = ops.triu(
346
+ all_ones, -1 * self.sliding_window_size + 1
347
+ ) * ops.tril(all_ones, self.sliding_window_size - 1)
348
+ # Slice the window for short queries during generation.
349
+ start = (cache_update_index, 0)
350
+ sliding_mask = ops.slice(sliding_mask, start, (query_len, key_len))
351
+ sliding_mask = ops.expand_dims(sliding_mask, 0)
352
+ return ops.logical_and(attention_mask, ops.cast(sliding_mask, "bool"))
353
+
354
+ def get_config(self):
355
+ config = super().get_config()
356
+ config.update(
357
+ {
358
+ "num_query_heads": self.num_query_heads,
359
+ "num_key_value_heads": self.num_key_value_heads,
360
+ "rope_max_wavelength": self.rope_max_wavelength,
361
+ "rope_scaling_factor": self.rope_scaling_factor,
362
+ "kernel_initializer": keras.initializers.serialize(
363
+ self.kernel_initializer
364
+ ),
365
+ "dropout": self.dropout,
366
+ "sliding_window_size": self.sliding_window_size,
367
+ }
368
+ )
369
+ return config
@@ -0,0 +1,191 @@
1
+ import keras
2
+ from keras import ops
3
+
4
+ from keras_hub.src.api_export import keras_hub_export
5
+ from keras_hub.src.layers.modeling.reversible_embedding import (
6
+ ReversibleEmbedding,
7
+ )
8
+ from keras_hub.src.models.backbone import Backbone
9
+ from keras_hub.src.models.qwen3.qwen3_decoder import Qwen3TransformerDecoder
10
+ from keras_hub.src.models.qwen3.qwen3_layernorm import Qwen3LayerNorm
11
+
12
+
13
+ def _qwen3_kernel_initializer(stddev=0.02):
14
+ return keras.initializers.RandomNormal(stddev=stddev)
15
+
16
+
17
+ @keras_hub_export("keras_hub.models.Qwen3Backbone")
18
+ class Qwen3Backbone(Backbone):
19
+ """The Qwen3 Transformer core architecture with hyperparameters.
20
+
21
+ This network implements a Transformer-based decoder network,
22
+ Qwen3, as described in the Qwen3 model architecture.
23
+ It includes the embedding lookups and transformer layers.
24
+
25
+ The default constructor gives a fully customizable, randomly initialized
26
+ Qwen3 model with any number of layers, heads, and embedding
27
+ dimensions. To load preset architectures and weights, use the `from_preset`
28
+ constructor.
29
+
30
+ Args:
31
+ vocabulary_size (int): The size of the token vocabulary.
32
+ num_layers (int): The number of transformer layers.
33
+ num_query_heads (int): The number of query attention heads for
34
+ each transformer.
35
+ hidden_dim (int): The size of the transformer encoding and pooling
36
+ layers.
37
+ intermediate_dim (int): The output dimension of the first Dense layer in
38
+ a three-layer feedforward network for each transformer.
39
+ num_key_value_heads (int): The number of key and value attention heads
40
+ for each transformer.
41
+ rope_max_wavelength (int, optional): The maximum angular wavelength of
42
+ the sine/cosine curves, for rotary embeddings. Defaults to `10000`.
43
+ rope_scaling_factor (float, optional): The scaling factor for
44
+ calculation of rotary embedding. Defaults to `1.0`.
45
+ layer_norm_epsilon (float, optional): Epsilon for the layer
46
+ normalization layers in the transformer decoder. Defaults to `1e-6`.
47
+ dropout (float, optional): Dropout rate for attention and hidden layers.
48
+ Defaults to `0`.
49
+ dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
50
+ for model computations and weights. Note that some computations,
51
+ such as softmax and layer normalization, will always be done at
52
+ float32 precision regardless of dtype.
53
+ tie_word_embeddings (bool, optional): Whether to tie input and output
54
+ embeddings. Defaults to `True`.
55
+ sliding_window_size (int, optional): Size of the sliding window for
56
+ attention when enabled. Defaults to `32768`.
57
+
58
+ Examples:
59
+
60
+ ```python
61
+ input_data = {
62
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
63
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
64
+ }
65
+
66
+ # Pretrained Qwen3 decoder.
67
+ model = keras_hub.models.Qwen3Backbone.from_preset("qwen32.5_0.5b_en")
68
+ model(input_data)
69
+
70
+ # Randomly initialized Qwen3 decoder with custom config.
71
+ model = keras_hub.models.Qwen3Backbone(
72
+ vocabulary_size=10,
73
+ hidden_dim=512,
74
+ num_layers=2,
75
+ num_query_heads=32,
76
+ num_key_value_heads=8,
77
+ intermediate_dim=1024,
78
+ layer_norm_epsilon=1e-6,
79
+ dtype="float32"
80
+ )
81
+ model(input_data)
82
+ ```
83
+ """
84
+
85
+ def __init__(
86
+ self,
87
+ vocabulary_size,
88
+ num_layers,
89
+ num_query_heads,
90
+ num_key_value_heads,
91
+ head_dim,
92
+ hidden_dim,
93
+ intermediate_dim,
94
+ rope_max_wavelength=10000,
95
+ rope_scaling_factor=1.0,
96
+ layer_norm_epsilon=1e-6,
97
+ dropout=0.0,
98
+ tie_word_embeddings=True,
99
+ sliding_window_size=32768,
100
+ dtype=None,
101
+ **kwargs,
102
+ ):
103
+ # === Layers ===
104
+ self.token_embedding = ReversibleEmbedding(
105
+ input_dim=vocabulary_size,
106
+ output_dim=hidden_dim,
107
+ tie_weights=tie_word_embeddings,
108
+ embeddings_initializer=_qwen3_kernel_initializer(stddev=0.01),
109
+ dtype=dtype,
110
+ name="token_embedding",
111
+ )
112
+ self.transformer_layers = []
113
+ for i in range(num_layers):
114
+ layer = Qwen3TransformerDecoder(
115
+ intermediate_dim=intermediate_dim,
116
+ head_dim=head_dim,
117
+ num_query_heads=num_query_heads,
118
+ num_key_value_heads=num_key_value_heads,
119
+ rope_max_wavelength=rope_max_wavelength,
120
+ rope_scaling_factor=rope_scaling_factor,
121
+ layer_norm_epsilon=layer_norm_epsilon,
122
+ activation=ops.silu,
123
+ kernel_initializer=_qwen3_kernel_initializer(stddev=0.02),
124
+ dropout=dropout,
125
+ sliding_window_size=sliding_window_size,
126
+ dtype=dtype,
127
+ name=f"transformer_layer_{i}",
128
+ )
129
+ self.transformer_layers.append(layer)
130
+ self.layer_norm = Qwen3LayerNorm(
131
+ epsilon=layer_norm_epsilon,
132
+ dtype=dtype,
133
+ name="sequence_output_layernorm",
134
+ )
135
+
136
+ # === Functional Model ===
137
+ token_id_input = keras.Input(
138
+ shape=(None,), dtype="int32", name="token_ids"
139
+ )
140
+ padding_mask_input = keras.Input(
141
+ shape=(None,), dtype="int32", name="padding_mask"
142
+ )
143
+ x = self.token_embedding(token_id_input)
144
+ for transformer_layer in self.transformer_layers:
145
+ x = transformer_layer(x, decoder_padding_mask=padding_mask_input)
146
+ sequence_output = self.layer_norm(x)
147
+ super().__init__(
148
+ inputs={
149
+ "token_ids": token_id_input,
150
+ "padding_mask": padding_mask_input,
151
+ },
152
+ outputs=sequence_output,
153
+ dtype=dtype,
154
+ **kwargs,
155
+ )
156
+
157
+ # === Config ===
158
+ self.vocabulary_size = vocabulary_size
159
+ self.num_layers = num_layers
160
+ self.num_query_heads = num_query_heads
161
+ self.hidden_dim = hidden_dim
162
+ self.head_dim = head_dim
163
+ self.intermediate_dim = intermediate_dim
164
+ self.rope_max_wavelength = rope_max_wavelength
165
+ self.num_key_value_heads = num_key_value_heads
166
+ self.rope_scaling_factor = rope_scaling_factor
167
+ self.layer_norm_epsilon = layer_norm_epsilon
168
+ self.dropout = dropout
169
+ self.tie_word_embeddings = tie_word_embeddings
170
+ self.sliding_window_size = sliding_window_size
171
+
172
+ def get_config(self):
173
+ config = super().get_config()
174
+ config.update(
175
+ {
176
+ "vocabulary_size": self.vocabulary_size,
177
+ "num_layers": self.num_layers,
178
+ "num_query_heads": self.num_query_heads,
179
+ "hidden_dim": self.hidden_dim,
180
+ "head_dim": self.head_dim,
181
+ "intermediate_dim": self.intermediate_dim,
182
+ "rope_max_wavelength": self.rope_max_wavelength,
183
+ "rope_scaling_factor": self.rope_scaling_factor,
184
+ "num_key_value_heads": self.num_key_value_heads,
185
+ "layer_norm_epsilon": self.layer_norm_epsilon,
186
+ "dropout": self.dropout,
187
+ "tie_word_embeddings": self.tie_word_embeddings,
188
+ "sliding_window_size": self.sliding_window_size,
189
+ }
190
+ )
191
+ return config
@@ -0,0 +1,10 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
3
+ from keras_hub.src.models.qwen3.qwen3_backbone import Qwen3Backbone
4
+ from keras_hub.src.models.qwen3.qwen3_tokenizer import Qwen3Tokenizer
5
+
6
+
7
+ @keras_hub_export("keras_hub.models.Qwen3CausalLMPreprocessor")
8
+ class Qwen3CausalLMPreprocessor(CausalLMPreprocessor):
9
+ backbone_cls = Qwen3Backbone
10
+ tokenizer_cls = Qwen3Tokenizer