keras-hub-nightly 0.21.0.dev202505280410__tar.gz → 0.22.0.dev202505290412__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (514) hide show
  1. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vit/vit_backbone.py +31 -11
  3. keras_hub_nightly-0.22.0.dev202505290412/keras_hub/src/models/vit/vit_image_converter.py +8 -0
  4. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vit/vit_layers.py +33 -18
  5. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vit/vit_presets.py +11 -11
  6. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/version.py +1 -1
  7. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  8. keras_hub_nightly-0.21.0.dev202505280410/keras_hub/src/models/vit/vit_image_converter.py +0 -78
  9. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/README.md +0 -0
  10. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/api/__init__.py +0 -0
  11. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/api/layers/__init__.py +0 -0
  12. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/api/metrics/__init__.py +0 -0
  13. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/api/models/__init__.py +0 -0
  14. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/api/samplers/__init__.py +0 -0
  15. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/api/tokenizers/__init__.py +0 -0
  16. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/api/utils/__init__.py +0 -0
  17. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/__init__.py +0 -0
  18. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/api_export.py +0 -0
  19. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/__init__.py +0 -0
  20. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/__init__.py +0 -0
  21. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  22. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  23. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  24. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  25. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  26. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  27. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  28. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  29. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  30. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  31. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  32. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  33. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  34. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  35. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  36. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  37. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  38. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  39. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  40. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  41. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  42. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  43. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  44. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  45. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  46. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/metrics/__init__.py +0 -0
  47. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/metrics/bleu.py +0 -0
  48. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/metrics/edit_distance.py +0 -0
  49. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/metrics/perplexity.py +0 -0
  50. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/metrics/rouge_base.py +0 -0
  51. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/metrics/rouge_l.py +0 -0
  52. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/metrics/rouge_n.py +0 -0
  53. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/__init__.py +0 -0
  54. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/albert/__init__.py +0 -0
  55. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  56. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  57. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  58. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/albert/albert_presets.py +0 -0
  59. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  60. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  61. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  62. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/audio_to_text.py +0 -0
  63. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/audio_to_text_preprocessor.py +0 -0
  64. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/backbone.py +0 -0
  65. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bart/__init__.py +0 -0
  66. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  67. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bart/bart_presets.py +0 -0
  68. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  69. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  70. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  71. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/basnet/__init__.py +0 -0
  72. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/basnet/basnet.py +0 -0
  73. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  74. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  75. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  76. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  77. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bert/__init__.py +0 -0
  78. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  79. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  80. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  81. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bert/bert_presets.py +0 -0
  82. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  83. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  84. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  85. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bloom/__init__.py +0 -0
  86. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  87. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  88. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  89. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  90. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  91. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  92. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  93. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/causal_lm.py +0 -0
  94. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  95. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/__init__.py +0 -0
  96. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  97. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  98. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  99. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  100. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/clip_presets.py +0 -0
  101. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  102. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  103. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  104. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  105. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/cspnet/__init__.py +0 -0
  106. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  107. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  108. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  109. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  110. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  111. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  112. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  113. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  114. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  115. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  116. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  117. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  118. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  119. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  120. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  121. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  122. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  123. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  124. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  125. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  126. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  127. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  128. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  129. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/densenet/__init__.py +0 -0
  130. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  131. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  132. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  133. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  134. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  135. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  136. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  137. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  138. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  139. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  140. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  141. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  142. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  143. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  144. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/efficientnet/cba.py +0 -0
  145. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  146. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  147. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  149. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  150. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  151. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  152. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/electra/__init__.py +0 -0
  153. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  154. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/electra/electra_presets.py +0 -0
  155. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  156. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/f_net/__init__.py +0 -0
  157. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  158. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  159. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  160. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  161. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  162. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  163. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  164. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/falcon/__init__.py +0 -0
  165. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  166. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  167. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  168. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  169. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  170. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  171. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  172. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  173. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/flux/__init__.py +0 -0
  174. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/flux/flux_layers.py +0 -0
  175. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/flux/flux_maths.py +0 -0
  176. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/flux/flux_model.py +0 -0
  177. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/flux/flux_presets.py +0 -0
  178. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  179. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  180. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma/__init__.py +0 -0
  181. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  182. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  183. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  184. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  186. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  187. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  188. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  189. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/__init__.py +0 -0
  190. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  191. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  192. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  193. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  194. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  195. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  196. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  197. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  198. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  199. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  200. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  201. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt2/__init__.py +0 -0
  202. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  203. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  204. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  205. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  206. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  207. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  208. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  209. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  210. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  211. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  212. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  213. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  214. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  215. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/image_classifier.py +0 -0
  216. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  217. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/image_segmenter.py +0 -0
  218. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  219. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/image_to_image.py +0 -0
  220. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/inpaint.py +0 -0
  221. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/__init__.py +0 -0
  222. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/llama_attention.py +0 -0
  223. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  224. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  225. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  226. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  227. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  228. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/llama_presets.py +0 -0
  229. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  230. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  231. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama3/__init__.py +0 -0
  232. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  233. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  234. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  235. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  236. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  237. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/masked_lm.py +0 -0
  238. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  239. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mistral/__init__.py +0 -0
  240. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  241. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  242. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  243. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  244. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  245. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  246. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  247. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  248. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mit/__init__.py +0 -0
  249. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  250. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  251. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  252. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  253. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mit/mit_layers.py +0 -0
  254. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mit/mit_presets.py +0 -0
  255. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mixtral/__init__.py +0 -0
  256. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  257. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  258. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  259. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  260. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  261. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  262. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mixtral/mixtral_presets.py +0 -0
  263. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  264. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  265. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  266. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  267. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  268. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  269. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  270. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/mobilenet/util.py +0 -0
  271. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/__init__.py +0 -0
  272. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_audio_converter.py +0 -0
  273. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_audio_to_text.py +0 -0
  274. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +0 -0
  275. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_backbone.py +0 -0
  276. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_decoder.py +0 -0
  277. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_encoder.py +0 -0
  278. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_layers.py +0 -0
  279. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_multi_head_attention.py +0 -0
  280. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_presets.py +0 -0
  281. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/moonshine/moonshine_tokenizer.py +0 -0
  282. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/object_detector.py +0 -0
  283. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  284. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/opt/__init__.py +0 -0
  285. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  286. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  287. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  288. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/opt/opt_presets.py +0 -0
  289. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  290. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  291. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  292. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  293. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  294. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  295. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  296. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  297. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  298. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  299. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/__init__.py +0 -0
  300. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  301. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  302. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  303. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  304. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  305. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  306. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  307. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  308. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  309. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/preprocessor.py +0 -0
  310. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen/__init__.py +0 -0
  311. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  312. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  313. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  314. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  315. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  316. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  317. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  318. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  319. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  320. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  321. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  322. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  323. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  324. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  325. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  326. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen_moe/qwen_moe_presets.py +0 -0
  327. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  328. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/resnet/__init__.py +0 -0
  329. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  330. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  331. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  332. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  333. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  334. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/retinanet/__init__.py +0 -0
  335. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  336. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  337. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  338. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  339. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  340. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  341. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  342. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  343. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roberta/__init__.py +0 -0
  344. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  345. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  346. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  347. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  348. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  349. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  350. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  351. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
  352. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  353. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  354. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  355. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  356. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  357. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  358. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  359. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  360. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  361. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/__init__.py +0 -0
  362. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  363. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  364. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  365. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  366. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/sam_layers.py +0 -0
  367. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  368. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/sam_presets.py +0 -0
  369. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  370. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  371. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/segformer/__init__.py +0 -0
  372. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  373. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  374. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  375. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  376. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  377. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  378. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  379. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/__init__.py +0 -0
  380. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  381. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  382. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  383. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  384. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  385. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  386. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  387. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  388. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  389. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  390. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  391. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  392. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  393. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  394. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  395. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  396. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  397. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  398. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  399. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/t5/__init__.py +0 -0
  400. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  401. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  402. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  403. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  404. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/t5/t5_presets.py +0 -0
  405. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  406. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  407. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/task.py +0 -0
  408. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/text_classifier.py +0 -0
  409. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  410. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/text_to_image.py +0 -0
  411. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  412. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vae/__init__.py +0 -0
  413. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  414. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vae/vae_layers.py +0 -0
  415. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vgg/__init__.py +0 -0
  416. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  417. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  418. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  419. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  420. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  421. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vit/__init__.py +0 -0
  422. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  423. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  424. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vit_det/__init__.py +0 -0
  425. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  426. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  427. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/whisper/__init__.py +0 -0
  428. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  429. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  430. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  431. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  432. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  433. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  434. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  435. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xception/__init__.py +0 -0
  436. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  437. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  438. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  439. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  440. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xception/xception_presets.py +0 -0
  441. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  442. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  443. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  444. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  445. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  446. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  447. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  448. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  449. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlnet/__init__.py +0 -0
  450. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  451. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  452. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  453. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  454. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/samplers/__init__.py +0 -0
  455. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/samplers/beam_sampler.py +0 -0
  456. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  457. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  458. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/samplers/random_sampler.py +0 -0
  459. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/samplers/sampler.py +0 -0
  460. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/samplers/serialization.py +0 -0
  461. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  462. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  463. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tests/__init__.py +0 -0
  464. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  465. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tests/test_case.py +0 -0
  466. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tokenizers/__init__.py +0 -0
  467. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  468. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  469. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  470. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  471. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  472. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  473. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  474. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  475. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/__init__.py +0 -0
  476. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/coco/__init__.py +0 -0
  477. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  478. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  479. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  480. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/keras_utils.py +0 -0
  481. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/pipeline_model.py +0 -0
  482. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/preset_utils.py +0 -0
  483. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/python_utils.py +0 -0
  484. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/tensor_utils.py +0 -0
  485. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/timm/__init__.py +0 -0
  486. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  487. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  488. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  489. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  490. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  491. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  492. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  493. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/__init__.py +0 -0
  494. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  495. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  496. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  497. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  498. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  499. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  500. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  501. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  502. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_mixtral.py +0 -0
  503. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  504. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  505. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_qwen_moe.py +0 -0
  506. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  507. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  508. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  509. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub_nightly.egg-info/SOURCES.txt +0 -0
  510. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  511. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub_nightly.egg-info/requires.txt +0 -0
  512. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  513. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/pyproject.toml +0 -0
  514. {keras_hub_nightly-0.21.0.dev202505280410 → keras_hub_nightly-0.22.0.dev202505290412}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.21.0.dev202505280410
3
+ Version: 0.22.0.dev202505290412
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -18,10 +18,10 @@ class ViTBackbone(Backbone):
18
18
 
19
19
  Args:
20
20
  image_shape: A tuple or list of 3 integers representing the shape of the
21
- input image `(height, width, channels)`, `height` and `width` must
22
- be equal.
23
- patch_size: int. The size of each image patch, the input image will be
24
- divided into patches of shape `(patch_size, patch_size)`.
21
+ input image `(height, width, channels)`.
22
+ patch_size: int or (int, int). The size of each image patch, the input
23
+ image will be divided into patches of shape
24
+ `(patch_size_h, patch_size_w)`.
25
25
  num_layers: int. The number of transformer encoder layers.
26
26
  num_heads: int. specifying the number of attention heads in each
27
27
  Transformer encoder layer.
@@ -37,6 +37,10 @@ class ViTBackbone(Backbone):
37
37
  use_mha_bias: bool. Whether to use bias in the multi-head
38
38
  attention layers.
39
39
  use_mlp_bias: bool. Whether to use bias in the MLP layers.
40
+ use_class_token: bool. Whether to use class token to be part of
41
+ patch embedding. Defaults to `True`.
42
+ use_patch_bias: bool. Whether to use bias in Conv2d of patch embedding
43
+ layer. Defaults to `True`.
40
44
  data_format: str. `"channels_last"` or `"channels_first"`, specifying
41
45
  the data format for the input image. If `None`, defaults to
42
46
  `"channels_last"`.
@@ -58,6 +62,8 @@ class ViTBackbone(Backbone):
58
62
  layer_norm_epsilon=1e-6,
59
63
  use_mha_bias=True,
60
64
  use_mlp_bias=True,
65
+ use_class_token=True,
66
+ use_patch_bias=True,
61
67
  data_format=None,
62
68
  dtype=None,
63
69
  **kwargs,
@@ -74,24 +80,34 @@ class ViTBackbone(Backbone):
74
80
  f"at index {h_axis} (height) or {w_axis} (width). "
75
81
  f"Image shape: {image_shape}"
76
82
  )
77
- if image_shape[h_axis] != image_shape[w_axis]:
83
+
84
+ if isinstance(patch_size, int):
85
+ patch_size = (patch_size, patch_size)
86
+
87
+ if image_shape[h_axis] % patch_size[0] != 0:
88
+ raise ValueError(
89
+ f"Input height {image_shape[h_axis]} should be divisible by "
90
+ f"patch size {patch_size[0]}."
91
+ )
92
+
93
+ if image_shape[w_axis] % patch_size[1] != 0:
78
94
  raise ValueError(
79
- f"Image height and width must be equal. Found height: "
80
- f"{image_shape[h_axis]}, width: {image_shape[w_axis]} at "
81
- f"indices {h_axis} and {w_axis} respectively. Image shape: "
82
- f"{image_shape}"
95
+ f"Input width {image_shape[h_axis]} should be divisible by "
96
+ f"patch size {patch_size[1]}."
83
97
  )
84
98
 
85
99
  num_channels = image_shape[channels_axis]
86
100
 
87
101
  # === Functional Model ===
88
- inputs = keras.layers.Input(shape=image_shape)
102
+ inputs = keras.layers.Input(shape=image_shape, name="images")
89
103
 
90
104
  x = ViTPatchingAndEmbedding(
91
- image_size=image_shape[h_axis],
105
+ image_size=(image_shape[h_axis], image_shape[w_axis]),
92
106
  patch_size=patch_size,
93
107
  hidden_dim=hidden_dim,
94
108
  num_channels=num_channels,
109
+ use_class_token=use_class_token,
110
+ use_patch_bias=use_patch_bias,
95
111
  data_format=data_format,
96
112
  dtype=dtype,
97
113
  name="vit_patching_and_embedding",
@@ -130,6 +146,8 @@ class ViTBackbone(Backbone):
130
146
  self.layer_norm_epsilon = layer_norm_epsilon
131
147
  self.use_mha_bias = use_mha_bias
132
148
  self.use_mlp_bias = use_mlp_bias
149
+ self.use_class_token = use_class_token
150
+ self.use_patch_bias = use_patch_bias
133
151
  self.data_format = data_format
134
152
 
135
153
  def get_config(self):
@@ -147,6 +165,8 @@ class ViTBackbone(Backbone):
147
165
  "layer_norm_epsilon": self.layer_norm_epsilon,
148
166
  "use_mha_bias": self.use_mha_bias,
149
167
  "use_mlp_bias": self.use_mlp_bias,
168
+ "use_class_token": self.use_class_token,
169
+ "use_patch_bias": self.use_patch_bias,
150
170
  }
151
171
  )
152
172
  return config
@@ -0,0 +1,8 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
+ from keras_hub.src.models.vit.vit_backbone import ViTBackbone
4
+
5
+
6
+ @keras_hub_export("keras_hub.layers.ViTImageConverter")
7
+ class ViTImageConverter(ImageConverter):
8
+ backbone_cls = ViTBackbone
@@ -75,12 +75,13 @@ class ViTPatchingAndEmbedding(keras.layers.Layer):
75
75
  """Patches the image and embeds the patches.
76
76
 
77
77
  Args:
78
- image_size: int. Size of the input image (height or width).
79
- Assumed to be square.
80
- patch_size: int. Size of each image patch.
78
+ image_size: (int, int). Size of the input image.
79
+ patch_size: (int, int). Size of each image patch.
81
80
  hidden_dim: int. Dimensionality of the patch embeddings.
82
81
  num_channels: int. Number of channels in the input image. Defaults to
83
82
  `3`.
83
+ use_class_token: bool. Whether to use class token to be part of
84
+ patch embedding. Defaults to `True`.
84
85
  data_format: str. `"channels_last"` or `"channels_first"`. Defaults to
85
86
  `None` (which uses `"channels_last"`).
86
87
  **kwargs: Additional keyword arguments passed to `keras.layers.Layer`
@@ -92,12 +93,15 @@ class ViTPatchingAndEmbedding(keras.layers.Layer):
92
93
  patch_size,
93
94
  hidden_dim,
94
95
  num_channels=3,
96
+ use_class_token=True,
97
+ use_patch_bias=True,
95
98
  data_format=None,
96
99
  **kwargs,
97
100
  ):
98
101
  super().__init__(**kwargs)
99
- num_patches = (image_size // patch_size) ** 2
100
- num_positions = num_patches + 1
102
+ grid_size = tuple([s // p for s, p in zip(image_size, patch_size)])
103
+ num_patches = grid_size[0] * grid_size[1]
104
+ num_positions = num_patches + 1 if use_class_token else num_patches
101
105
 
102
106
  # === Config ===
103
107
  self.image_size = image_size
@@ -106,19 +110,22 @@ class ViTPatchingAndEmbedding(keras.layers.Layer):
106
110
  self.num_channels = num_channels
107
111
  self.num_patches = num_patches
108
112
  self.num_positions = num_positions
113
+ self.use_class_token = use_class_token
114
+ self.use_patch_bias = use_patch_bias
109
115
  self.data_format = standardize_data_format(data_format)
110
116
 
111
117
  def build(self, input_shape):
112
- self.class_token = self.add_weight(
113
- shape=(
114
- 1,
115
- 1,
116
- self.hidden_dim,
117
- ),
118
- initializer="random_normal",
119
- dtype=self.variable_dtype,
120
- name="class_token",
121
- )
118
+ if self.use_class_token:
119
+ self.class_token = self.add_weight(
120
+ shape=(
121
+ 1,
122
+ 1,
123
+ self.hidden_dim,
124
+ ),
125
+ initializer="random_normal",
126
+ dtype=self.variable_dtype,
127
+ name="class_token",
128
+ )
122
129
  self.patch_embedding = keras.layers.Conv2D(
123
130
  filters=self.hidden_dim,
124
131
  kernel_size=self.patch_size,
@@ -127,6 +134,7 @@ class ViTPatchingAndEmbedding(keras.layers.Layer):
127
134
  activation=None,
128
135
  dtype=self.dtype_policy,
129
136
  data_format=self.data_format,
137
+ use_bias=self.use_patch_bias,
130
138
  name="patch_embedding",
131
139
  )
132
140
  self.patch_embedding.build(input_shape)
@@ -153,10 +161,16 @@ class ViTPatchingAndEmbedding(keras.layers.Layer):
153
161
  patch_embeddings = ops.reshape(
154
162
  patch_embeddings, [embeddings_shape[0], -1, embeddings_shape[-1]]
155
163
  )
156
- class_token = ops.tile(self.class_token, (embeddings_shape[0], 1, 1))
157
164
  position_embeddings = self.position_embedding(self.position_ids)
158
- embeddings = ops.concatenate([class_token, patch_embeddings], axis=1)
159
- return ops.add(embeddings, position_embeddings)
165
+
166
+ if self.use_class_token:
167
+ class_token = ops.tile(
168
+ self.class_token, (embeddings_shape[0], 1, 1)
169
+ )
170
+ patch_embeddings = ops.concatenate(
171
+ [class_token, patch_embeddings], axis=1
172
+ )
173
+ return ops.add(patch_embeddings, position_embeddings)
160
174
 
161
175
  def compute_output_shape(self, input_shape):
162
176
  return (
@@ -175,6 +189,7 @@ class ViTPatchingAndEmbedding(keras.layers.Layer):
175
189
  "num_channels": self.num_channels,
176
190
  "num_patches": self.num_patches,
177
191
  "num_positions": self.num_positions,
192
+ "use_class_token": self.use_class_token,
178
193
  }
179
194
  )
180
195
  return config
@@ -11,7 +11,7 @@ backbone_presets = {
11
11
  "params": 85798656,
12
12
  "path": "vit",
13
13
  },
14
- "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet/2",
14
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet/3",
15
15
  },
16
16
  "vit_base_patch16_384_imagenet": {
17
17
  "metadata": {
@@ -22,7 +22,7 @@ backbone_presets = {
22
22
  "params": 86090496,
23
23
  "path": "vit",
24
24
  },
25
- "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_384_imagenet/2",
25
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_384_imagenet/3",
26
26
  },
27
27
  "vit_large_patch16_224_imagenet": {
28
28
  "metadata": {
@@ -33,7 +33,7 @@ backbone_presets = {
33
33
  "params": 303301632,
34
34
  "path": "vit",
35
35
  },
36
- "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet/2",
36
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet/3",
37
37
  },
38
38
  "vit_large_patch16_384_imagenet": {
39
39
  "metadata": {
@@ -44,7 +44,7 @@ backbone_presets = {
44
44
  "params": 303690752,
45
45
  "path": "vit",
46
46
  },
47
- "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_384_imagenet/2",
47
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_384_imagenet/3",
48
48
  },
49
49
  "vit_base_patch32_384_imagenet": {
50
50
  "metadata": {
@@ -55,7 +55,7 @@ backbone_presets = {
55
55
  "params": 87528192,
56
56
  "path": "vit",
57
57
  },
58
- "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_384_imagenet/1",
58
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_384_imagenet/2",
59
59
  },
60
60
  "vit_large_patch32_384_imagenet": {
61
61
  "metadata": {
@@ -66,7 +66,7 @@ backbone_presets = {
66
66
  "params": 305607680,
67
67
  "path": "vit",
68
68
  },
69
- "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_384_imagenet/1",
69
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_384_imagenet/2",
70
70
  },
71
71
  "vit_base_patch16_224_imagenet21k": {
72
72
  "metadata": {
@@ -77,7 +77,7 @@ backbone_presets = {
77
77
  "params": 85798656,
78
78
  "path": "vit",
79
79
  },
80
- "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet21k/1",
80
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet21k/2",
81
81
  },
82
82
  "vit_base_patch32_224_imagenet21k": {
83
83
  "metadata": {
@@ -88,7 +88,7 @@ backbone_presets = {
88
88
  "params": 87455232,
89
89
  "path": "vit",
90
90
  },
91
- "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_224_imagenet21k/1",
91
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_224_imagenet21k/2",
92
92
  },
93
93
  "vit_huge_patch14_224_imagenet21k": {
94
94
  "metadata": {
@@ -99,7 +99,7 @@ backbone_presets = {
99
99
  "params": 630764800,
100
100
  "path": "vit",
101
101
  },
102
- "kaggle_handle": "kaggle://keras/vit/keras/vit_huge_patch14_224_imagenet21k/1",
102
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_huge_patch14_224_imagenet21k/2",
103
103
  },
104
104
  "vit_large_patch16_224_imagenet21k": {
105
105
  "metadata": {
@@ -110,7 +110,7 @@ backbone_presets = {
110
110
  "params": 303301632,
111
111
  "path": "vit",
112
112
  },
113
- "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet21k/1",
113
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet21k/2",
114
114
  },
115
115
  "vit_large_patch32_224_imagenet21k": {
116
116
  "metadata": {
@@ -121,6 +121,6 @@ backbone_presets = {
121
121
  "params": 305510400,
122
122
  "path": "vit",
123
123
  },
124
- "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_224_imagenet21k/1",
124
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_224_imagenet21k/2",
125
125
  },
126
126
  }
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.21.0.dev202505280410"
4
+ __version__ = "0.22.0.dev202505290412"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.21.0.dev202505280410
3
+ Version: 0.22.0.dev202505290412
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -1,78 +0,0 @@
1
- from keras_hub.src.api_export import keras_hub_export
2
- from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
- from keras_hub.src.models.vit.vit_backbone import ViTBackbone
4
- from keras_hub.src.utils.tensor_utils import preprocessing_function
5
-
6
-
7
- @keras_hub_export("keras_hub.layers.ViTImageConverter")
8
- class ViTImageConverter(ImageConverter):
9
- """Converts images to the format expected by a ViT model.
10
-
11
- This layer performs image normalization using mean and standard deviation
12
- values. By default, it uses the same normalization as the
13
- "google/vit-large-patch16-224" model on Hugging Face:
14
- `norm_mean=[0.5, 0.5, 0.5]` and `norm_std=[0.5, 0.5, 0.5]`
15
- ([reference](https://huggingface.co/google/vit-large-patch16-224/blob/main/preprocessor_config.json)).
16
- These defaults are suitable for models pretrained using this normalization.
17
-
18
- Args:
19
- norm_mean: list or tuple of floats. Mean values for image normalization.
20
- Defaults to `[0.5, 0.5, 0.5]`.
21
- norm_std: list or tuple of floats. Standard deviation values for
22
- image normalization. Defaults to `[0.5, 0.5, 0.5]`.
23
- **kwargs: Additional keyword arguments passed to
24
- `keras_hub.layers.preprocessing.ImageConverter`.
25
-
26
- Examples:
27
- ```python
28
- import keras
29
- import numpy as np
30
- from keras_hub.src.layers import ViTImageConverter
31
-
32
- # Example image (replace with your actual image data)
33
- image = np.random.rand(1, 224, 224, 3) # Example: (B, H, W, C)
34
-
35
- # Create a ViTImageConverter instance
36
- converter = ViTImageConverter(
37
- image_size=(28,28),
38
- scale=1/255.
39
- )
40
- # Preprocess the image
41
- preprocessed_image = converter(image)
42
- ```
43
- """
44
-
45
- backbone_cls = ViTBackbone
46
-
47
- def __init__(
48
- self, norm_mean=[0.5, 0.5, 0.5], norm_std=[0.5, 0.5, 0.5], **kwargs
49
- ):
50
- super().__init__(**kwargs)
51
- self.norm_mean = norm_mean
52
- self.norm_std = norm_std
53
-
54
- @preprocessing_function
55
- def call(self, inputs):
56
- # TODO: Remove this whole function. Why can just use scale and offset
57
- # in the base class.
58
- x = super().call(inputs)
59
- if self.norm_mean:
60
- norm_mean = self._expand_non_channel_dims(self.norm_mean, x)
61
- x, norm_mean = self._convert_types(x, norm_mean, self.compute_dtype)
62
- x = x - norm_mean
63
- if self.norm_std:
64
- norm_std = self._expand_non_channel_dims(self.norm_std, x)
65
- x, norm_std = self._convert_types(x, norm_std, x.dtype)
66
- x = x / norm_std
67
-
68
- return x
69
-
70
- def get_config(self):
71
- config = super().get_config()
72
- config.update(
73
- {
74
- "norm_mean": self.norm_mean,
75
- "norm_std": self.norm_std,
76
- }
77
- )
78
- return config