keras-hub-nightly 0.21.0.dev202505060405__tar.gz → 0.21.0.dev202505080407__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (498) hide show
  1. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/cspnet/cspnet_backbone.py +51 -26
  3. keras_hub_nightly-0.21.0.dev202505080407/keras_hub/src/models/cspnet/cspnet_presets.py +51 -0
  4. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -18
  5. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/segformer/segformer_presets.py +12 -12
  6. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/timm/convert_cspnet.py +94 -23
  7. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/timm/preset_loader.py +6 -6
  8. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_mixtral.py +3 -3
  9. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_qwen_moe.py +6 -6
  10. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/version.py +1 -1
  11. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  12. keras_hub_nightly-0.21.0.dev202505060405/keras_hub/src/models/cspnet/cspnet_presets.py +0 -16
  13. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/README.md +0 -0
  14. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/api/__init__.py +0 -0
  15. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/api/layers/__init__.py +0 -0
  16. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/api/metrics/__init__.py +0 -0
  17. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/api/models/__init__.py +0 -0
  18. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/api/samplers/__init__.py +0 -0
  19. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/api/tokenizers/__init__.py +0 -0
  20. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/api/utils/__init__.py +0 -0
  21. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/__init__.py +0 -0
  22. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/api_export.py +0 -0
  23. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/__init__.py +0 -0
  24. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/__init__.py +0 -0
  25. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  26. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  27. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  28. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  29. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  30. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  31. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  32. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  33. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  34. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  35. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  36. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  37. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  38. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  39. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  40. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  41. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  42. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  43. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  44. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  45. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  46. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  47. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  48. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  49. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  50. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/metrics/__init__.py +0 -0
  51. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/metrics/bleu.py +0 -0
  52. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/metrics/edit_distance.py +0 -0
  53. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/metrics/perplexity.py +0 -0
  54. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/metrics/rouge_base.py +0 -0
  55. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/metrics/rouge_l.py +0 -0
  56. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/metrics/rouge_n.py +0 -0
  57. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/__init__.py +0 -0
  58. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/albert/__init__.py +0 -0
  59. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  60. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  61. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  62. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/albert/albert_presets.py +0 -0
  63. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  64. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  65. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  66. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/backbone.py +0 -0
  67. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bart/__init__.py +0 -0
  68. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  69. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bart/bart_presets.py +0 -0
  70. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  71. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  72. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  73. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/basnet/__init__.py +0 -0
  74. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/basnet/basnet.py +0 -0
  75. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  76. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  77. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  78. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  79. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bert/__init__.py +0 -0
  80. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  81. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  82. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  83. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bert/bert_presets.py +0 -0
  84. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  85. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  86. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  87. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bloom/__init__.py +0 -0
  88. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  89. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  90. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  91. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  92. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  93. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  94. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  95. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/causal_lm.py +0 -0
  96. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  97. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/__init__.py +0 -0
  98. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  99. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  100. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  101. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  102. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/clip_presets.py +0 -0
  103. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  104. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  105. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  106. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  107. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/cspnet/__init__.py +0 -0
  108. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  109. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  110. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  111. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  112. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  113. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  114. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  115. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  116. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  117. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  118. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  119. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  120. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  121. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  122. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  123. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  124. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  125. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  126. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  127. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  128. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  129. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/densenet/__init__.py +0 -0
  130. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  131. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  132. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  133. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  134. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  135. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  136. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  137. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  138. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  139. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  140. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  141. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  142. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  143. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  144. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/efficientnet/cba.py +0 -0
  145. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  146. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  147. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  149. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  150. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  151. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  152. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/electra/__init__.py +0 -0
  153. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  154. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/electra/electra_presets.py +0 -0
  155. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  156. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/f_net/__init__.py +0 -0
  157. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  158. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  159. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  160. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  161. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  162. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  163. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  164. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/falcon/__init__.py +0 -0
  165. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  166. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  167. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  168. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  169. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  170. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  171. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  172. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  173. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/flux/__init__.py +0 -0
  174. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/flux/flux_layers.py +0 -0
  175. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/flux/flux_maths.py +0 -0
  176. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/flux/flux_model.py +0 -0
  177. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/flux/flux_presets.py +0 -0
  178. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  179. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  180. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma/__init__.py +0 -0
  181. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  182. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  183. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  184. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  186. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  187. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  188. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  189. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/__init__.py +0 -0
  190. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  191. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  192. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  193. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  194. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  195. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  196. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  197. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  198. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  199. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  200. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  201. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt2/__init__.py +0 -0
  202. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  203. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  204. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  205. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  206. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  207. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  208. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  209. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  210. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  211. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  212. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  213. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  214. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  215. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/image_classifier.py +0 -0
  216. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  217. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/image_segmenter.py +0 -0
  218. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  219. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/image_to_image.py +0 -0
  220. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/inpaint.py +0 -0
  221. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/__init__.py +0 -0
  222. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/llama_attention.py +0 -0
  223. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  224. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  225. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  226. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  227. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  228. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/llama_presets.py +0 -0
  229. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/llama_rotary_embedding.py +0 -0
  230. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  231. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama3/__init__.py +0 -0
  232. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  233. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  234. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  235. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  236. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  237. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/masked_lm.py +0 -0
  238. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  239. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mistral/__init__.py +0 -0
  240. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  241. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  242. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  243. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  244. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  245. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  246. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  247. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  248. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mit/__init__.py +0 -0
  249. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  250. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  251. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  252. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  253. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mit/mit_layers.py +0 -0
  254. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mit/mit_presets.py +0 -0
  255. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mixtral/mixtral_attention.py +0 -0
  256. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mixtral/mixtral_backbone.py +0 -0
  257. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mixtral/mixtral_causal_lm.py +0 -0
  258. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +0 -0
  259. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mixtral/mixtral_decoder.py +0 -0
  260. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mixtral/mixtral_layer_norm.py +0 -0
  261. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mixtral/mixtral_tokenizer.py +0 -0
  262. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  263. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  264. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  265. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  266. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  267. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  268. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/mobilenet/util.py +0 -0
  269. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/object_detector.py +0 -0
  270. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  271. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/opt/__init__.py +0 -0
  272. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  273. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  274. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  275. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/opt/opt_presets.py +0 -0
  276. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  277. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  278. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  279. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  280. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  281. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  282. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  283. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  284. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  285. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  286. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/__init__.py +0 -0
  287. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  288. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  289. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  290. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  291. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  292. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  293. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  294. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  295. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  296. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/preprocessor.py +0 -0
  297. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen/__init__.py +0 -0
  298. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  299. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  300. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  301. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  302. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  303. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  304. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen/qwen_presets.py +0 -0
  305. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  306. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen_moe/__init__.py +0 -0
  307. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen_moe/qwen_moe_attention.py +0 -0
  308. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +0 -0
  309. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +0 -0
  310. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +0 -0
  311. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +0 -0
  312. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +0 -0
  313. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +0 -0
  314. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/resnet/__init__.py +0 -0
  315. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  316. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  317. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  319. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  320. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/retinanet/__init__.py +0 -0
  321. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  322. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  323. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  324. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  325. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  326. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  327. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  328. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  329. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roberta/__init__.py +0 -0
  330. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  331. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  332. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  333. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  334. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  335. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  336. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  337. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
  338. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  339. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  340. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  341. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  342. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  343. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  344. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  345. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  346. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  347. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/__init__.py +0 -0
  348. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  349. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  350. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  351. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  352. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/sam_layers.py +0 -0
  353. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  354. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/sam_presets.py +0 -0
  355. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  356. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  357. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/segformer/__init__.py +0 -0
  358. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  359. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  360. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  361. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  362. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  363. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/__init__.py +0 -0
  364. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  365. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  366. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  367. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  368. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  369. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  370. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  371. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  372. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  373. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  374. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  375. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  376. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  377. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  378. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  379. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  380. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  381. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  382. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  383. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/t5/__init__.py +0 -0
  384. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  385. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  386. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  387. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  388. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/t5/t5_presets.py +0 -0
  389. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  390. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  391. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/task.py +0 -0
  392. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/text_classifier.py +0 -0
  393. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  394. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/text_to_image.py +0 -0
  395. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  396. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vae/__init__.py +0 -0
  397. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  398. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vae/vae_layers.py +0 -0
  399. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vgg/__init__.py +0 -0
  400. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  401. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  402. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  403. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  404. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  405. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit/__init__.py +0 -0
  406. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  407. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  408. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  409. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  410. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit/vit_layers.py +0 -0
  411. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit/vit_presets.py +0 -0
  412. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit_det/__init__.py +0 -0
  413. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  414. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  415. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/whisper/__init__.py +0 -0
  416. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  417. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  418. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  419. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  420. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  421. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  422. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  423. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xception/__init__.py +0 -0
  424. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  425. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  426. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  427. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  428. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xception/xception_presets.py +0 -0
  429. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  430. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  431. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  432. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  433. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  434. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  435. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  436. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  437. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlnet/__init__.py +0 -0
  438. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  439. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  440. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  441. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  442. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/samplers/__init__.py +0 -0
  443. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/samplers/beam_sampler.py +0 -0
  444. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  445. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  446. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/samplers/random_sampler.py +0 -0
  447. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/samplers/sampler.py +0 -0
  448. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/samplers/serialization.py +0 -0
  449. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  450. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  451. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tests/__init__.py +0 -0
  452. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py +0 -0
  453. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tests/test_case.py +0 -0
  454. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tokenizers/__init__.py +0 -0
  455. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  456. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  457. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  458. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  459. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  460. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  461. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  462. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  463. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/__init__.py +0 -0
  464. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/coco/__init__.py +0 -0
  465. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/coco/coco_utils.py +0 -0
  466. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  467. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  468. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/keras_utils.py +0 -0
  469. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/pipeline_model.py +0 -0
  470. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/preset_utils.py +0 -0
  471. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/python_utils.py +0 -0
  472. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/tensor_utils.py +0 -0
  473. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/timm/__init__.py +0 -0
  474. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  475. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  476. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  477. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  478. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  479. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/__init__.py +0 -0
  480. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  481. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  482. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  483. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  484. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  485. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  486. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  487. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  488. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  489. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  490. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  491. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  492. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  493. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub_nightly.egg-info/SOURCES.txt +0 -0
  494. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  495. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub_nightly.egg-info/requires.txt +0 -0
  496. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  497. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/pyproject.toml +0 -0
  498. {keras_hub_nightly-0.21.0.dev202505060405 → keras_hub_nightly-0.21.0.dev202505080407}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.21.0.dev202505060405
3
+ Version: 0.21.0.dev202505080407
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -81,7 +81,7 @@ class CSPNetBackbone(FeaturePyramidBackbone):
81
81
 
82
82
  # Pretrained backbone
83
83
  model = keras_hub.models.CSPNetBackbone.from_preset(
84
- "cspdarknet53_ra_imagenet"
84
+ "csp_darknet_53_ra_imagenet"
85
85
  )
86
86
  model(input_data)
87
87
 
@@ -357,18 +357,6 @@ def bottleneck_block(
357
357
  dtype=dtype,
358
358
  name=f"{name}_bottleneck_block_bn_3",
359
359
  )(x)
360
- if activation == "leaky_relu":
361
- x = layers.LeakyReLU(
362
- negative_slope=0.01,
363
- dtype=dtype,
364
- name=f"{name}_bottleneck_block_activation_3",
365
- )(x)
366
- else:
367
- x = layers.Activation(
368
- activation,
369
- dtype=dtype,
370
- name=f"{name}_bottleneck_block_activation_3",
371
- )(x)
372
360
 
373
361
  x = layers.add(
374
362
  [x, shortcut], dtype=dtype, name=f"{name}_bottleneck_block_add"
@@ -673,6 +661,13 @@ def cross_stage(
673
661
  name=f"{name}_csp_activation_1",
674
662
  )(x)
675
663
  else:
664
+ if strides > 1:
665
+ x = layers.ZeroPadding2D(
666
+ 1,
667
+ data_format=data_format,
668
+ dtype=dtype,
669
+ name=f"{name}_csp_conv_pad_1",
670
+ )(x)
676
671
  x = layers.Conv2D(
677
672
  filters=down_chs,
678
673
  kernel_size=3,
@@ -882,6 +877,13 @@ def cross_stage3(
882
877
  name=f"{name}_cs3_activation_1",
883
878
  )(x)
884
879
  else:
880
+ if strides > 1:
881
+ x = layers.ZeroPadding2D(
882
+ 1,
883
+ data_format=data_format,
884
+ dtype=dtype,
885
+ name=f"{name}_cs3_conv_pad_1",
886
+ )(x)
885
887
  x = layers.Conv2D(
886
888
  filters=down_chs,
887
889
  kernel_size=3,
@@ -1062,6 +1064,13 @@ def dark_stage(
1062
1064
  name=f"{name}_dark_activation_1",
1063
1065
  )(x)
1064
1066
  else:
1067
+ if strides > 1:
1068
+ x = layers.ZeroPadding2D(
1069
+ 1,
1070
+ data_format=data_format,
1071
+ dtype=dtype,
1072
+ name=f"{name}_dark_conv_pad_1",
1073
+ )(x)
1065
1074
  x = layers.Conv2D(
1066
1075
  filters=filters,
1067
1076
  kernel_size=3,
@@ -1091,18 +1100,18 @@ def dark_stage(
1091
1100
  dtype=dtype,
1092
1101
  name=f"{name}_dark_activation_1",
1093
1102
  )(x)
1094
- for i in range(depth):
1095
- x = block_fn(
1096
- filters=block_channels,
1097
- dilation=dilation,
1098
- bottle_ratio=bottle_ratio,
1099
- groups=groups,
1100
- activation=activation,
1101
- data_format=data_format,
1102
- channel_axis=channel_axis,
1103
- dtype=dtype,
1104
- name=f"{name}_block_{i}",
1105
- )(x)
1103
+ for i in range(depth):
1104
+ x = block_fn(
1105
+ filters=block_channels,
1106
+ dilation=dilation,
1107
+ bottle_ratio=bottle_ratio,
1108
+ groups=groups,
1109
+ activation=activation,
1110
+ data_format=data_format,
1111
+ channel_axis=channel_axis,
1112
+ dtype=dtype,
1113
+ name=f"{name}_block_{i}",
1114
+ )(x)
1106
1115
  return x
1107
1116
 
1108
1117
  return apply
@@ -1135,6 +1144,13 @@ def create_csp_stem(
1135
1144
  or (i == last_idx and strides > 2 and not pooling)
1136
1145
  else 1
1137
1146
  )
1147
+ if conv_strides > 1:
1148
+ x = layers.ZeroPadding2D(
1149
+ (kernel_size - 1) // 2,
1150
+ data_format=data_format,
1151
+ dtype=dtype,
1152
+ name=f"csp_stem_pad_{i}",
1153
+ )(x)
1138
1154
  x = layers.Conv2D(
1139
1155
  filters=chs,
1140
1156
  kernel_size=kernel_size,
@@ -1167,10 +1183,19 @@ def create_csp_stem(
1167
1183
 
1168
1184
  if pooling == "max":
1169
1185
  assert strides > 2
1186
+ # Use manual padding to handle edge case scenario to ignore zero's
1187
+ # as max value instead consider negative values from Leaky Relu type
1188
+ # of activations.
1189
+ pad_width = [[1, 1], [1, 1]]
1190
+ if data_format == "channels_last":
1191
+ pad_width += [[0, 0]]
1192
+ else:
1193
+ pad_width = [[0, 0]] + pad_width
1194
+ pad_width = [[0, 0]] + pad_width
1195
+ x = ops.pad(x, pad_width=pad_width, constant_values=float("-inf"))
1170
1196
  x = layers.MaxPooling2D(
1171
1197
  pool_size=3,
1172
1198
  strides=2,
1173
- padding="same",
1174
1199
  data_format=data_format,
1175
1200
  dtype=dtype,
1176
1201
  name="csp_stem_pool",
@@ -0,0 +1,51 @@
1
+ """CSPNet preset configurations."""
2
+
3
+ backbone_presets = {
4
+ "csp_darknet_53_ra_imagenet": {
5
+ "metadata": {
6
+ "description": (
7
+ "A CSP-DarkNet (Cross-Stage-Partial) image classification model"
8
+ " pre-trained on the Randomly Augmented ImageNet 1k dataset at "
9
+ "a 256x256 resolution."
10
+ ),
11
+ "params": 27642184,
12
+ "path": "cspnet",
13
+ },
14
+ "kaggle_handle": "kaggle://keras/cspdarknet/keras/csp_darknet_53_ra_imagenet/2",
15
+ },
16
+ "csp_resnext_50_ra_imagenet": {
17
+ "metadata": {
18
+ "description": (
19
+ "A CSP-ResNeXt (Cross-Stage-Partial) image classification model"
20
+ " pre-trained on the Randomly Augmented ImageNet 1k dataset at "
21
+ "a 256x256 resolution."
22
+ ),
23
+ "params": 20569896,
24
+ "path": "cspnet",
25
+ },
26
+ "kaggle_handle": "kaggle://keras/cspdarknet/keras/csp_resnext_50_ra_imagenet/1",
27
+ },
28
+ "csp_resnet_50_ra_imagenet": {
29
+ "metadata": {
30
+ "description": (
31
+ "A CSP-ResNet (Cross-Stage-Partial) image classification model"
32
+ " pre-trained on the Randomly Augmented ImageNet 1k dataset at "
33
+ "a 256x256 resolution."
34
+ ),
35
+ "params": 21616168,
36
+ "path": "cspnet",
37
+ },
38
+ "kaggle_handle": "kaggle://keras/cspdarknet/keras/csp_resnet_50_ra_imagenet/1",
39
+ },
40
+ "darknet_53_imagenet": {
41
+ "metadata": {
42
+ "description": (
43
+ "A DarkNet image classification model pre-trained on the"
44
+ "ImageNet 1k dataset at a 256x256 resolution."
45
+ ),
46
+ "params": 41609928,
47
+ "path": "cspnet",
48
+ },
49
+ "kaggle_handle": "kaggle://keras/cspdarknet/keras/darknet_53_imagenet/1",
50
+ },
51
+ }
@@ -1,5 +1,3 @@
1
- import keras
2
-
3
1
  from keras_hub.src.api_export import keras_hub_export
4
2
  from keras_hub.src.models.image_segmenter_preprocessor import (
5
3
  ImageSegmenterPreprocessor,
@@ -8,25 +6,9 @@ from keras_hub.src.models.segformer.segformer_backbone import SegFormerBackbone
8
6
  from keras_hub.src.models.segformer.segformer_image_converter import (
9
7
  SegFormerImageConverter,
10
8
  )
11
- from keras_hub.src.utils.tensor_utils import preprocessing_function
12
-
13
- IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
14
- IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
15
9
 
16
10
 
17
11
  @keras_hub_export("keras_hub.models.SegFormerImageSegmenterPreprocessor")
18
12
  class SegFormerImageSegmenterPreprocessor(ImageSegmenterPreprocessor):
19
13
  backbone_cls = SegFormerBackbone
20
14
  image_converter_cls = SegFormerImageConverter
21
-
22
- @preprocessing_function
23
- def call(self, x, y=None, sample_weight=None):
24
- if self.image_converter:
25
- x = self.image_converter(x)
26
- if y is not None:
27
- y = self.image_converter(y)
28
-
29
- x = x / 255
30
- x = (x - IMAGENET_DEFAULT_MEAN) / IMAGENET_DEFAULT_STD
31
-
32
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
@@ -10,7 +10,7 @@ presets = {
10
10
  "params": 3719027,
11
11
  "path": "segformer_b0",
12
12
  },
13
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b0_ade20k_512/2",
13
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b0_ade20k_512/3",
14
14
  },
15
15
  "segformer_b1_ade20k_512": {
16
16
  "metadata": {
@@ -21,7 +21,7 @@ presets = {
21
21
  "params": 13682643,
22
22
  "path": "segformer_b1",
23
23
  },
24
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b1_ade20k_512/2",
24
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b1_ade20k_512/5",
25
25
  },
26
26
  "segformer_b2_ade20k_512": {
27
27
  "metadata": {
@@ -32,7 +32,7 @@ presets = {
32
32
  "params": 24727507,
33
33
  "path": "segformer_b2",
34
34
  },
35
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b2_ade20k_512/2",
35
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b2_ade20k_512/3",
36
36
  },
37
37
  "segformer_b3_ade20k_512": {
38
38
  "metadata": {
@@ -43,7 +43,7 @@ presets = {
43
43
  "params": 44603347,
44
44
  "path": "segformer_b3",
45
45
  },
46
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b3_ade20k_512/2",
46
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b3_ade20k_512/3",
47
47
  },
48
48
  "segformer_b4_ade20k_512": {
49
49
  "metadata": {
@@ -54,7 +54,7 @@ presets = {
54
54
  "params": 61373907,
55
55
  "path": "segformer_b4",
56
56
  },
57
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b4_ade20k_512/2",
57
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b4_ade20k_512/3",
58
58
  },
59
59
  "segformer_b5_ade20k_640": {
60
60
  "metadata": {
@@ -65,7 +65,7 @@ presets = {
65
65
  "params": 81974227,
66
66
  "path": "segformer_b5",
67
67
  },
68
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b5_ade20k_640/2",
68
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b5_ade20k_640/3",
69
69
  },
70
70
  "segformer_b0_cityscapes_1024": {
71
71
  "metadata": {
@@ -76,7 +76,7 @@ presets = {
76
76
  "params": 3719027,
77
77
  "path": "segformer_b0",
78
78
  },
79
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b0_cityscapes_1024/2",
79
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b0_cityscapes_1024/3",
80
80
  },
81
81
  "segformer_b1_cityscapes_1024": {
82
82
  "metadata": {
@@ -87,7 +87,7 @@ presets = {
87
87
  "params": 13682643,
88
88
  "path": "segformer_b1",
89
89
  },
90
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b1_ade20k_512/2",
90
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b1_ade20k_512/1",
91
91
  },
92
92
  "segformer_b2_cityscapes_1024": {
93
93
  "metadata": {
@@ -98,7 +98,7 @@ presets = {
98
98
  "params": 24727507,
99
99
  "path": "segformer_b2",
100
100
  },
101
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b2_cityscapes_1024/2",
101
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b2_cityscapes_1024/3",
102
102
  },
103
103
  "segformer_b3_cityscapes_1024": {
104
104
  "metadata": {
@@ -109,7 +109,7 @@ presets = {
109
109
  "params": 44603347,
110
110
  "path": "segformer_b3",
111
111
  },
112
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b3_cityscapes_1024/2",
112
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b3_cityscapes_1024/3",
113
113
  },
114
114
  "segformer_b4_cityscapes_1024": {
115
115
  "metadata": {
@@ -120,7 +120,7 @@ presets = {
120
120
  "params": 61373907,
121
121
  "path": "segformer_b4",
122
122
  },
123
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b4_cityscapes_1024/2",
123
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b4_cityscapes_1024/3",
124
124
  },
125
125
  "segformer_b5_cityscapes_1024": {
126
126
  "metadata": {
@@ -131,6 +131,6 @@ presets = {
131
131
  "params": 81974227,
132
132
  "path": "segformer_b5",
133
133
  },
134
- "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b5_cityscapes_1024/2",
134
+ "kaggle_handle": "kaggle://keras/segformer/keras/segformer_b5_cityscapes_1024/3",
135
135
  },
136
136
  }
@@ -17,10 +17,69 @@ def convert_backbone_config(timm_config):
17
17
  bottle_ratio = (0.5,) + (1.0,)
18
18
  block_ratio = (1.0,) + (0.5,)
19
19
  expand_ratio = (2.0,) + (1.0,)
20
+ stem_padding = "same"
21
+ stem_pooling = None
20
22
  stage_type = "csp"
23
+ groups = 1
21
24
  block_type = "dark_block"
22
25
  down_growth = True
23
- stackwise_strides = 2
26
+ stackwise_strides = [2, 2, 2, 2, 2]
27
+ avg_down = False
28
+ cross_linear = False
29
+ elif timm_architecture == "cspresnet50":
30
+ stem_filters = 64
31
+ stem_kernel_size = 7
32
+ stem_strides = 4
33
+ stackwise_depth = [3, 3, 5, 2]
34
+ stackwise_strides = [1, 2, 2, 2]
35
+ stackwise_num_filters = [128, 256, 512, 1024]
36
+ block_type = "bottleneck_block"
37
+ stage_type = "csp"
38
+ bottle_ratio = [0.5]
39
+ block_ratio = [1.0]
40
+ expand_ratio = [2.0]
41
+ stem_padding = "valid"
42
+ stem_pooling = "max"
43
+ avg_down = False
44
+ groups = 1
45
+ down_growth = False
46
+ cross_linear = True
47
+ elif timm_architecture == "cspresnext50":
48
+ stem_filters = 64
49
+ stem_kernel_size = 7
50
+ stem_strides = 4
51
+ stackwise_depth = [3, 3, 5, 2]
52
+ stackwise_num_filters = [256, 512, 1024, 2048]
53
+ bottle_ratio = [1.0]
54
+ block_ratio = [0.5]
55
+ expand_ratio = [1.0]
56
+ stage_type = "csp"
57
+ block_type = "bottleneck_block"
58
+ stem_pooling = "max"
59
+ stackwise_strides = [1, 2, 2, 2]
60
+ groups = 32
61
+ stem_padding = "valid"
62
+ avg_down = False
63
+ down_growth = False
64
+ cross_linear = True
65
+ elif timm_architecture == "darknet53":
66
+ stem_filters = 32
67
+ stem_kernel_size = 3
68
+ stem_strides = 1
69
+ stackwise_depth = [1, 2, 8, 8, 4]
70
+ stackwise_num_filters = [64, 128, 256, 512, 1024]
71
+ bottle_ratio = [0.5]
72
+ block_ratio = [1.0]
73
+ groups = 1
74
+ expand_ratio = [1.0]
75
+ stage_type = "dark"
76
+ block_type = "dark_block"
77
+ stem_pooling = None
78
+ stackwise_strides = [2, 2, 2, 2, 2]
79
+ stem_padding = "same"
80
+ avg_down = False
81
+ down_growth = False
82
+ cross_linear = False
24
83
  else:
25
84
  raise ValueError(
26
85
  f"Currently, the architecture {timm_architecture} is not supported."
@@ -38,6 +97,11 @@ def convert_backbone_config(timm_config):
38
97
  block_type=block_type,
39
98
  stackwise_strides=stackwise_strides,
40
99
  down_growth=down_growth,
100
+ stem_pooling=stem_pooling,
101
+ stem_padding=stem_padding,
102
+ avg_down=avg_down,
103
+ cross_linear=cross_linear,
104
+ groups=groups,
41
105
  )
42
106
 
43
107
 
@@ -81,21 +145,36 @@ def convert_weights(backbone, loader, timm_config):
81
145
  stackwise_depth = backbone.stackwise_depth
82
146
  stage_type = backbone.stage_type
83
147
  block_type = backbone.block_type
148
+ strides = backbone.stackwise_strides
84
149
 
85
150
  for idx, block in enumerate(stackwise_depth):
86
- port_conv2d(
87
- f"stages.{idx}.conv_down.conv",
88
- f"stage_{idx}_{stage_type}_conv_down_1",
89
- )
90
- port_batch_normalization(
91
- f"stages.{idx}.conv_down.bn", f"stage_{idx}_{stage_type}_bn_1"
92
- )
93
- port_conv2d(
94
- f"stages.{idx}.conv_exp.conv", f"stage_{idx}_{stage_type}_conv_exp"
95
- )
96
- port_batch_normalization(
97
- f"stages.{idx}.conv_exp.bn", f"stage_{idx}_{stage_type}_bn_2"
98
- )
151
+ if strides[idx] != 1 or stage_type == "dark":
152
+ if strides[idx] == 2 and backbone.avg_down:
153
+ port_conv2d(
154
+ f"stages.{idx}.conv_down.1.conv",
155
+ f"stage_{idx}_{stage_type}_conv_down_1",
156
+ )
157
+ port_batch_normalization(
158
+ f"stages.{idx}.conv_down.1.bn",
159
+ f"stage_{idx}_{stage_type}_bn_1",
160
+ )
161
+ else:
162
+ port_conv2d(
163
+ f"stages.{idx}.conv_down.conv",
164
+ f"stage_{idx}_{stage_type}_conv_down_1",
165
+ )
166
+ port_batch_normalization(
167
+ f"stages.{idx}.conv_down.bn",
168
+ f"stage_{idx}_{stage_type}_bn_1",
169
+ )
170
+ if stage_type != "dark":
171
+ port_conv2d(
172
+ f"stages.{idx}.conv_exp.conv",
173
+ f"stage_{idx}_{stage_type}_conv_exp",
174
+ )
175
+ port_batch_normalization(
176
+ f"stages.{idx}.conv_exp.bn", f"stage_{idx}_{stage_type}_bn_2"
177
+ )
99
178
 
100
179
  for i in range(block):
101
180
  port_conv2d(
@@ -133,16 +212,8 @@ def convert_weights(backbone, loader, timm_config):
133
212
  f"stages.{idx}.conv_transition_b.bn",
134
213
  f"stage_{idx}_{stage_type}_transition_b_bn",
135
214
  )
136
- port_conv2d(
137
- f"stages.{idx}.conv_transition.conv",
138
- f"stage_{idx}_{stage_type}_conv_transition",
139
- )
140
- port_batch_normalization(
141
- f"stages.{idx}.conv_transition.bn",
142
- f"stage_{idx}_{stage_type}_transition_bn",
143
- )
144
215
 
145
- else:
216
+ if stage_type != "dark":
146
217
  port_conv2d(
147
218
  f"stages.{idx}.conv_transition.conv",
148
219
  f"stage_{idx}_{stage_type}_conv_transition",
@@ -16,17 +16,17 @@ class TimmPresetLoader(PresetLoader):
16
16
  def __init__(self, preset, config):
17
17
  super().__init__(preset, config)
18
18
  architecture = self.config["architecture"]
19
- if "resnet" in architecture:
19
+ if architecture.startswith("resnet"):
20
20
  self.converter = convert_resnet
21
- elif "csp" in architecture:
21
+ elif architecture.startswith(("csp", "dark")):
22
22
  self.converter = convert_cspnet
23
- elif "densenet" in architecture:
23
+ elif architecture.startswith("densenet"):
24
24
  self.converter = convert_densenet
25
- elif "mobilenet" in architecture:
25
+ elif architecture.startswith("mobilenet"):
26
26
  self.converter = convert_mobilenet
27
- elif "vgg" in architecture:
27
+ elif architecture.startswith("vgg"):
28
28
  self.converter = convert_vgg
29
- elif "efficientnet" in architecture:
29
+ elif architecture.startswith("efficientnet"):
30
30
  self.converter = convert_efficientnet
31
31
  else:
32
32
  raise ValueError(
@@ -50,19 +50,19 @@ def convert_weights(backbone, loader, transformers_config):
50
50
  # Attention layers
51
51
  ## Query
52
52
  loader.port_weight(
53
- keras_variable=decoder_layer._self_attention_layer._query_dense.kernel,
53
+ keras_variable=decoder_layer._self_attention_layer.query_dense.kernel,
54
54
  hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight",
55
55
  hook_fn=transpose_and_reshape,
56
56
  )
57
57
  ## Key
58
58
  loader.port_weight(
59
- keras_variable=decoder_layer._self_attention_layer._key_dense.kernel,
59
+ keras_variable=decoder_layer._self_attention_layer.key_dense.kernel,
60
60
  hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight",
61
61
  hook_fn=transpose_and_reshape,
62
62
  )
63
63
  ## Value
64
64
  loader.port_weight(
65
- keras_variable=decoder_layer._self_attention_layer._value_dense.kernel,
65
+ keras_variable=decoder_layer._self_attention_layer.value_dense.kernel,
66
66
  hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight",
67
67
  hook_fn=transpose_and_reshape,
68
68
  )
@@ -64,34 +64,34 @@ def convert_weights(backbone, loader, transformers_config):
64
64
 
65
65
  ## Query
66
66
  loader.port_weight(
67
- keras_variable=decoder_layer._self_attention_layer._query_dense.kernel,
67
+ keras_variable=decoder_layer._self_attention_layer.query_dense.kernel,
68
68
  hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight",
69
69
  hook_fn=transpose_and_reshape,
70
70
  )
71
71
  loader.port_weight(
72
- keras_variable=decoder_layer._self_attention_layer._query_dense.bias,
72
+ keras_variable=decoder_layer._self_attention_layer.query_dense.bias,
73
73
  hf_weight_key=f"model.layers.{i}.self_attn.q_proj.bias",
74
74
  hook_fn=transpose_and_reshape,
75
75
  )
76
76
  ## Key
77
77
  loader.port_weight(
78
- keras_variable=decoder_layer._self_attention_layer._key_dense.kernel,
78
+ keras_variable=decoder_layer._self_attention_layer.key_dense.kernel,
79
79
  hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight",
80
80
  hook_fn=transpose_and_reshape,
81
81
  )
82
82
  loader.port_weight(
83
- keras_variable=decoder_layer._self_attention_layer._key_dense.bias,
83
+ keras_variable=decoder_layer._self_attention_layer.key_dense.bias,
84
84
  hf_weight_key=f"model.layers.{i}.self_attn.k_proj.bias",
85
85
  hook_fn=transpose_and_reshape,
86
86
  )
87
87
  ## Value
88
88
  loader.port_weight(
89
- keras_variable=decoder_layer._self_attention_layer._value_dense.kernel,
89
+ keras_variable=decoder_layer._self_attention_layer.value_dense.kernel,
90
90
  hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight",
91
91
  hook_fn=transpose_and_reshape,
92
92
  )
93
93
  loader.port_weight(
94
- keras_variable=decoder_layer._self_attention_layer._value_dense.bias,
94
+ keras_variable=decoder_layer._self_attention_layer.value_dense.bias,
95
95
  hf_weight_key=f"model.layers.{i}.self_attn.v_proj.bias",
96
96
  hook_fn=transpose_and_reshape,
97
97
  )
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.21.0.dev202505060405"
4
+ __version__ = "0.21.0.dev202505080407"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.21.0.dev202505060405
3
+ Version: 0.21.0.dev202505080407
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -1,16 +0,0 @@
1
- """CSPNet preset configurations."""
2
-
3
- backbone_presets = {
4
- "csp_darknet_53_ra_imagenet": {
5
- "metadata": {
6
- "description": (
7
- "A CSP-DarkNet (Cross-Stage-Partial) image classification model"
8
- " pre-trained on the Randomly Augmented ImageNet 1k dataset at "
9
- "a 224x224 resolution."
10
- ),
11
- "params": 26652512,
12
- "path": "cspnet",
13
- },
14
- "kaggle_handle": "kaggle://keras/cspdarknet/keras/csp_darknet_53_ra_imagenet/1",
15
- },
16
- }