keras-hub-nightly 0.21.0.dev202504170402__tar.gz → 0.21.0.dev202504190357__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/PKG-INFO +1 -1
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/falcon/falcon_backbone.py +1 -1
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +1 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama/llama_attention.py +24 -6
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama/llama_backbone.py +50 -16
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama/llama_decoder.py +20 -3
- keras_hub_nightly-0.21.0.dev202504190357/keras_hub/src/models/llama/llama_rotary_embedding.py +180 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama3/llama3_backbone.py +10 -2
- keras_hub_nightly-0.21.0.dev202504190357/keras_hub/src/models/llama3/llama3_presets.py +130 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_llama3.py +21 -1
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub_nightly.egg-info/SOURCES.txt +1 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/setup.py +1 -1
- keras_hub_nightly-0.21.0.dev202504170402/keras_hub/src/models/llama3/llama3_presets.py +0 -48
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/README.md +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/api/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/api/layers/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/api/models/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/api/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/api_export.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/basnet/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/basnet/basnet.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/clip_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/clip_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/cspnet/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/efficientnet/cba.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/flux/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/flux/flux_layers.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/flux/flux_maths.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/flux/flux_model.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/flux/flux_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/image_segmenter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/image_to_image.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/inpaint.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mit/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mit/mit_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mit/mit_layers.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mit/mit_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/mobilenet/util.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/object_detector.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/qwen/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/retinanet/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/sam_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/sam_layers.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/sam_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/sam/sam_transformer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/segformer/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/task.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/text_to_image.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vae/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vae/vae_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vae/vae_layers.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vgg/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit/vit_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit/vit_layers.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit/vit_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit_det/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xception/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xception/xception_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xception/xception_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlnet/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tests/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tests/test_case.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tokenizers/tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/imagenet/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/preset_utils.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/tensor_utils.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/timm/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/timm/preset_loader.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/__init__.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/setup.cfg +0 -0
{keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.21.0.
|
3
|
+
Version: 0.21.0.dev202504190357
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -29,7 +29,7 @@ class FalconBackbone(Backbone):
|
|
29
29
|
layer_norm_epsilon: float. Epsilon for the layer normalization layers in
|
30
30
|
the transformer decoder.
|
31
31
|
attention_dropout_rate: float. Dropout probability for the attention.
|
32
|
-
feedforward_dropout_rate:
|
32
|
+
feedforward_dropout_rate: float. Dropout probability for the
|
33
33
|
feedforward.
|
34
34
|
dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
|
35
35
|
for model computations and weights. Note that some computations,
|
@@ -512,6 +512,7 @@ class Gemma3CausalLMPreprocessor(CausalLMPreprocessor):
|
|
512
512
|
|
513
513
|
# Extract text part of the input.
|
514
514
|
prompts, responses = x["prompts"], x["responses"]
|
515
|
+
tf.debugging.assert_shapes([(prompts, ("N",)), (responses, ("N",))])
|
515
516
|
|
516
517
|
# Find out if the input is batched/not batched. Uprank if not batched.
|
517
518
|
# In other preprocessors, we don't have to do this, but here, all
|
@@ -3,7 +3,9 @@ import math
|
|
3
3
|
import keras
|
4
4
|
from keras import ops
|
5
5
|
|
6
|
-
from keras_hub.src.
|
6
|
+
from keras_hub.src.models.llama.llama_rotary_embedding import (
|
7
|
+
LlamaRotaryEmbedding,
|
8
|
+
)
|
7
9
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
8
10
|
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
9
11
|
|
@@ -16,7 +18,11 @@ class LlamaAttention(keras.layers.Layer):
|
|
16
18
|
num_query_heads,
|
17
19
|
num_key_value_heads,
|
18
20
|
rope_max_wavelength=10000,
|
19
|
-
|
21
|
+
rope_position_scaling_factor=1.0,
|
22
|
+
rope_frequency_adjustment_factor=None,
|
23
|
+
rope_low_freq_factor=None,
|
24
|
+
rope_high_freq_factor=None,
|
25
|
+
rope_pretraining_sequence_length=None,
|
20
26
|
kernel_initializer="glorot_uniform",
|
21
27
|
dropout=0,
|
22
28
|
**kwargs,
|
@@ -28,13 +34,16 @@ class LlamaAttention(keras.layers.Layer):
|
|
28
34
|
|
29
35
|
self.num_key_value_groups = num_query_heads // num_key_value_heads
|
30
36
|
self.rope_max_wavelength = rope_max_wavelength
|
37
|
+
self.rope_position_scaling_factor = rope_position_scaling_factor
|
38
|
+
self.rope_frequency_adjustment_factor = rope_frequency_adjustment_factor
|
39
|
+
self.rope_low_freq_factor = rope_low_freq_factor
|
40
|
+
self.rope_high_freq_factor = rope_high_freq_factor
|
41
|
+
self.rope_pretraining_sequence_length = rope_pretraining_sequence_length
|
31
42
|
|
32
43
|
self.kernel_initializer = keras.initializers.get(
|
33
44
|
clone_initializer(kernel_initializer)
|
34
45
|
)
|
35
46
|
|
36
|
-
self.rope_scaling_factor = rope_scaling_factor
|
37
|
-
|
38
47
|
def build(self, inputs_shape):
|
39
48
|
# Einsum variables:
|
40
49
|
# b = batch size
|
@@ -103,9 +112,13 @@ class LlamaAttention(keras.layers.Layer):
|
|
103
112
|
)
|
104
113
|
self._output_dense.build((None, None, self.num_query_heads, head_dim))
|
105
114
|
|
106
|
-
self.rotary_embedding_layer =
|
115
|
+
self.rotary_embedding_layer = LlamaRotaryEmbedding(
|
107
116
|
max_wavelength=self.rope_max_wavelength,
|
108
|
-
|
117
|
+
position_scaling_factor=self.rope_position_scaling_factor,
|
118
|
+
frequency_adjustment_factor=self.rope_frequency_adjustment_factor,
|
119
|
+
low_freq_factor=self.rope_low_freq_factor,
|
120
|
+
high_freq_factor=self.rope_high_freq_factor,
|
121
|
+
pretraining_sequence_length=self.rope_pretraining_sequence_length,
|
109
122
|
dtype=self.dtype_policy,
|
110
123
|
)
|
111
124
|
|
@@ -224,6 +237,11 @@ class LlamaAttention(keras.layers.Layer):
|
|
224
237
|
"num_key_value_heads": self.num_key_value_heads,
|
225
238
|
"rope_max_wavelength": self.rope_max_wavelength,
|
226
239
|
"rope_scaling_factor": self.rope_scaling_factor,
|
240
|
+
"rope_low_freq_factor": self.rope_low_freq_factor,
|
241
|
+
"rope_high_freq_factor": self.rope_high_freq_factor,
|
242
|
+
"rope_pretraining_sequence_length": (
|
243
|
+
self.rope_pretraining_sequence_length
|
244
|
+
),
|
227
245
|
"kernel_initializer": keras.initializers.serialize(
|
228
246
|
self.kernel_initializer
|
229
247
|
),
|
@@ -30,22 +30,30 @@ class LlamaBackbone(Backbone):
|
|
30
30
|
constructor.
|
31
31
|
|
32
32
|
Args:
|
33
|
-
vocabulary_size
|
34
|
-
num_layers
|
35
|
-
num_query_heads
|
33
|
+
vocabulary_size: int. The size of the token vocabulary.
|
34
|
+
num_layers: int. The number of transformer layers.
|
35
|
+
num_query_heads : int. The number of query attention heads for
|
36
36
|
each transformer.
|
37
|
-
hidden_dim
|
37
|
+
hidden_dim : int. The size of the transformer encoding and pooling
|
38
38
|
layers.
|
39
|
-
intermediate_dim
|
39
|
+
intermediate_dim : int. The output dimension of the first Dense layer in
|
40
40
|
a three-layer feedforward network for each transformer.
|
41
|
-
num_key_value_heads
|
41
|
+
num_key_value_heads : int. The number of key and value attention heads
|
42
42
|
for each transformer.
|
43
|
-
rope_max_wavelength
|
43
|
+
rope_max_wavelength : int. The maximum angular wavelength of
|
44
44
|
the sine/cosine curves, for rotary embeddings. Defaults to `10000`.
|
45
|
-
|
46
|
-
calculation of
|
47
|
-
|
48
|
-
|
45
|
+
rope_position_scaling_factor: float. The scaling factor for
|
46
|
+
calculation of rotary embedding. Defaults to `1.0`
|
47
|
+
rope_frequency_adjustment_factor: float. The scaling factor
|
48
|
+
used to scale the inverse frequencies. Defaults to `None`.
|
49
|
+
rope_low_freq_factor: float. The low frequency scaling
|
50
|
+
factor. Defaults to `None`.
|
51
|
+
rope_high_freq_factor: float. Used for Llama3.1+. The high
|
52
|
+
frequency scaling factor. Defaults to `None`.
|
53
|
+
rope_pretraining_sequence_length: int. Used for Llama3.1+.
|
54
|
+
Defaults to `None`.
|
55
|
+
layer_norm_epsilon : float. Epsilon for the layer normalization layers
|
56
|
+
in the transformer decoder. Defaults to `1e-6`.
|
49
57
|
dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
|
50
58
|
for model computations and weights. Note that some computations,
|
51
59
|
such as softmax and layer normalization, will always be done at
|
@@ -87,7 +95,11 @@ class LlamaBackbone(Backbone):
|
|
87
95
|
intermediate_dim,
|
88
96
|
num_key_value_heads,
|
89
97
|
rope_max_wavelength=10000,
|
90
|
-
|
98
|
+
rope_position_scaling_factor=1.0,
|
99
|
+
rope_frequency_adjustment_factor=None,
|
100
|
+
rope_low_freq_factor=None,
|
101
|
+
rope_high_freq_factor=None,
|
102
|
+
rope_pretraining_sequence_length=None,
|
91
103
|
layer_norm_epsilon=1e-6,
|
92
104
|
dropout=0,
|
93
105
|
dtype=None,
|
@@ -110,7 +122,15 @@ class LlamaBackbone(Backbone):
|
|
110
122
|
num_query_heads=num_query_heads,
|
111
123
|
num_key_value_heads=num_key_value_heads,
|
112
124
|
rope_max_wavelength=rope_max_wavelength,
|
113
|
-
|
125
|
+
rope_position_scaling_factor=rope_position_scaling_factor,
|
126
|
+
rope_frequency_adjustment_factor=(
|
127
|
+
rope_frequency_adjustment_factor
|
128
|
+
),
|
129
|
+
rope_low_freq_factor=rope_low_freq_factor,
|
130
|
+
rope_high_freq_factor=rope_high_freq_factor,
|
131
|
+
rope_pretraining_sequence_length=(
|
132
|
+
rope_pretraining_sequence_length
|
133
|
+
),
|
114
134
|
layer_norm_epsilon=layer_norm_epsilon,
|
115
135
|
activation=ops.silu,
|
116
136
|
kernel_initializer=_llama_kernel_initializer(stddev=0.02),
|
@@ -152,9 +172,13 @@ class LlamaBackbone(Backbone):
|
|
152
172
|
self.num_query_heads = num_query_heads
|
153
173
|
self.hidden_dim = hidden_dim
|
154
174
|
self.intermediate_dim = intermediate_dim
|
155
|
-
self.rope_max_wavelength = rope_max_wavelength
|
156
175
|
self.num_key_value_heads = num_key_value_heads
|
157
|
-
self.
|
176
|
+
self.rope_max_wavelength = rope_max_wavelength
|
177
|
+
self.rope_position_scaling_factor = rope_position_scaling_factor
|
178
|
+
self.rope_frequency_adjustment_factor = rope_frequency_adjustment_factor
|
179
|
+
self.rope_low_freq_factor = rope_low_freq_factor
|
180
|
+
self.rope_high_freq_factor = rope_high_freq_factor
|
181
|
+
self.rope_pretraining_sequence_length = rope_pretraining_sequence_length
|
158
182
|
self.layer_norm_epsilon = layer_norm_epsilon
|
159
183
|
self.dropout = dropout
|
160
184
|
self.tie_word_embeddings = tie_word_embeddings
|
@@ -169,7 +193,17 @@ class LlamaBackbone(Backbone):
|
|
169
193
|
"hidden_dim": self.hidden_dim,
|
170
194
|
"intermediate_dim": self.intermediate_dim,
|
171
195
|
"rope_max_wavelength": self.rope_max_wavelength,
|
172
|
-
"
|
196
|
+
"rope_position_scaling_factor": (
|
197
|
+
self.rope_position_scaling_factor
|
198
|
+
),
|
199
|
+
"rope_frequency_adjustment_factor": (
|
200
|
+
self.rope_frequency_adjustment_factor
|
201
|
+
),
|
202
|
+
"rope_low_freq_factor": self.rope_low_freq_factor,
|
203
|
+
"rope_high_freq_factor": self.rope_high_freq_factor,
|
204
|
+
"rope_pretraining_sequence_length": (
|
205
|
+
self.rope_pretraining_sequence_length
|
206
|
+
),
|
173
207
|
"num_key_value_heads": self.num_key_value_heads,
|
174
208
|
"layer_norm_epsilon": self.layer_norm_epsilon,
|
175
209
|
"dropout": self.dropout,
|
@@ -21,7 +21,11 @@ class LlamaTransformerDecoder(keras.layers.Layer):
|
|
21
21
|
num_query_heads,
|
22
22
|
num_key_value_heads,
|
23
23
|
rope_max_wavelength=10000,
|
24
|
-
|
24
|
+
rope_position_scaling_factor=1.0,
|
25
|
+
rope_frequency_adjustment_factor=None,
|
26
|
+
rope_low_freq_factor=None,
|
27
|
+
rope_high_freq_factor=None,
|
28
|
+
rope_pretraining_sequence_length=None,
|
25
29
|
activation="silu",
|
26
30
|
layer_norm_epsilon=1e-5,
|
27
31
|
kernel_initializer="glorot_uniform",
|
@@ -34,7 +38,11 @@ class LlamaTransformerDecoder(keras.layers.Layer):
|
|
34
38
|
self.num_key_value_heads = num_key_value_heads
|
35
39
|
|
36
40
|
self.rope_max_wavelength = rope_max_wavelength
|
37
|
-
self.
|
41
|
+
self.rope_position_scaling_factor = rope_position_scaling_factor
|
42
|
+
self.rope_frequency_adjustment_factor = rope_frequency_adjustment_factor
|
43
|
+
self.rope_low_freq_factor = rope_low_freq_factor
|
44
|
+
self.rope_high_freq_factor = rope_high_freq_factor
|
45
|
+
self.rope_pretraining_sequence_length = rope_pretraining_sequence_length
|
38
46
|
|
39
47
|
self.dropout = dropout
|
40
48
|
|
@@ -53,7 +61,11 @@ class LlamaTransformerDecoder(keras.layers.Layer):
|
|
53
61
|
num_query_heads=self.num_query_heads,
|
54
62
|
num_key_value_heads=self.num_key_value_heads,
|
55
63
|
rope_max_wavelength=self.rope_max_wavelength,
|
56
|
-
|
64
|
+
rope_position_scaling_factor=self.rope_position_scaling_factor,
|
65
|
+
rope_frequency_adjustment_factor=self.rope_frequency_adjustment_factor,
|
66
|
+
rope_low_freq_factor=self.rope_low_freq_factor,
|
67
|
+
rope_high_freq_factor=self.rope_high_freq_factor,
|
68
|
+
rope_pretraining_sequence_length=self.rope_pretraining_sequence_length,
|
57
69
|
kernel_initializer=clone_initializer(self.kernel_initializer),
|
58
70
|
dropout=self.dropout,
|
59
71
|
dtype=self.dtype_policy,
|
@@ -221,6 +233,11 @@ class LlamaTransformerDecoder(keras.layers.Layer):
|
|
221
233
|
"num_query_heads": self.num_query_heads,
|
222
234
|
"rope_max_wavelength": self.rope_max_wavelength,
|
223
235
|
"rope_scaling_factor": self.rope_scaling_factor,
|
236
|
+
"rope_low_freq_factor": self.rope_low_freq_factor,
|
237
|
+
"rope_high_freq_factor": self.rope_high_freq_factor,
|
238
|
+
"rope_pretraining_sequence_length": (
|
239
|
+
self.rope_pretraining_sequence_length
|
240
|
+
),
|
224
241
|
"num_key_value_heads": self.num_key_value_heads,
|
225
242
|
"activation": keras.activations.serialize(self.activation),
|
226
243
|
"layer_norm_epsilon": self.layer_norm_epsilon,
|
@@ -0,0 +1,180 @@
|
|
1
|
+
import math
|
2
|
+
|
3
|
+
from keras import ops
|
4
|
+
|
5
|
+
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
6
|
+
|
7
|
+
|
8
|
+
class LlamaRotaryEmbedding(RotaryEmbedding):
|
9
|
+
"""Rotary positional encoding layer.
|
10
|
+
|
11
|
+
This layer encodes absolute positional information with a rotation
|
12
|
+
matrix. It calculates the rotary encoding with a mix of sine and
|
13
|
+
cosine functions with geometrically increasing wavelengths.
|
14
|
+
Defined and formulated in
|
15
|
+
[RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864v4).
|
16
|
+
The input must be a tensor with shape a sequence dimension and a feature
|
17
|
+
dimension. Typically, this will either an input with shape
|
18
|
+
`(batch_size, sequence_length, feature_length)` or
|
19
|
+
`(batch_size, sequence_length, num_heads, feature_length)`.
|
20
|
+
This layer will return a new tensor with the rotary embedding applied to
|
21
|
+
the input tensor.
|
22
|
+
It is extended from `RotaryEmbedding` layer in `keras_hub.layers`.
|
23
|
+
It has additional smoothening and interpolation for some frequency ranges.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
max_wavelength: int. The maximum angular wavelength of the sine/cosine
|
27
|
+
curves. Defaults to `10000`.
|
28
|
+
position_scaling_factor: float. The scaling factor used to scale
|
29
|
+
positions of the tokens. Defaults to `1.0`.
|
30
|
+
frequency_adjustment_factor: float. The scaling factor used to scale the
|
31
|
+
inverse frequencies. Defaults to `None`.
|
32
|
+
low_freq_factor: float. The low frequency scaling factor.
|
33
|
+
Defaults to `None`.
|
34
|
+
high_freq_factor: float. The high frequency scaling factor.
|
35
|
+
Defaults to `None`.
|
36
|
+
pretraining_sequence_length: int. Used for Llama3.1+, the original
|
37
|
+
context length at time of pretraining. Defaults to `None`.
|
38
|
+
sequence_axis: int. Sequence axis in the input tensor.
|
39
|
+
feature_axis: int. Feature axis in the input tensor.
|
40
|
+
**kwargs: other keyword arguments passed to `keras.layers.Layer`,
|
41
|
+
including `name`, `trainable`, `dtype` etc.
|
42
|
+
|
43
|
+
Call arguments:
|
44
|
+
inputs: The tensor inputs to apply the embedding to. This can have
|
45
|
+
any shape, but must contain both a sequence and feature axis. The
|
46
|
+
rotary embedding will be applied to `inputs` and returned.
|
47
|
+
start_index: An integer or integer tensor. The starting position to
|
48
|
+
compute the rotary embedding from. This is useful during cached
|
49
|
+
decoding, where each position is predicted separately in a loop.
|
50
|
+
|
51
|
+
Examples:
|
52
|
+
|
53
|
+
```python
|
54
|
+
batch_size = 16
|
55
|
+
feature_length = 18
|
56
|
+
sequence_length = 256
|
57
|
+
num_heads = 8
|
58
|
+
|
59
|
+
# No multi-head dimension.
|
60
|
+
tensor = np.ones((batch_size, sequence_length, feature_length))
|
61
|
+
rot_emb_layer = RotaryEmbedding()
|
62
|
+
tensor_rot = rot_emb_layer(tensor)
|
63
|
+
|
64
|
+
# With multi-head dimension.
|
65
|
+
tensor = np.ones((batch_size, sequence_length, num_heads, feature_length))
|
66
|
+
tensor_rot = rot_emb_layer(tensor)
|
67
|
+
```
|
68
|
+
|
69
|
+
References:
|
70
|
+
- [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864v4)
|
71
|
+
"""
|
72
|
+
|
73
|
+
def __init__(
|
74
|
+
self,
|
75
|
+
max_wavelength=10000,
|
76
|
+
position_scaling_factor=1.0,
|
77
|
+
sequence_axis=1,
|
78
|
+
feature_axis=-1,
|
79
|
+
frequency_adjustment_factor=None,
|
80
|
+
low_freq_factor=None,
|
81
|
+
high_freq_factor=None,
|
82
|
+
pretraining_sequence_length=None,
|
83
|
+
**kwargs,
|
84
|
+
):
|
85
|
+
super().__init__(
|
86
|
+
max_wavelength=max_wavelength,
|
87
|
+
scaling_factor=position_scaling_factor,
|
88
|
+
sequence_axis=sequence_axis,
|
89
|
+
feature_axis=feature_axis,
|
90
|
+
**kwargs,
|
91
|
+
)
|
92
|
+
self.max_wavelength = max_wavelength
|
93
|
+
self.sequence_axis = sequence_axis
|
94
|
+
self.feature_axis = feature_axis
|
95
|
+
self.position_scaling_factor = position_scaling_factor
|
96
|
+
self.frequency_adjustment_factor = frequency_adjustment_factor
|
97
|
+
self.low_freq_factor = low_freq_factor
|
98
|
+
self.high_freq_factor = high_freq_factor
|
99
|
+
self.pretraining_sequence_length = pretraining_sequence_length
|
100
|
+
|
101
|
+
grouped_args = [
|
102
|
+
low_freq_factor,
|
103
|
+
high_freq_factor,
|
104
|
+
frequency_adjustment_factor,
|
105
|
+
pretraining_sequence_length,
|
106
|
+
]
|
107
|
+
args_none = [x is None for x in grouped_args]
|
108
|
+
if any(args_none) and not all(args_none):
|
109
|
+
raise ValueError(
|
110
|
+
"Either all of `low_freq_factor`,`high_freq_factor`, "
|
111
|
+
"`frequency_adjustment_factor` and "
|
112
|
+
"`pretraining_sequence_length` should be set, or all of should"
|
113
|
+
" be set `None`."
|
114
|
+
)
|
115
|
+
self.built = True
|
116
|
+
|
117
|
+
def _get_inverse_freq(self, rotary_dim):
|
118
|
+
freq_range = ops.divide(
|
119
|
+
ops.arange(0, rotary_dim, 2, dtype="float32"),
|
120
|
+
ops.cast(rotary_dim, "float32"),
|
121
|
+
)
|
122
|
+
inverse_freq = 1.0 / (self.max_wavelength**freq_range)
|
123
|
+
|
124
|
+
# From llama3.1+ we have additional smoothening and interpolation.
|
125
|
+
# low_freq_factor, high_freq_factor, pretraining_sequence_length,
|
126
|
+
# frequency_adjustment_factor are all set at once so it is fine.
|
127
|
+
if self.low_freq_factor is not None:
|
128
|
+
low_freq_wavelen = (
|
129
|
+
self.pretraining_sequence_length / self.low_freq_factor
|
130
|
+
)
|
131
|
+
high_freq_wavelen = (
|
132
|
+
self.pretraining_sequence_length / self.high_freq_factor
|
133
|
+
)
|
134
|
+
wavelen = 2 * math.pi / inverse_freq
|
135
|
+
|
136
|
+
# wavelen < high_freq_wavelen: do nothing
|
137
|
+
# wavelen > low_freq_wavelen: divide by factor
|
138
|
+
inverse_freq = ops.where(
|
139
|
+
ops.greater(wavelen, low_freq_wavelen),
|
140
|
+
(inverse_freq / self.frequency_adjustment_factor),
|
141
|
+
inverse_freq,
|
142
|
+
)
|
143
|
+
|
144
|
+
# otherwise: interpolate between the two, using a smooth factor
|
145
|
+
smooth_factor = (
|
146
|
+
(self.pretraining_sequence_length / wavelen)
|
147
|
+
- self.low_freq_factor
|
148
|
+
) / (self.high_freq_factor - self.low_freq_factor)
|
149
|
+
smoothed_inv_freq = (1 - smooth_factor) * (
|
150
|
+
inverse_freq / self.frequency_adjustment_factor
|
151
|
+
) + (smooth_factor * inverse_freq)
|
152
|
+
is_medium_freq = ops.logical_and(
|
153
|
+
ops.greater_equal(wavelen, high_freq_wavelen),
|
154
|
+
ops.less_equal(wavelen, low_freq_wavelen),
|
155
|
+
)
|
156
|
+
|
157
|
+
inverse_freq = ops.where(
|
158
|
+
is_medium_freq, smoothed_inv_freq, inverse_freq
|
159
|
+
)
|
160
|
+
|
161
|
+
return inverse_freq
|
162
|
+
|
163
|
+
def get_config(self):
|
164
|
+
config = super().get_config()
|
165
|
+
config.update(
|
166
|
+
{
|
167
|
+
"max_wavelength": self.max_wavelength,
|
168
|
+
"sequence_axis": self.sequence_axis,
|
169
|
+
"feature_axis": self.feature_axis,
|
170
|
+
"position_scaling_factor": self.position_scaling_factor,
|
171
|
+
"frequency_adjustment_factor": self.frequency_adjustment_factor,
|
172
|
+
"low_freq_factor": self.low_freq_factor,
|
173
|
+
"high_freq_factor": self.high_freq_factor,
|
174
|
+
"original_max_embeddings": self.pretraining_sequence_length,
|
175
|
+
}
|
176
|
+
)
|
177
|
+
return config
|
178
|
+
|
179
|
+
def compute_output_shape(self, input_shape):
|
180
|
+
return input_shape
|
@@ -32,8 +32,16 @@ class Llama3Backbone(LlamaBackbone):
|
|
32
32
|
fo each transformer.
|
33
33
|
rope_max_wavelength (int, optional): The maximum angular wavelength of
|
34
34
|
the sine/cosine curves, for rotary embeddings. Defaults to `10000`.
|
35
|
-
|
36
|
-
calculation of roatary embedding. Defaults to `1.0
|
35
|
+
rope_position_scaling_factor (float, optional): The scaling factor for
|
36
|
+
calculation of roatary embedding. Defaults to `1.0`
|
37
|
+
rope_requency_adjustment_factor (float, optional): The scaling factor
|
38
|
+
used to scale the inverse frequencies.
|
39
|
+
rope_low_freq_factor (float, optional): The low frequency factor.
|
40
|
+
Defaults to None.
|
41
|
+
rope_high_freq_factor: (float, optional) Used for Llama3.1+. The high
|
42
|
+
frequency factor. Defaults to None.
|
43
|
+
rope_pretraining_sequence_length: (int, optional) Sequence length during
|
44
|
+
original pretraining. Defaults to None.
|
37
45
|
layer_norm_epsilon (float, optional): Epsilon for the layer
|
38
46
|
normalization layers in the transformer decoder. Defaults to `1e-6`.
|
39
47
|
dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
|
@@ -0,0 +1,130 @@
|
|
1
|
+
"""Llama 3 model preset configurations."""
|
2
|
+
|
3
|
+
# Metadata for loading pretrained model weights.
|
4
|
+
backbone_presets = {
|
5
|
+
"llama3_8b_en": {
|
6
|
+
"metadata": {
|
7
|
+
"description": "8 billion parameter, 32-layer, base LLaMA 3 model.",
|
8
|
+
"params": 8030261248,
|
9
|
+
"path": "llama3",
|
10
|
+
},
|
11
|
+
"kaggle_handle": "kaggle://keras/llama3/keras/llama3_8b_en/4",
|
12
|
+
},
|
13
|
+
"llama3_8b_en_int8": {
|
14
|
+
"metadata": {
|
15
|
+
"description": (
|
16
|
+
"8 billion parameter, 32-layer, base LLaMA 3 model with "
|
17
|
+
"activation and weights quantized to int8."
|
18
|
+
),
|
19
|
+
"params": 8031894016,
|
20
|
+
"path": "llama3",
|
21
|
+
},
|
22
|
+
"kaggle_handle": "kaggle://keras/llama3/keras/llama3_8b_en_int8/2",
|
23
|
+
},
|
24
|
+
"llama3_instruct_8b_en": {
|
25
|
+
"metadata": {
|
26
|
+
"description": (
|
27
|
+
"8 billion parameter, 32-layer, instruction tuned LLaMA 3 "
|
28
|
+
"model."
|
29
|
+
),
|
30
|
+
"params": 8030261248,
|
31
|
+
"path": "llama3",
|
32
|
+
},
|
33
|
+
"kaggle_handle": "kaggle://keras/llama3/keras/llama3_instruct_8b_en/4",
|
34
|
+
},
|
35
|
+
"llama3_instruct_8b_en_int8": {
|
36
|
+
"metadata": {
|
37
|
+
"description": (
|
38
|
+
"8 billion parameter, 32-layer, instruction tuned LLaMA 3 "
|
39
|
+
"model with activation and weights quantized to int8."
|
40
|
+
),
|
41
|
+
"params": 8031894016,
|
42
|
+
"path": "llama3",
|
43
|
+
},
|
44
|
+
"kaggle_handle": (
|
45
|
+
"kaggle://keras/llama3/keras/llama3_instruct_8b_en_int8/2"
|
46
|
+
),
|
47
|
+
},
|
48
|
+
"llama3.1_8b": {
|
49
|
+
"metadata": {
|
50
|
+
"description": (
|
51
|
+
"8 billion parameter, 32-layer, based LLaMA 3.1 model. "
|
52
|
+
),
|
53
|
+
"params": 8030261248,
|
54
|
+
"path": "llama3",
|
55
|
+
},
|
56
|
+
"kaggle_handle": ("kaggle://keras/llama3/keras/llama3.1_8b/1"),
|
57
|
+
},
|
58
|
+
"llama3.1_instruct_8b": {
|
59
|
+
"metadata": {
|
60
|
+
"description": (
|
61
|
+
"8 billion parameter, 32-layer, instruction tuned LLaMA 3.1. "
|
62
|
+
),
|
63
|
+
"params": 8030261248,
|
64
|
+
"path": "llama3",
|
65
|
+
},
|
66
|
+
"kaggle_handle": ("kaggle://keras/llama3/keras/lama3.1_instruct_8b/1"),
|
67
|
+
},
|
68
|
+
"llama3.1_guard_8b": {
|
69
|
+
"metadata": {
|
70
|
+
"description": (
|
71
|
+
"8 billion parameter, 32-layer, LLaMA 3.1 fine-tuned for "
|
72
|
+
"consent safety classification. "
|
73
|
+
),
|
74
|
+
"params": 8030261248,
|
75
|
+
"path": "llama3",
|
76
|
+
},
|
77
|
+
"kaggle_handle": ("kaggle://keras/llama3/keras/llama3.1_guard_8b/1"),
|
78
|
+
},
|
79
|
+
"llama3.2_1b": {
|
80
|
+
"metadata": {
|
81
|
+
"description": (
|
82
|
+
"1 billion parameter, 16-layer, based LLaMA 3.2 model. "
|
83
|
+
),
|
84
|
+
"params": 1498482688,
|
85
|
+
"path": "llama3",
|
86
|
+
},
|
87
|
+
"kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_1b/1"),
|
88
|
+
},
|
89
|
+
"llama3.2_instruct_1b": {
|
90
|
+
"metadata": {
|
91
|
+
"description": (
|
92
|
+
"1 billion parameter, 16-layer, instruction tuned LLaMA 3.2. "
|
93
|
+
),
|
94
|
+
"params": 1498482688,
|
95
|
+
"path": "llama3",
|
96
|
+
},
|
97
|
+
"kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_instruct_1b/1"),
|
98
|
+
},
|
99
|
+
"llama3.2_3b": {
|
100
|
+
"metadata": {
|
101
|
+
"description": (
|
102
|
+
"3 billion parameter, 26-layer, based LLaMA 3.2 model. "
|
103
|
+
),
|
104
|
+
"params": 3606752256,
|
105
|
+
"path": "llama3",
|
106
|
+
},
|
107
|
+
"kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_3b/1"),
|
108
|
+
},
|
109
|
+
"llama3.2_instruct_3b": {
|
110
|
+
"metadata": {
|
111
|
+
"description": (
|
112
|
+
"3 billion parameter, 28-layer, instruction tuned LLaMA 3.2. "
|
113
|
+
),
|
114
|
+
"params": 3606752256,
|
115
|
+
"path": "llama3",
|
116
|
+
},
|
117
|
+
"kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_instruct_3b/1"),
|
118
|
+
},
|
119
|
+
"llama3.2_guard_1b": {
|
120
|
+
"metadata": {
|
121
|
+
"description": (
|
122
|
+
"1 billion parameter, 16-layer, based LLaMA 3.2 model "
|
123
|
+
"fine-tuned for consent safety classification. "
|
124
|
+
),
|
125
|
+
"params": 1498482688,
|
126
|
+
"path": "llama3",
|
127
|
+
},
|
128
|
+
"kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_guard_1b/1"),
|
129
|
+
},
|
130
|
+
}
|
@@ -7,7 +7,7 @@ backbone_cls = Llama3Backbone
|
|
7
7
|
|
8
8
|
|
9
9
|
def convert_backbone_config(transformers_config):
|
10
|
-
|
10
|
+
backbone_config = {
|
11
11
|
"vocabulary_size": transformers_config["vocab_size"],
|
12
12
|
"num_layers": transformers_config["num_hidden_layers"],
|
13
13
|
"num_query_heads": transformers_config["num_attention_heads"],
|
@@ -15,8 +15,28 @@ def convert_backbone_config(transformers_config):
|
|
15
15
|
"intermediate_dim": transformers_config["intermediate_size"],
|
16
16
|
"num_key_value_heads": transformers_config["num_key_value_heads"],
|
17
17
|
"tie_word_embeddings": transformers_config["tie_word_embeddings"],
|
18
|
+
"rope_max_wavelength": transformers_config["rope_theta"],
|
18
19
|
}
|
19
20
|
|
21
|
+
if transformers_config.get("rope_scaling", None) is not None:
|
22
|
+
if transformers_config["rope_scaling"]["rope_type"] != "llama3":
|
23
|
+
raise ValueError("The config should be a valid llama3 config.")
|
24
|
+
backbone_config["rope_frequency_adjustment_factor"] = (
|
25
|
+
transformers_config["rope_scaling"]["factor"]
|
26
|
+
)
|
27
|
+
backbone_config["rope_low_freq_factor"] = transformers_config[
|
28
|
+
"rope_scaling"
|
29
|
+
]["low_freq_factor"]
|
30
|
+
backbone_config["rope_high_freq_factor"] = transformers_config[
|
31
|
+
"rope_scaling"
|
32
|
+
]["high_freq_factor"]
|
33
|
+
backbone_config["rope_pretraining_sequence_length"] = (
|
34
|
+
transformers_config["rope_scaling"][
|
35
|
+
"original_max_position_embeddings"
|
36
|
+
]
|
37
|
+
)
|
38
|
+
return backbone_config
|
39
|
+
|
20
40
|
|
21
41
|
def convert_weights(backbone, loader, transformers_config):
|
22
42
|
loader.port_weight(
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.21.0.
|
3
|
+
Version: 0.21.0.dev202504190357
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -232,6 +232,7 @@ keras_hub/src/models/llama/llama_causal_lm_preprocessor.py
|
|
232
232
|
keras_hub/src/models/llama/llama_decoder.py
|
233
233
|
keras_hub/src/models/llama/llama_layernorm.py
|
234
234
|
keras_hub/src/models/llama/llama_presets.py
|
235
|
+
keras_hub/src/models/llama/llama_rotary_embedding.py
|
235
236
|
keras_hub/src/models/llama/llama_tokenizer.py
|
236
237
|
keras_hub/src/models/llama3/__init__.py
|
237
238
|
keras_hub/src/models/llama3/llama3_backbone.py
|
{keras_hub_nightly-0.21.0.dev202504170402 → keras_hub_nightly-0.21.0.dev202504190357}/setup.py
RENAMED
@@ -23,7 +23,7 @@ def get_version(rel_path):
|
|
23
23
|
|
24
24
|
HERE = pathlib.Path(__file__).parent
|
25
25
|
README = (HERE / "README.md").read_text()
|
26
|
-
VERSION = "0.21.0.
|
26
|
+
VERSION = "0.21.0.dev202504190357" # get_version("keras_hub/src/version_utils.py")
|
27
27
|
|
28
28
|
setup(
|
29
29
|
name="keras-hub-nightly", # "keras-hub",
|