keras-hub-nightly 0.21.0.dev202504160404__tar.gz → 0.21.0.dev202504180401__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (478) hide show
  1. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/falcon/falcon_backbone.py +1 -1
  3. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +1 -0
  4. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama/llama_attention.py +24 -6
  5. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama/llama_backbone.py +50 -16
  6. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama/llama_decoder.py +20 -3
  7. keras_hub_nightly-0.21.0.dev202504180401/keras_hub/src/models/llama/llama_rotary_embedding.py +180 -0
  8. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama3/llama3_backbone.py +10 -2
  9. keras_hub_nightly-0.21.0.dev202504180401/keras_hub/src/models/llama3/llama3_presets.py +130 -0
  10. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_llama3.py +21 -1
  11. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/version_utils.py +1 -1
  12. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  13. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub_nightly.egg-info/SOURCES.txt +1 -0
  14. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/setup.py +1 -1
  15. keras_hub_nightly-0.21.0.dev202504160404/keras_hub/src/models/llama3/llama3_presets.py +0 -48
  16. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/README.md +0 -0
  17. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/__init__.py +0 -0
  18. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/api/__init__.py +0 -0
  19. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/api/layers/__init__.py +0 -0
  20. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/api/metrics/__init__.py +0 -0
  21. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/api/models/__init__.py +0 -0
  22. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/api/samplers/__init__.py +0 -0
  23. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/api/tokenizers/__init__.py +0 -0
  24. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/api/utils/__init__.py +0 -0
  25. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/__init__.py +0 -0
  26. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/api_export.py +0 -0
  27. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/__init__.py +0 -0
  28. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/__init__.py +0 -0
  29. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  30. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  31. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  32. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  33. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  34. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  35. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  36. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  37. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  38. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  39. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  40. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  41. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  42. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  43. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  44. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  45. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  46. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  47. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  48. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  49. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  50. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  51. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  52. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  53. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  54. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/metrics/__init__.py +0 -0
  55. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/metrics/bleu.py +0 -0
  56. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/metrics/edit_distance.py +0 -0
  57. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/metrics/perplexity.py +0 -0
  58. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/metrics/rouge_base.py +0 -0
  59. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/metrics/rouge_l.py +0 -0
  60. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/metrics/rouge_n.py +0 -0
  61. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/__init__.py +0 -0
  62. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/albert/__init__.py +0 -0
  63. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  64. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  65. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  66. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/albert/albert_presets.py +0 -0
  67. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  68. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  69. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  70. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/backbone.py +0 -0
  71. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bart/__init__.py +0 -0
  72. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  73. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bart/bart_presets.py +0 -0
  74. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  75. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  76. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  77. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/basnet/__init__.py +0 -0
  78. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/basnet/basnet.py +0 -0
  79. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  80. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  81. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  82. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  83. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bert/__init__.py +0 -0
  84. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  85. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  86. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  87. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bert/bert_presets.py +0 -0
  88. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  89. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  90. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  91. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bloom/__init__.py +0 -0
  92. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  93. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  94. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  95. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  96. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  97. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  98. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  99. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/causal_lm.py +0 -0
  100. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  101. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/__init__.py +0 -0
  102. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  103. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  104. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  105. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  106. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/clip_presets.py +0 -0
  107. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  108. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  109. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  110. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  111. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/cspnet/__init__.py +0 -0
  112. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  113. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  114. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  115. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  116. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  117. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  118. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  119. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  120. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  121. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  122. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  123. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  124. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  125. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  126. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  127. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  128. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  129. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  130. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  131. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  132. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  133. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  134. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  135. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/densenet/__init__.py +0 -0
  136. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  137. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  138. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  139. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  140. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  141. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  142. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  143. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  144. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  145. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  146. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  147. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  149. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  150. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/efficientnet/cba.py +0 -0
  151. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  152. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  153. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  154. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  155. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  156. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  157. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  158. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/electra/__init__.py +0 -0
  159. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  160. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/electra/electra_presets.py +0 -0
  161. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  162. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/f_net/__init__.py +0 -0
  163. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  164. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  165. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  166. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  167. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  168. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  169. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  170. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/falcon/__init__.py +0 -0
  171. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  172. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  173. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  174. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  175. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  176. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  177. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  178. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/flux/__init__.py +0 -0
  179. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/flux/flux_layers.py +0 -0
  180. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/flux/flux_maths.py +0 -0
  181. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/flux/flux_model.py +0 -0
  182. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/flux/flux_presets.py +0 -0
  183. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  184. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma/__init__.py +0 -0
  186. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  187. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  188. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  189. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  190. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  191. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  192. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  193. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  194. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/__init__.py +0 -0
  195. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_attention.py +0 -0
  196. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  197. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  198. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  199. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  200. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  201. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  202. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  203. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +0 -0
  204. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  205. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt2/__init__.py +0 -0
  206. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  207. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  208. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  209. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  210. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  211. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  212. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  213. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  214. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  215. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  216. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  217. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  218. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  219. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/image_classifier.py +0 -0
  220. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  221. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/image_segmenter.py +0 -0
  222. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  223. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/image_to_image.py +0 -0
  224. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/inpaint.py +0 -0
  225. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama/__init__.py +0 -0
  226. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  227. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  228. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  229. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama/llama_presets.py +0 -0
  230. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  231. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama3/__init__.py +0 -0
  232. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  233. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  234. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  235. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/masked_lm.py +0 -0
  236. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  237. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mistral/__init__.py +0 -0
  238. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  239. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  240. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  241. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  242. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  243. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  244. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  245. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  246. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mit/__init__.py +0 -0
  247. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  248. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  249. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  250. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  251. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mit/mit_layers.py +0 -0
  252. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mit/mit_presets.py +0 -0
  253. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  254. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  255. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  256. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  257. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  258. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  259. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/mobilenet/util.py +0 -0
  260. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/object_detector.py +0 -0
  261. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  262. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/opt/__init__.py +0 -0
  263. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  264. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  265. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  266. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/opt/opt_presets.py +0 -0
  267. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  268. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  269. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  270. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  271. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  272. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  273. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  274. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  275. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  276. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  277. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/__init__.py +0 -0
  278. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  279. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  280. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  281. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  282. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  283. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  284. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  285. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  286. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  287. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/preprocessor.py +0 -0
  288. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/qwen/__init__.py +0 -0
  289. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  290. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  291. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  292. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  293. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  294. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  295. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  296. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/resnet/__init__.py +0 -0
  297. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  298. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  299. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  300. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  301. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  302. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/retinanet/__init__.py +0 -0
  303. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  304. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  305. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  306. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  307. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  308. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  309. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  310. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  311. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roberta/__init__.py +0 -0
  312. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  313. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  314. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  315. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  316. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  317. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  319. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
  320. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  321. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +0 -0
  322. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  323. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  324. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  325. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  326. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +0 -0
  327. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  328. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  329. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/__init__.py +0 -0
  330. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  331. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  332. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  333. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  334. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/sam_layers.py +0 -0
  335. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  336. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/sam_presets.py +0 -0
  337. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  338. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  339. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/segformer/__init__.py +0 -0
  340. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  341. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  342. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  343. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  344. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  345. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  346. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  347. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/__init__.py +0 -0
  348. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  349. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  350. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  351. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  352. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  353. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  354. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  355. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  356. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  357. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  358. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  359. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  360. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  361. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  362. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  363. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  364. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  365. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  366. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  367. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/t5/__init__.py +0 -0
  368. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  369. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  370. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  371. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  372. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/t5/t5_presets.py +0 -0
  373. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  374. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  375. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/task.py +0 -0
  376. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/text_classifier.py +0 -0
  377. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  378. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/text_to_image.py +0 -0
  379. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  380. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vae/__init__.py +0 -0
  381. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  382. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vae/vae_layers.py +0 -0
  383. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vgg/__init__.py +0 -0
  384. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  385. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  386. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  387. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  388. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  389. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit/__init__.py +0 -0
  390. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  391. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  392. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  393. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  394. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit/vit_layers.py +0 -0
  395. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit/vit_presets.py +0 -0
  396. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit_det/__init__.py +0 -0
  397. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  398. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  399. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/whisper/__init__.py +0 -0
  400. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  401. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  402. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  403. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  404. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  405. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  406. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  407. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xception/__init__.py +0 -0
  408. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xception/xception_backbone.py +0 -0
  409. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xception/xception_image_classifier.py +0 -0
  410. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xception/xception_image_classifier_preprocessor.py +0 -0
  411. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xception/xception_image_converter.py +0 -0
  412. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xception/xception_presets.py +0 -0
  413. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  414. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  415. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  416. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  417. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  418. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  419. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  420. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  421. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlnet/__init__.py +0 -0
  422. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  423. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  424. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  425. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  426. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/samplers/__init__.py +0 -0
  427. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/samplers/beam_sampler.py +0 -0
  428. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  429. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  430. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/samplers/random_sampler.py +0 -0
  431. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/samplers/sampler.py +0 -0
  432. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/samplers/serialization.py +0 -0
  433. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  434. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  435. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tests/__init__.py +0 -0
  436. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tests/test_case.py +0 -0
  437. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tokenizers/__init__.py +0 -0
  438. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  439. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  440. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  441. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  442. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  443. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  444. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  445. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  446. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/__init__.py +0 -0
  447. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  448. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  449. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/keras_utils.py +0 -0
  450. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/pipeline_model.py +0 -0
  451. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/preset_utils.py +0 -0
  452. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/python_utils.py +0 -0
  453. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/tensor_utils.py +0 -0
  454. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/timm/__init__.py +0 -0
  455. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  456. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  457. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  458. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  459. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  460. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  461. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  462. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/__init__.py +0 -0
  463. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  464. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  465. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  466. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  467. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  468. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  469. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  470. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  471. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  472. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  473. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  474. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  475. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  476. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub_nightly.egg-info/requires.txt +0 -0
  477. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  478. {keras_hub_nightly-0.21.0.dev202504160404 → keras_hub_nightly-0.21.0.dev202504180401}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.21.0.dev202504160404
3
+ Version: 0.21.0.dev202504180401
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -29,7 +29,7 @@ class FalconBackbone(Backbone):
29
29
  layer_norm_epsilon: float. Epsilon for the layer normalization layers in
30
30
  the transformer decoder.
31
31
  attention_dropout_rate: float. Dropout probability for the attention.
32
- feedforward_dropout_rate: flaot. Dropout probability for the
32
+ feedforward_dropout_rate: float. Dropout probability for the
33
33
  feedforward.
34
34
  dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
35
35
  for model computations and weights. Note that some computations,
@@ -512,6 +512,7 @@ class Gemma3CausalLMPreprocessor(CausalLMPreprocessor):
512
512
 
513
513
  # Extract text part of the input.
514
514
  prompts, responses = x["prompts"], x["responses"]
515
+ tf.debugging.assert_shapes([(prompts, ("N",)), (responses, ("N",))])
515
516
 
516
517
  # Find out if the input is batched/not batched. Uprank if not batched.
517
518
  # In other preprocessors, we don't have to do this, but here, all
@@ -3,7 +3,9 @@ import math
3
3
  import keras
4
4
  from keras import ops
5
5
 
6
- from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
6
+ from keras_hub.src.models.llama.llama_rotary_embedding import (
7
+ LlamaRotaryEmbedding,
8
+ )
7
9
  from keras_hub.src.utils.keras_utils import clone_initializer
8
10
  from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
11
 
@@ -16,7 +18,11 @@ class LlamaAttention(keras.layers.Layer):
16
18
  num_query_heads,
17
19
  num_key_value_heads,
18
20
  rope_max_wavelength=10000,
19
- rope_scaling_factor=1.0,
21
+ rope_position_scaling_factor=1.0,
22
+ rope_frequency_adjustment_factor=None,
23
+ rope_low_freq_factor=None,
24
+ rope_high_freq_factor=None,
25
+ rope_pretraining_sequence_length=None,
20
26
  kernel_initializer="glorot_uniform",
21
27
  dropout=0,
22
28
  **kwargs,
@@ -28,13 +34,16 @@ class LlamaAttention(keras.layers.Layer):
28
34
 
29
35
  self.num_key_value_groups = num_query_heads // num_key_value_heads
30
36
  self.rope_max_wavelength = rope_max_wavelength
37
+ self.rope_position_scaling_factor = rope_position_scaling_factor
38
+ self.rope_frequency_adjustment_factor = rope_frequency_adjustment_factor
39
+ self.rope_low_freq_factor = rope_low_freq_factor
40
+ self.rope_high_freq_factor = rope_high_freq_factor
41
+ self.rope_pretraining_sequence_length = rope_pretraining_sequence_length
31
42
 
32
43
  self.kernel_initializer = keras.initializers.get(
33
44
  clone_initializer(kernel_initializer)
34
45
  )
35
46
 
36
- self.rope_scaling_factor = rope_scaling_factor
37
-
38
47
  def build(self, inputs_shape):
39
48
  # Einsum variables:
40
49
  # b = batch size
@@ -103,9 +112,13 @@ class LlamaAttention(keras.layers.Layer):
103
112
  )
104
113
  self._output_dense.build((None, None, self.num_query_heads, head_dim))
105
114
 
106
- self.rotary_embedding_layer = RotaryEmbedding(
115
+ self.rotary_embedding_layer = LlamaRotaryEmbedding(
107
116
  max_wavelength=self.rope_max_wavelength,
108
- scaling_factor=self.rope_scaling_factor,
117
+ position_scaling_factor=self.rope_position_scaling_factor,
118
+ frequency_adjustment_factor=self.rope_frequency_adjustment_factor,
119
+ low_freq_factor=self.rope_low_freq_factor,
120
+ high_freq_factor=self.rope_high_freq_factor,
121
+ pretraining_sequence_length=self.rope_pretraining_sequence_length,
109
122
  dtype=self.dtype_policy,
110
123
  )
111
124
 
@@ -224,6 +237,11 @@ class LlamaAttention(keras.layers.Layer):
224
237
  "num_key_value_heads": self.num_key_value_heads,
225
238
  "rope_max_wavelength": self.rope_max_wavelength,
226
239
  "rope_scaling_factor": self.rope_scaling_factor,
240
+ "rope_low_freq_factor": self.rope_low_freq_factor,
241
+ "rope_high_freq_factor": self.rope_high_freq_factor,
242
+ "rope_pretraining_sequence_length": (
243
+ self.rope_pretraining_sequence_length
244
+ ),
227
245
  "kernel_initializer": keras.initializers.serialize(
228
246
  self.kernel_initializer
229
247
  ),
@@ -30,22 +30,30 @@ class LlamaBackbone(Backbone):
30
30
  constructor.
31
31
 
32
32
  Args:
33
- vocabulary_size (int): The size of the token vocabulary.
34
- num_layers (int): The number of transformer layers.
35
- num_query_heads (int): The number of query attention heads for
33
+ vocabulary_size: int. The size of the token vocabulary.
34
+ num_layers: int. The number of transformer layers.
35
+ num_query_heads : int. The number of query attention heads for
36
36
  each transformer.
37
- hidden_dim (int): The size of the transformer encoding and pooling
37
+ hidden_dim : int. The size of the transformer encoding and pooling
38
38
  layers.
39
- intermediate_dim (int): The output dimension of the first Dense layer in
39
+ intermediate_dim : int. The output dimension of the first Dense layer in
40
40
  a three-layer feedforward network for each transformer.
41
- num_key_value_heads (int): The number of key and value attention heads
41
+ num_key_value_heads : int. The number of key and value attention heads
42
42
  for each transformer.
43
- rope_max_wavelength (int, optional): The maximum angular wavelength of
43
+ rope_max_wavelength : int. The maximum angular wavelength of
44
44
  the sine/cosine curves, for rotary embeddings. Defaults to `10000`.
45
- rope_scaling_factor (float, optional): The scaling factor for
46
- calculation of roatary embedding. Defaults to `1.0`.
47
- layer_norm_epsilon (float, optional): Epsilon for the layer
48
- normalization layers in the transformer decoder. Defaults to `1e-6`.
45
+ rope_position_scaling_factor: float. The scaling factor for
46
+ calculation of rotary embedding. Defaults to `1.0`
47
+ rope_frequency_adjustment_factor: float. The scaling factor
48
+ used to scale the inverse frequencies. Defaults to `None`.
49
+ rope_low_freq_factor: float. The low frequency scaling
50
+ factor. Defaults to `None`.
51
+ rope_high_freq_factor: float. Used for Llama3.1+. The high
52
+ frequency scaling factor. Defaults to `None`.
53
+ rope_pretraining_sequence_length: int. Used for Llama3.1+.
54
+ Defaults to `None`.
55
+ layer_norm_epsilon : float. Epsilon for the layer normalization layers
56
+ in the transformer decoder. Defaults to `1e-6`.
49
57
  dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
50
58
  for model computations and weights. Note that some computations,
51
59
  such as softmax and layer normalization, will always be done at
@@ -87,7 +95,11 @@ class LlamaBackbone(Backbone):
87
95
  intermediate_dim,
88
96
  num_key_value_heads,
89
97
  rope_max_wavelength=10000,
90
- rope_scaling_factor=1.0,
98
+ rope_position_scaling_factor=1.0,
99
+ rope_frequency_adjustment_factor=None,
100
+ rope_low_freq_factor=None,
101
+ rope_high_freq_factor=None,
102
+ rope_pretraining_sequence_length=None,
91
103
  layer_norm_epsilon=1e-6,
92
104
  dropout=0,
93
105
  dtype=None,
@@ -110,7 +122,15 @@ class LlamaBackbone(Backbone):
110
122
  num_query_heads=num_query_heads,
111
123
  num_key_value_heads=num_key_value_heads,
112
124
  rope_max_wavelength=rope_max_wavelength,
113
- rope_scaling_factor=rope_scaling_factor,
125
+ rope_position_scaling_factor=rope_position_scaling_factor,
126
+ rope_frequency_adjustment_factor=(
127
+ rope_frequency_adjustment_factor
128
+ ),
129
+ rope_low_freq_factor=rope_low_freq_factor,
130
+ rope_high_freq_factor=rope_high_freq_factor,
131
+ rope_pretraining_sequence_length=(
132
+ rope_pretraining_sequence_length
133
+ ),
114
134
  layer_norm_epsilon=layer_norm_epsilon,
115
135
  activation=ops.silu,
116
136
  kernel_initializer=_llama_kernel_initializer(stddev=0.02),
@@ -152,9 +172,13 @@ class LlamaBackbone(Backbone):
152
172
  self.num_query_heads = num_query_heads
153
173
  self.hidden_dim = hidden_dim
154
174
  self.intermediate_dim = intermediate_dim
155
- self.rope_max_wavelength = rope_max_wavelength
156
175
  self.num_key_value_heads = num_key_value_heads
157
- self.rope_scaling_factor = rope_scaling_factor
176
+ self.rope_max_wavelength = rope_max_wavelength
177
+ self.rope_position_scaling_factor = rope_position_scaling_factor
178
+ self.rope_frequency_adjustment_factor = rope_frequency_adjustment_factor
179
+ self.rope_low_freq_factor = rope_low_freq_factor
180
+ self.rope_high_freq_factor = rope_high_freq_factor
181
+ self.rope_pretraining_sequence_length = rope_pretraining_sequence_length
158
182
  self.layer_norm_epsilon = layer_norm_epsilon
159
183
  self.dropout = dropout
160
184
  self.tie_word_embeddings = tie_word_embeddings
@@ -169,7 +193,17 @@ class LlamaBackbone(Backbone):
169
193
  "hidden_dim": self.hidden_dim,
170
194
  "intermediate_dim": self.intermediate_dim,
171
195
  "rope_max_wavelength": self.rope_max_wavelength,
172
- "rope_scaling_factor": self.rope_scaling_factor,
196
+ "rope_position_scaling_factor": (
197
+ self.rope_position_scaling_factor
198
+ ),
199
+ "rope_frequency_adjustment_factor": (
200
+ self.rope_frequency_adjustment_factor
201
+ ),
202
+ "rope_low_freq_factor": self.rope_low_freq_factor,
203
+ "rope_high_freq_factor": self.rope_high_freq_factor,
204
+ "rope_pretraining_sequence_length": (
205
+ self.rope_pretraining_sequence_length
206
+ ),
173
207
  "num_key_value_heads": self.num_key_value_heads,
174
208
  "layer_norm_epsilon": self.layer_norm_epsilon,
175
209
  "dropout": self.dropout,
@@ -21,7 +21,11 @@ class LlamaTransformerDecoder(keras.layers.Layer):
21
21
  num_query_heads,
22
22
  num_key_value_heads,
23
23
  rope_max_wavelength=10000,
24
- rope_scaling_factor=1.0,
24
+ rope_position_scaling_factor=1.0,
25
+ rope_frequency_adjustment_factor=None,
26
+ rope_low_freq_factor=None,
27
+ rope_high_freq_factor=None,
28
+ rope_pretraining_sequence_length=None,
25
29
  activation="silu",
26
30
  layer_norm_epsilon=1e-5,
27
31
  kernel_initializer="glorot_uniform",
@@ -34,7 +38,11 @@ class LlamaTransformerDecoder(keras.layers.Layer):
34
38
  self.num_key_value_heads = num_key_value_heads
35
39
 
36
40
  self.rope_max_wavelength = rope_max_wavelength
37
- self.rope_scaling_factor = rope_scaling_factor
41
+ self.rope_position_scaling_factor = rope_position_scaling_factor
42
+ self.rope_frequency_adjustment_factor = rope_frequency_adjustment_factor
43
+ self.rope_low_freq_factor = rope_low_freq_factor
44
+ self.rope_high_freq_factor = rope_high_freq_factor
45
+ self.rope_pretraining_sequence_length = rope_pretraining_sequence_length
38
46
 
39
47
  self.dropout = dropout
40
48
 
@@ -53,7 +61,11 @@ class LlamaTransformerDecoder(keras.layers.Layer):
53
61
  num_query_heads=self.num_query_heads,
54
62
  num_key_value_heads=self.num_key_value_heads,
55
63
  rope_max_wavelength=self.rope_max_wavelength,
56
- rope_scaling_factor=self.rope_scaling_factor,
64
+ rope_position_scaling_factor=self.rope_position_scaling_factor,
65
+ rope_frequency_adjustment_factor=self.rope_frequency_adjustment_factor,
66
+ rope_low_freq_factor=self.rope_low_freq_factor,
67
+ rope_high_freq_factor=self.rope_high_freq_factor,
68
+ rope_pretraining_sequence_length=self.rope_pretraining_sequence_length,
57
69
  kernel_initializer=clone_initializer(self.kernel_initializer),
58
70
  dropout=self.dropout,
59
71
  dtype=self.dtype_policy,
@@ -221,6 +233,11 @@ class LlamaTransformerDecoder(keras.layers.Layer):
221
233
  "num_query_heads": self.num_query_heads,
222
234
  "rope_max_wavelength": self.rope_max_wavelength,
223
235
  "rope_scaling_factor": self.rope_scaling_factor,
236
+ "rope_low_freq_factor": self.rope_low_freq_factor,
237
+ "rope_high_freq_factor": self.rope_high_freq_factor,
238
+ "rope_pretraining_sequence_length": (
239
+ self.rope_pretraining_sequence_length
240
+ ),
224
241
  "num_key_value_heads": self.num_key_value_heads,
225
242
  "activation": keras.activations.serialize(self.activation),
226
243
  "layer_norm_epsilon": self.layer_norm_epsilon,
@@ -0,0 +1,180 @@
1
+ import math
2
+
3
+ from keras import ops
4
+
5
+ from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
6
+
7
+
8
+ class LlamaRotaryEmbedding(RotaryEmbedding):
9
+ """Rotary positional encoding layer.
10
+
11
+ This layer encodes absolute positional information with a rotation
12
+ matrix. It calculates the rotary encoding with a mix of sine and
13
+ cosine functions with geometrically increasing wavelengths.
14
+ Defined and formulated in
15
+ [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864v4).
16
+ The input must be a tensor with shape a sequence dimension and a feature
17
+ dimension. Typically, this will either an input with shape
18
+ `(batch_size, sequence_length, feature_length)` or
19
+ `(batch_size, sequence_length, num_heads, feature_length)`.
20
+ This layer will return a new tensor with the rotary embedding applied to
21
+ the input tensor.
22
+ It is extended from `RotaryEmbedding` layer in `keras_hub.layers`.
23
+ It has additional smoothening and interpolation for some frequency ranges.
24
+
25
+ Args:
26
+ max_wavelength: int. The maximum angular wavelength of the sine/cosine
27
+ curves. Defaults to `10000`.
28
+ position_scaling_factor: float. The scaling factor used to scale
29
+ positions of the tokens. Defaults to `1.0`.
30
+ frequency_adjustment_factor: float. The scaling factor used to scale the
31
+ inverse frequencies. Defaults to `None`.
32
+ low_freq_factor: float. The low frequency scaling factor.
33
+ Defaults to `None`.
34
+ high_freq_factor: float. The high frequency scaling factor.
35
+ Defaults to `None`.
36
+ pretraining_sequence_length: int. Used for Llama3.1+, the original
37
+ context length at time of pretraining. Defaults to `None`.
38
+ sequence_axis: int. Sequence axis in the input tensor.
39
+ feature_axis: int. Feature axis in the input tensor.
40
+ **kwargs: other keyword arguments passed to `keras.layers.Layer`,
41
+ including `name`, `trainable`, `dtype` etc.
42
+
43
+ Call arguments:
44
+ inputs: The tensor inputs to apply the embedding to. This can have
45
+ any shape, but must contain both a sequence and feature axis. The
46
+ rotary embedding will be applied to `inputs` and returned.
47
+ start_index: An integer or integer tensor. The starting position to
48
+ compute the rotary embedding from. This is useful during cached
49
+ decoding, where each position is predicted separately in a loop.
50
+
51
+ Examples:
52
+
53
+ ```python
54
+ batch_size = 16
55
+ feature_length = 18
56
+ sequence_length = 256
57
+ num_heads = 8
58
+
59
+ # No multi-head dimension.
60
+ tensor = np.ones((batch_size, sequence_length, feature_length))
61
+ rot_emb_layer = RotaryEmbedding()
62
+ tensor_rot = rot_emb_layer(tensor)
63
+
64
+ # With multi-head dimension.
65
+ tensor = np.ones((batch_size, sequence_length, num_heads, feature_length))
66
+ tensor_rot = rot_emb_layer(tensor)
67
+ ```
68
+
69
+ References:
70
+ - [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864v4)
71
+ """
72
+
73
+ def __init__(
74
+ self,
75
+ max_wavelength=10000,
76
+ position_scaling_factor=1.0,
77
+ sequence_axis=1,
78
+ feature_axis=-1,
79
+ frequency_adjustment_factor=None,
80
+ low_freq_factor=None,
81
+ high_freq_factor=None,
82
+ pretraining_sequence_length=None,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(
86
+ max_wavelength=max_wavelength,
87
+ scaling_factor=position_scaling_factor,
88
+ sequence_axis=sequence_axis,
89
+ feature_axis=feature_axis,
90
+ **kwargs,
91
+ )
92
+ self.max_wavelength = max_wavelength
93
+ self.sequence_axis = sequence_axis
94
+ self.feature_axis = feature_axis
95
+ self.position_scaling_factor = position_scaling_factor
96
+ self.frequency_adjustment_factor = frequency_adjustment_factor
97
+ self.low_freq_factor = low_freq_factor
98
+ self.high_freq_factor = high_freq_factor
99
+ self.pretraining_sequence_length = pretraining_sequence_length
100
+
101
+ grouped_args = [
102
+ low_freq_factor,
103
+ high_freq_factor,
104
+ frequency_adjustment_factor,
105
+ pretraining_sequence_length,
106
+ ]
107
+ args_none = [x is None for x in grouped_args]
108
+ if any(args_none) and not all(args_none):
109
+ raise ValueError(
110
+ "Either all of `low_freq_factor`,`high_freq_factor`, "
111
+ "`frequency_adjustment_factor` and "
112
+ "`pretraining_sequence_length` should be set, or all of should"
113
+ " be set `None`."
114
+ )
115
+ self.built = True
116
+
117
+ def _get_inverse_freq(self, rotary_dim):
118
+ freq_range = ops.divide(
119
+ ops.arange(0, rotary_dim, 2, dtype="float32"),
120
+ ops.cast(rotary_dim, "float32"),
121
+ )
122
+ inverse_freq = 1.0 / (self.max_wavelength**freq_range)
123
+
124
+ # From llama3.1+ we have additional smoothening and interpolation.
125
+ # low_freq_factor, high_freq_factor, pretraining_sequence_length,
126
+ # frequency_adjustment_factor are all set at once so it is fine.
127
+ if self.low_freq_factor is not None:
128
+ low_freq_wavelen = (
129
+ self.pretraining_sequence_length / self.low_freq_factor
130
+ )
131
+ high_freq_wavelen = (
132
+ self.pretraining_sequence_length / self.high_freq_factor
133
+ )
134
+ wavelen = 2 * math.pi / inverse_freq
135
+
136
+ # wavelen < high_freq_wavelen: do nothing
137
+ # wavelen > low_freq_wavelen: divide by factor
138
+ inverse_freq = ops.where(
139
+ ops.greater(wavelen, low_freq_wavelen),
140
+ (inverse_freq / self.frequency_adjustment_factor),
141
+ inverse_freq,
142
+ )
143
+
144
+ # otherwise: interpolate between the two, using a smooth factor
145
+ smooth_factor = (
146
+ (self.pretraining_sequence_length / wavelen)
147
+ - self.low_freq_factor
148
+ ) / (self.high_freq_factor - self.low_freq_factor)
149
+ smoothed_inv_freq = (1 - smooth_factor) * (
150
+ inverse_freq / self.frequency_adjustment_factor
151
+ ) + (smooth_factor * inverse_freq)
152
+ is_medium_freq = ops.logical_and(
153
+ ops.greater_equal(wavelen, high_freq_wavelen),
154
+ ops.less_equal(wavelen, low_freq_wavelen),
155
+ )
156
+
157
+ inverse_freq = ops.where(
158
+ is_medium_freq, smoothed_inv_freq, inverse_freq
159
+ )
160
+
161
+ return inverse_freq
162
+
163
+ def get_config(self):
164
+ config = super().get_config()
165
+ config.update(
166
+ {
167
+ "max_wavelength": self.max_wavelength,
168
+ "sequence_axis": self.sequence_axis,
169
+ "feature_axis": self.feature_axis,
170
+ "position_scaling_factor": self.position_scaling_factor,
171
+ "frequency_adjustment_factor": self.frequency_adjustment_factor,
172
+ "low_freq_factor": self.low_freq_factor,
173
+ "high_freq_factor": self.high_freq_factor,
174
+ "original_max_embeddings": self.pretraining_sequence_length,
175
+ }
176
+ )
177
+ return config
178
+
179
+ def compute_output_shape(self, input_shape):
180
+ return input_shape
@@ -32,8 +32,16 @@ class Llama3Backbone(LlamaBackbone):
32
32
  fo each transformer.
33
33
  rope_max_wavelength (int, optional): The maximum angular wavelength of
34
34
  the sine/cosine curves, for rotary embeddings. Defaults to `10000`.
35
- rope_scaling_factor (float, optional): The scaling factor for
36
- calculation of roatary embedding. Defaults to `1.0`.
35
+ rope_position_scaling_factor (float, optional): The scaling factor for
36
+ calculation of roatary embedding. Defaults to `1.0`
37
+ rope_requency_adjustment_factor (float, optional): The scaling factor
38
+ used to scale the inverse frequencies.
39
+ rope_low_freq_factor (float, optional): The low frequency factor.
40
+ Defaults to None.
41
+ rope_high_freq_factor: (float, optional) Used for Llama3.1+. The high
42
+ frequency factor. Defaults to None.
43
+ rope_pretraining_sequence_length: (int, optional) Sequence length during
44
+ original pretraining. Defaults to None.
37
45
  layer_norm_epsilon (float, optional): Epsilon for the layer
38
46
  normalization layers in the transformer decoder. Defaults to `1e-6`.
39
47
  dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
@@ -0,0 +1,130 @@
1
+ """Llama 3 model preset configurations."""
2
+
3
+ # Metadata for loading pretrained model weights.
4
+ backbone_presets = {
5
+ "llama3_8b_en": {
6
+ "metadata": {
7
+ "description": "8 billion parameter, 32-layer, base LLaMA 3 model.",
8
+ "params": 8030261248,
9
+ "path": "llama3",
10
+ },
11
+ "kaggle_handle": "kaggle://keras/llama3/keras/llama3_8b_en/4",
12
+ },
13
+ "llama3_8b_en_int8": {
14
+ "metadata": {
15
+ "description": (
16
+ "8 billion parameter, 32-layer, base LLaMA 3 model with "
17
+ "activation and weights quantized to int8."
18
+ ),
19
+ "params": 8031894016,
20
+ "path": "llama3",
21
+ },
22
+ "kaggle_handle": "kaggle://keras/llama3/keras/llama3_8b_en_int8/2",
23
+ },
24
+ "llama3_instruct_8b_en": {
25
+ "metadata": {
26
+ "description": (
27
+ "8 billion parameter, 32-layer, instruction tuned LLaMA 3 "
28
+ "model."
29
+ ),
30
+ "params": 8030261248,
31
+ "path": "llama3",
32
+ },
33
+ "kaggle_handle": "kaggle://keras/llama3/keras/llama3_instruct_8b_en/4",
34
+ },
35
+ "llama3_instruct_8b_en_int8": {
36
+ "metadata": {
37
+ "description": (
38
+ "8 billion parameter, 32-layer, instruction tuned LLaMA 3 "
39
+ "model with activation and weights quantized to int8."
40
+ ),
41
+ "params": 8031894016,
42
+ "path": "llama3",
43
+ },
44
+ "kaggle_handle": (
45
+ "kaggle://keras/llama3/keras/llama3_instruct_8b_en_int8/2"
46
+ ),
47
+ },
48
+ "llama3.1_8b": {
49
+ "metadata": {
50
+ "description": (
51
+ "8 billion parameter, 32-layer, based LLaMA 3.1 model. "
52
+ ),
53
+ "params": 8030261248,
54
+ "path": "llama3",
55
+ },
56
+ "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.1_8b/1"),
57
+ },
58
+ "llama3.1_instruct_8b": {
59
+ "metadata": {
60
+ "description": (
61
+ "8 billion parameter, 32-layer, instruction tuned LLaMA 3.1. "
62
+ ),
63
+ "params": 8030261248,
64
+ "path": "llama3",
65
+ },
66
+ "kaggle_handle": ("kaggle://keras/llama3/keras/lama3.1_instruct_8b/1"),
67
+ },
68
+ "llama3.1_guard_8b": {
69
+ "metadata": {
70
+ "description": (
71
+ "8 billion parameter, 32-layer, LLaMA 3.1 fine-tuned for "
72
+ "consent safety classification. "
73
+ ),
74
+ "params": 8030261248,
75
+ "path": "llama3",
76
+ },
77
+ "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.1_guard_8b/1"),
78
+ },
79
+ "llama3.2_1b": {
80
+ "metadata": {
81
+ "description": (
82
+ "1 billion parameter, 16-layer, based LLaMA 3.2 model. "
83
+ ),
84
+ "params": 1498482688,
85
+ "path": "llama3",
86
+ },
87
+ "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_1b/1"),
88
+ },
89
+ "llama3.2_instruct_1b": {
90
+ "metadata": {
91
+ "description": (
92
+ "1 billion parameter, 16-layer, instruction tuned LLaMA 3.2. "
93
+ ),
94
+ "params": 1498482688,
95
+ "path": "llama3",
96
+ },
97
+ "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_instruct_1b/1"),
98
+ },
99
+ "llama3.2_3b": {
100
+ "metadata": {
101
+ "description": (
102
+ "3 billion parameter, 26-layer, based LLaMA 3.2 model. "
103
+ ),
104
+ "params": 3606752256,
105
+ "path": "llama3",
106
+ },
107
+ "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_3b/1"),
108
+ },
109
+ "llama3.2_instruct_3b": {
110
+ "metadata": {
111
+ "description": (
112
+ "3 billion parameter, 28-layer, instruction tuned LLaMA 3.2. "
113
+ ),
114
+ "params": 3606752256,
115
+ "path": "llama3",
116
+ },
117
+ "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_instruct_3b/1"),
118
+ },
119
+ "llama3.2_guard_1b": {
120
+ "metadata": {
121
+ "description": (
122
+ "1 billion parameter, 16-layer, based LLaMA 3.2 model "
123
+ "fine-tuned for consent safety classification. "
124
+ ),
125
+ "params": 1498482688,
126
+ "path": "llama3",
127
+ },
128
+ "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.2_guard_1b/1"),
129
+ },
130
+ }
@@ -7,7 +7,7 @@ backbone_cls = Llama3Backbone
7
7
 
8
8
 
9
9
  def convert_backbone_config(transformers_config):
10
- return {
10
+ backbone_config = {
11
11
  "vocabulary_size": transformers_config["vocab_size"],
12
12
  "num_layers": transformers_config["num_hidden_layers"],
13
13
  "num_query_heads": transformers_config["num_attention_heads"],
@@ -15,8 +15,28 @@ def convert_backbone_config(transformers_config):
15
15
  "intermediate_dim": transformers_config["intermediate_size"],
16
16
  "num_key_value_heads": transformers_config["num_key_value_heads"],
17
17
  "tie_word_embeddings": transformers_config["tie_word_embeddings"],
18
+ "rope_max_wavelength": transformers_config["rope_theta"],
18
19
  }
19
20
 
21
+ if transformers_config.get("rope_scaling", None) is not None:
22
+ if transformers_config["rope_scaling"]["rope_type"] != "llama3":
23
+ raise ValueError("The config should be a valid llama3 config.")
24
+ backbone_config["rope_frequency_adjustment_factor"] = (
25
+ transformers_config["rope_scaling"]["factor"]
26
+ )
27
+ backbone_config["rope_low_freq_factor"] = transformers_config[
28
+ "rope_scaling"
29
+ ]["low_freq_factor"]
30
+ backbone_config["rope_high_freq_factor"] = transformers_config[
31
+ "rope_scaling"
32
+ ]["high_freq_factor"]
33
+ backbone_config["rope_pretraining_sequence_length"] = (
34
+ transformers_config["rope_scaling"][
35
+ "original_max_position_embeddings"
36
+ ]
37
+ )
38
+ return backbone_config
39
+
20
40
 
21
41
  def convert_weights(backbone, loader, transformers_config):
22
42
  loader.port_weight(
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.21.0.dev202504160404"
4
+ __version__ = "0.21.0.dev202504180401"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.21.0.dev202504160404
3
+ Version: 0.21.0.dev202504180401
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -232,6 +232,7 @@ keras_hub/src/models/llama/llama_causal_lm_preprocessor.py
232
232
  keras_hub/src/models/llama/llama_decoder.py
233
233
  keras_hub/src/models/llama/llama_layernorm.py
234
234
  keras_hub/src/models/llama/llama_presets.py
235
+ keras_hub/src/models/llama/llama_rotary_embedding.py
235
236
  keras_hub/src/models/llama/llama_tokenizer.py
236
237
  keras_hub/src/models/llama3/__init__.py
237
238
  keras_hub/src/models/llama3/llama3_backbone.py
@@ -23,7 +23,7 @@ def get_version(rel_path):
23
23
 
24
24
  HERE = pathlib.Path(__file__).parent
25
25
  README = (HERE / "README.md").read_text()
26
- VERSION = "0.21.0.dev202504160404" # get_version("keras_hub/src/version_utils.py")
26
+ VERSION = "0.21.0.dev202504180401" # get_version("keras_hub/src/version_utils.py")
27
27
 
28
28
  setup(
29
29
  name="keras-hub-nightly", # "keras-hub",