keras-hub-nightly 0.20.0.dev202504030357__tar.gz → 0.21.0.dev202504040358__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (472) hide show
  1. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/api/models/__init__.py +5 -20
  3. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/api/tokenizers/__init__.py +0 -4
  4. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/preprocessing/image_converter.py +26 -16
  5. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma3/gemma3_attention.py +74 -21
  6. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma3/gemma3_backbone.py +117 -46
  7. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +72 -15
  8. keras_hub_nightly-0.21.0.dev202504040358/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +848 -0
  9. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +23 -19
  10. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma3/gemma3_image_converter.py +6 -0
  11. keras_hub_nightly-0.21.0.dev202504040358/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +119 -0
  12. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma3/gemma3_presets.py +74 -8
  13. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +9 -0
  14. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/gemma3/gemma3_vit.py → keras_hub_nightly-0.21.0.dev202504040358/keras_hub/src/models/gemma3/gemma3_vision_encoder.py +150 -139
  15. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/qwen/qwen_backbone.py +0 -7
  16. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -7
  17. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -7
  18. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -9
  19. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +1 -1
  20. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +2 -2
  21. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit/vit_image_converter.py +8 -3
  22. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tests/test_case.py +4 -0
  23. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/tensor_utils.py +6 -0
  24. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/version_utils.py +1 -1
  25. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  26. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub_nightly.egg-info/SOURCES.txt +1 -1
  27. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/setup.py +1 -1
  28. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -691
  29. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -79
  30. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/README.md +0 -0
  31. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/__init__.py +0 -0
  32. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/api/__init__.py +0 -0
  33. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/api/layers/__init__.py +0 -0
  34. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/api/metrics/__init__.py +0 -0
  35. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/api/samplers/__init__.py +0 -0
  36. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/api/utils/__init__.py +0 -0
  37. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/__init__.py +0 -0
  38. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/api_export.py +0 -0
  39. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/__init__.py +0 -0
  40. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/__init__.py +0 -0
  41. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  42. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  43. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  44. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  45. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  46. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  47. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  48. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  49. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  50. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  51. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  52. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  53. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  54. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  55. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  56. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  57. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  58. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  59. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  60. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  61. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  62. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  63. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  64. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  65. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/metrics/__init__.py +0 -0
  66. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/metrics/bleu.py +0 -0
  67. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/metrics/edit_distance.py +0 -0
  68. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/metrics/perplexity.py +0 -0
  69. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/metrics/rouge_base.py +0 -0
  70. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/metrics/rouge_l.py +0 -0
  71. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/metrics/rouge_n.py +0 -0
  72. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/__init__.py +0 -0
  73. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/albert/__init__.py +0 -0
  74. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  75. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  76. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  77. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/albert/albert_presets.py +0 -0
  78. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  79. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  80. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  81. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/backbone.py +0 -0
  82. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bart/__init__.py +0 -0
  83. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  84. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bart/bart_presets.py +0 -0
  85. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  86. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  87. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  88. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/basnet/__init__.py +0 -0
  89. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/basnet/basnet.py +0 -0
  90. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  91. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  92. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  93. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  94. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bert/__init__.py +0 -0
  95. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  96. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  97. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  98. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bert/bert_presets.py +0 -0
  99. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  100. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  101. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  102. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bloom/__init__.py +0 -0
  103. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  104. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  105. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  106. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  107. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  108. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  109. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  110. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/causal_lm.py +0 -0
  111. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  112. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/__init__.py +0 -0
  113. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  114. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  115. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  116. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  117. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/clip_presets.py +0 -0
  118. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  119. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  120. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  121. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  122. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/cspnet/__init__.py +0 -0
  123. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  124. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  125. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  126. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  127. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  128. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  129. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  130. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  131. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  132. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  133. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  134. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  135. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  136. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  137. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  138. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  139. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  140. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  141. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  142. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  143. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  144. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  145. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  146. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/densenet/__init__.py +0 -0
  147. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  148. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  149. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  150. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  151. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  152. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  153. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  154. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  155. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  156. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  157. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  158. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  159. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  160. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  161. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/efficientnet/cba.py +0 -0
  162. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  163. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  164. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  165. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  166. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  167. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  168. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  169. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/electra/__init__.py +0 -0
  170. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  171. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/electra/electra_presets.py +0 -0
  172. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  173. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/f_net/__init__.py +0 -0
  174. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  175. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  176. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  177. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  178. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  179. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  180. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  181. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/falcon/__init__.py +0 -0
  182. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  183. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  184. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  185. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  186. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  187. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  188. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  189. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  190. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/flux/__init__.py +0 -0
  191. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/flux/flux_layers.py +0 -0
  192. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/flux/flux_maths.py +0 -0
  193. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/flux/flux_model.py +0 -0
  194. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/flux/flux_presets.py +0 -0
  195. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  196. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  197. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma/__init__.py +0 -0
  198. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  199. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  200. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  201. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  202. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  203. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  204. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  205. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  206. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma3/__init__.py +0 -0
  207. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  208. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt2/__init__.py +0 -0
  209. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  210. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  211. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  212. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  213. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  214. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  215. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  216. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  217. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  218. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  219. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  220. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  221. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  222. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/image_classifier.py +0 -0
  223. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  224. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/image_segmenter.py +0 -0
  225. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  226. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/image_to_image.py +0 -0
  227. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/inpaint.py +0 -0
  228. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama/__init__.py +0 -0
  229. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama/llama_attention.py +0 -0
  230. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  231. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  232. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  233. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  234. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  235. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama/llama_presets.py +0 -0
  236. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  237. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama3/__init__.py +0 -0
  238. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  239. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  240. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  241. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  242. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  243. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/masked_lm.py +0 -0
  244. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  245. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mistral/__init__.py +0 -0
  246. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  247. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  248. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  249. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  250. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  251. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  252. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  253. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  254. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mit/__init__.py +0 -0
  255. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  256. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  257. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  258. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  259. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mit/mit_layers.py +0 -0
  260. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mit/mit_presets.py +0 -0
  261. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  262. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  263. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  264. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  265. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  266. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  267. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/mobilenet/util.py +0 -0
  268. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/object_detector.py +0 -0
  269. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  270. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/opt/__init__.py +0 -0
  271. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  272. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  273. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  274. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/opt/opt_presets.py +0 -0
  275. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  276. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  277. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  278. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  279. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  280. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  281. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  282. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  283. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  284. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  285. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/__init__.py +0 -0
  286. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  287. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  288. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  289. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  290. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  291. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  292. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  293. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  294. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  295. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/preprocessor.py +0 -0
  296. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/qwen/__init__.py +0 -0
  297. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/qwen/qwen_attention.py +0 -0
  298. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  299. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  300. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/resnet/__init__.py +0 -0
  301. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  302. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  303. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  304. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  305. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  306. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/retinanet/__init__.py +0 -0
  307. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  308. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  309. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  310. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  311. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  312. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  313. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  314. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  315. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roberta/__init__.py +0 -0
  316. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  317. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  318. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  319. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  320. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  321. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  322. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  323. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/__init__.py +0 -0
  324. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -0
  325. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +0 -0
  326. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +0 -0
  327. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +0 -0
  328. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  329. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +0 -0
  330. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +0 -0
  331. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/__init__.py +0 -0
  332. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  333. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  334. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  335. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  336. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/sam_layers.py +0 -0
  337. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  338. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/sam_presets.py +0 -0
  339. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  340. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  341. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/segformer/__init__.py +0 -0
  342. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  343. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  344. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  345. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  346. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  347. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  348. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  349. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/__init__.py +0 -0
  350. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  351. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  352. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  353. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  354. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  355. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  356. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  357. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  358. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  359. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  360. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  361. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  362. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  363. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  364. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  365. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  366. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  367. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  368. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  369. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/t5/__init__.py +0 -0
  370. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  371. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  372. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  373. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  374. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/t5/t5_presets.py +0 -0
  375. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  376. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  377. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/task.py +0 -0
  378. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/text_classifier.py +0 -0
  379. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  380. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/text_to_image.py +0 -0
  381. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  382. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vae/__init__.py +0 -0
  383. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  384. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vae/vae_layers.py +0 -0
  385. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vgg/__init__.py +0 -0
  386. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  387. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  388. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  389. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  390. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  391. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit/__init__.py +0 -0
  392. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  393. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  394. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  395. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit/vit_layers.py +0 -0
  396. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit/vit_presets.py +0 -0
  397. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit_det/__init__.py +0 -0
  398. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  399. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  400. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/whisper/__init__.py +0 -0
  401. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  402. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  403. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  404. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  405. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  406. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  407. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  408. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  409. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  410. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  411. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  412. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  413. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  414. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  415. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  416. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlnet/__init__.py +0 -0
  417. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  418. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  419. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  420. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  421. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/samplers/__init__.py +0 -0
  422. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/samplers/beam_sampler.py +0 -0
  423. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  424. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  425. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/samplers/random_sampler.py +0 -0
  426. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/samplers/sampler.py +0 -0
  427. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/samplers/serialization.py +0 -0
  428. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  429. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  430. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tests/__init__.py +0 -0
  431. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tokenizers/__init__.py +0 -0
  432. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  433. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  434. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  435. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  436. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  437. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  438. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  439. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  440. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/__init__.py +0 -0
  441. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  442. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  443. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/keras_utils.py +0 -0
  444. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/pipeline_model.py +0 -0
  445. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/preset_utils.py +0 -0
  446. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/python_utils.py +0 -0
  447. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/timm/__init__.py +0 -0
  448. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  449. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  450. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  451. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  452. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  453. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  454. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  455. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/__init__.py +0 -0
  456. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  457. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  458. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  459. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  460. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  461. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  462. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  463. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  464. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  465. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  466. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  467. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  468. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  469. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  470. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub_nightly.egg-info/requires.txt +0 -0
  471. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  472. {keras_hub_nightly-0.20.0.dev202504030357 → keras_hub_nightly-0.21.0.dev202504040358}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.20.0.dev202504030357
3
+ Version: 0.21.0.dev202504040358
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -183,6 +183,9 @@ from keras_hub.src.models.gemma3.gemma3_causal_lm_preprocessor import (
183
183
  Gemma3CausalLMPreprocessor,
184
184
  )
185
185
  from keras_hub.src.models.gemma3.gemma3_tokenizer import Gemma3Tokenizer
186
+ from keras_hub.src.models.gemma3.gemma3_vision_encoder import (
187
+ Gemma3VisionEncoder,
188
+ )
186
189
  from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
187
190
  from keras_hub.src.models.gpt2.gpt2_causal_lm import GPT2CausalLM
188
191
  from keras_hub.src.models.gpt2.gpt2_causal_lm_preprocessor import (
@@ -273,24 +276,6 @@ from keras_hub.src.models.phi3.phi3_causal_lm_preprocessor import (
273
276
  )
274
277
  from keras_hub.src.models.phi3.phi3_tokenizer import Phi3Tokenizer
275
278
  from keras_hub.src.models.preprocessor import Preprocessor
276
- from keras_hub.src.models.qwen.qwen_backbone import QwenBackbone
277
- from keras_hub.src.models.qwen.qwen_backbone import (
278
- QwenBackbone as Qwen2Backbone,
279
- )
280
- from keras_hub.src.models.qwen.qwen_causal_lm import QwenCausalLM
281
- from keras_hub.src.models.qwen.qwen_causal_lm import (
282
- QwenCausalLM as Qwen2CausalLM,
283
- )
284
- from keras_hub.src.models.qwen.qwen_causal_lm_preprocessor import (
285
- QwenCausalLMPreprocessor,
286
- )
287
- from keras_hub.src.models.qwen.qwen_causal_lm_preprocessor import (
288
- QwenCausalLMPreprocessor as Qwen2CausalLMPreprocessor,
289
- )
290
- from keras_hub.src.models.qwen.qwen_tokenizer import QwenTokenizer
291
- from keras_hub.src.models.qwen.qwen_tokenizer import (
292
- QwenTokenizer as Qwen2Tokenizer,
293
- )
294
279
  from keras_hub.src.models.resnet.resnet_backbone import ResNetBackbone
295
280
  from keras_hub.src.models.resnet.resnet_image_classifier import (
296
281
  ResNetImageClassifier,
@@ -324,7 +309,7 @@ from keras_hub.src.models.roberta.roberta_text_classifier_preprocessor import (
324
309
  )
325
310
  from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
326
311
  from keras_hub.src.models.roformer_v2.roformer_v2_backbone import (
327
- RoformerV2Backbone as RorformerV2Backbone,
312
+ RoformerV2Backbone,
328
313
  )
329
314
  from keras_hub.src.models.roformer_v2.roformer_v2_masked_lm import (
330
315
  RoformerV2MaskedLM,
@@ -333,7 +318,7 @@ from keras_hub.src.models.roformer_v2.roformer_v2_masked_lm_preprocessor import
333
318
  RoformerV2MaskedLMPreprocessor,
334
319
  )
335
320
  from keras_hub.src.models.roformer_v2.roformer_v2_text_classifier import (
336
- RorformerV2TextClassifier,
321
+ RoformerV2TextClassifier,
337
322
  )
338
323
  from keras_hub.src.models.roformer_v2.roformer_v2_text_classifier_preprocessor import (
339
324
  RoformerV2TextClassifierPreprocessor,
@@ -30,10 +30,6 @@ from keras_hub.src.models.pali_gemma.pali_gemma_tokenizer import (
30
30
  PaliGemmaTokenizer,
31
31
  )
32
32
  from keras_hub.src.models.phi3.phi3_tokenizer import Phi3Tokenizer
33
- from keras_hub.src.models.qwen.qwen_tokenizer import QwenTokenizer
34
- from keras_hub.src.models.qwen.qwen_tokenizer import (
35
- QwenTokenizer as Qwen2Tokenizer,
36
- )
37
33
  from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
38
34
  from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
39
35
  RoformerV2Tokenizer,
@@ -16,6 +16,7 @@ from keras_hub.src.utils.preset_utils import get_preset_loader
16
16
  from keras_hub.src.utils.preset_utils import get_preset_saver
17
17
  from keras_hub.src.utils.python_utils import classproperty
18
18
  from keras_hub.src.utils.tensor_utils import check_bounding_box_support
19
+ from keras_hub.src.utils.tensor_utils import in_tf_function
19
20
  from keras_hub.src.utils.tensor_utils import preprocessing_function
20
21
 
21
22
 
@@ -270,9 +271,15 @@ class ImageConverter(PreprocessingLayer):
270
271
  else:
271
272
  x = inputs
272
273
  if self.scale is not None:
273
- x = x * self._expand_non_channel_dims(self.scale, x)
274
+ # If we are scaling always cast to the compute dtype. We can't
275
+ # leave things as an int type if we are scaling to [0, 1].
276
+ scale = self._expand_non_channel_dims(self.scale, x)
277
+ x, scale = self._convert_types(x, scale, self.compute_dtype)
278
+ x = x * scale
274
279
  if self.offset is not None:
275
- x = x + self._expand_non_channel_dims(self.offset, x)
280
+ offset = self._expand_non_channel_dims(self.offset, x)
281
+ x, offset = self._convert_types(x, offset, x.dtype)
282
+ x = x + offset
276
283
  if isinstance(inputs, dict):
277
284
  inputs["images"] = x
278
285
  else:
@@ -280,26 +287,29 @@ class ImageConverter(PreprocessingLayer):
280
287
  return inputs
281
288
 
282
289
  def _expand_non_channel_dims(self, value, inputs):
283
- input_dtype = keras.backend.standardize_dtype(inputs.dtype)
284
-
290
+ """Expand non channel dims so value is broadcastable with inputs."""
285
291
  unbatched = len(ops.shape(inputs)) == 3
286
292
  channels_first = self.data_format == "channels_first"
287
293
  if unbatched:
288
294
  broadcast_dims = (1, 2) if channels_first else (0, 1)
289
295
  else:
290
296
  broadcast_dims = (0, 2, 3) if channels_first else (0, 1, 2)
291
- # If inputs are not a tensor type, return a numpy array.
292
- # This might happen when running under tf.data.
293
- if ops.is_tensor(inputs):
294
- # preprocessing decorator moves tensors to cpu in torch backend and
295
- # processed on CPU, and then converted back to the appropriate
296
- # device (potentially GPU) after preprocessing.
297
- if keras.backend.backend() == "torch" and self.image_size is None:
298
- return ops.expand_dims(value, broadcast_dims).cpu()
299
- expanded = ops.expand_dims(value, broadcast_dims)
300
- return ops.cast(expanded, input_dtype)
301
- else:
302
- return np.expand_dims(value, broadcast_dims).astype(input_dtype)
297
+ # An numpy value will work backend native ops or with tf.data.
298
+ return np.expand_dims(value, broadcast_dims)
299
+
300
+ def _convert_types(self, x, y, dtype):
301
+ """Make sure x and y have the same dtype and are on ths same device."""
302
+ if in_tf_function():
303
+ # This could happen on any backend if we are running in tf.data.
304
+ import tensorflow as tf
305
+
306
+ return tf.cast(x, dtype), tf.cast(y, dtype)
307
+ x = ops.cast(x, dtype)
308
+ y = ops.cast(y, dtype)
309
+ if keras.backend.backend() == "torch":
310
+ # Place on the same device as x (the image).
311
+ y = y.to(x.device)
312
+ return x, y
303
313
 
304
314
  def get_config(self):
305
315
  config = super().get_config()
@@ -8,19 +8,28 @@ from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
8
8
  from keras_hub.src.models.gemma.rms_normalization import RMSNormalization
9
9
  from keras_hub.src.utils.keras_utils import clone_initializer
10
10
  from keras_hub.src.utils.keras_utils import fused_attention_op_available
11
+ from keras_hub.src.utils.keras_utils import gpu_supports_fused_attention_op
12
+ from keras_hub.src.utils.keras_utils import running_on_gpu
11
13
  from keras_hub.src.utils.keras_utils import running_on_tpu
12
14
 
13
15
 
14
16
  class CachedGemma3Attention(keras.layers.Layer):
15
17
  """A cached grouped query attention layer for Gemma3.
16
18
 
17
- This is different from Gemma and Gemma2 in several ways:
19
+ This is the same as the attention layer used for Gemma and Gemma2. It
20
+ exposes a few additional args:
18
21
 
19
- - `use_query_key_norm`: Applies RMS Norm on query, key.
20
- - `rope_wavelength`: RoPE wavelength differs from local to global attention
21
- layers.
22
- - `rope_scaling_factor`: RoPE scaling factor differs from local to global
23
- attention layers.
22
+ `use_query_key_norm`: bool. If True, apply RMS normalization on query
23
+ and key. For Gemma3, this is True.
24
+ `rope_wavelength`: float. Configurable value for RoPE wavelength. Gemma3
25
+ uses 10K for local attention layers and 1M for global attention layers.
26
+ `gate_dim_reduction`: int. In the gating layers, the output dimension is
27
+ `intermediate_dim // gate_dim_reduction`. For Gemma and Gemma2, this
28
+ value is 2. For Gemma3, it is 1.
29
+
30
+ Moreover, the call() method takes in a `cache_update_mask` so as to make
31
+ sure that the key-value cache is updated only for the non-prompt tokens
32
+ during generation.
24
33
  """
25
34
 
26
35
  def __init__(
@@ -139,17 +148,22 @@ class CachedGemma3Attention(keras.layers.Layer):
139
148
  x = self.rope_layer(x, start_index=start_index)
140
149
  return x
141
150
 
142
- def _can_use_flash_attention(self):
151
+ def _use_fused_attention_op(self):
143
152
  if not fused_attention_op_available():
144
153
  return False
145
154
  if self.dropout > 0.0:
146
155
  return False
147
- if self.logit_soft_cap is None:
148
- return True
149
- sig = inspect.signature(ops.dot_product_attention)
150
- # We can currently only run soft capped attention for keras >= 3.10
151
- # and only on TPU.
152
- return running_on_tpu() and "attn_logits_soft_cap" in sig.parameters
156
+ if running_on_gpu():
157
+ # GPU never supports softcap in the fused op.
158
+ if self.logit_soft_cap is not None:
159
+ return False
160
+ return gpu_supports_fused_attention_op()
161
+ elif running_on_tpu():
162
+ # TPU supports softcap with on keras >= 3.10.
163
+ sig = inspect.signature(ops.dot_product_attention)
164
+ return "attn_logits_soft_cap" in sig.parameters
165
+ else:
166
+ return False
153
167
 
154
168
  def _compute_attention(
155
169
  self,
@@ -166,7 +180,14 @@ class CachedGemma3Attention(keras.layers.Layer):
166
180
  query_normalization = 1 / np.sqrt(
167
181
  self.hidden_dim // self.num_query_heads
168
182
  )
169
- if self._can_use_flash_attention():
183
+
184
+ if self.use_sliding_window_attention and attention_mask is not None:
185
+ attention_mask = self._mask_sliding_window(
186
+ attention_mask,
187
+ cache_update_index=cache_update_index,
188
+ )
189
+
190
+ if self._use_fused_attention_op():
170
191
  if attention_mask is not None:
171
192
  attention_mask = ops.expand_dims(attention_mask, axis=1)
172
193
  attention_mask = ops.cast(attention_mask, dtype="bool")
@@ -205,13 +226,8 @@ class CachedGemma3Attention(keras.layers.Layer):
205
226
  ops.tanh(attention_logits), self.logit_soft_cap
206
227
  )
207
228
 
208
- if self.use_sliding_window_attention:
209
- attention_mask = self._mask_sliding_window(
210
- attention_mask,
211
- cache_update_index=cache_update_index,
212
- )
213
-
214
- attention_mask = attention_mask[:, None, None, :, :]
229
+ if attention_mask is not None:
230
+ attention_mask = attention_mask[:, None, None, :, :]
215
231
  orig_dtype = attention_logits.dtype
216
232
  attention_softmax = self.softmax(attention_logits, mask=attention_mask)
217
233
  attention_softmax = ops.cast(attention_softmax, orig_dtype)
@@ -256,6 +272,7 @@ class CachedGemma3Attention(keras.layers.Layer):
256
272
  attention_mask=None,
257
273
  cache=None,
258
274
  cache_update_index=0,
275
+ cache_update_mask=None,
259
276
  training=False,
260
277
  ):
261
278
  query = self.query_dense(x)
@@ -275,7 +292,43 @@ class CachedGemma3Attention(keras.layers.Layer):
275
292
 
276
293
  key_update = self._apply_rope(key_update, cache_update_index)
277
294
  value_update = self.value_dense(x)
295
+
296
+ # Update cache. Note that the cache is updated only if the
297
+ # corresponding `cache_update_mask` value is True. This is to
298
+ # ensure that we don't update the cache at indices corresponding to
299
+ # the prompt. For Gemma3, in particular, this is useful because
300
+ # image tokens have bidirectional attention. During generation,
301
+ # if we have uneven inputs during generation, we might end up having
302
+ # causal attention between image tokens, which is incorrect. To
303
+ # avoid this, bidirectional attention is taken care of during
304
+ # the prefill step, and during generation, the cache is not updated
305
+ # for the prompt. The shape of `cache_update_mask` is
306
+ # `(bsz, seq_len)`, where `seq_len` is 1 when we are generating
307
+ # token-by-token.
278
308
  start = [0, cache_update_index, 0, 0]
309
+ if cache_update_mask is not None:
310
+ cache_update_mask = ops.expand_dims(
311
+ ops.expand_dims(cache_update_mask, axis=-1),
312
+ axis=-1,
313
+ )
314
+ key_original = ops.slice(
315
+ key_cache, start, ops.shape(key_update)
316
+ )
317
+ value_original = ops.slice(
318
+ value_cache, start, ops.shape(value_update)
319
+ )
320
+
321
+ key_update = ops.where(
322
+ cache_update_mask,
323
+ key_update,
324
+ key_original,
325
+ )
326
+ value_update = ops.where(
327
+ cache_update_mask,
328
+ value_update,
329
+ value_original,
330
+ )
331
+
279
332
  key = ops.slice_update(key_cache, start, key_update)
280
333
  value = ops.slice_update(value_cache, start, value_update)
281
334
  cache = ops.stack((key, value), axis=1)
@@ -19,13 +19,10 @@ class Gemma3Backbone(Backbone):
19
19
 
20
20
  This backbone implements the Gemma3 model architecture. Gemma3 is a
21
21
  vision-language model (image-text in, text out). The text input is encoded
22
- using an embedding layer; images are encoded using a vision transformer.
23
- After encoding these two modalities, the image embeddings are placed in the
24
- correct position in the text embedding sequence. The mixed sequence of
25
- embeddings is then passed through transformer decoder layers.
26
-
27
- Currently, this model supports only the `vision_encoder = None` case, i.e.,
28
- working only with text.
22
+ using an embedding layer; images are encoded using a vision transformer
23
+ (ViT). After encoding these two modalities, the image embeddings are placed
24
+ in the correct position in the text embedding sequence. The mixed sequence
25
+ of embeddings is then passed through transformer decoder layers.
29
26
 
30
27
  For a higher-level object for text-generation, see
31
28
  `keras_hub.models.Gemma3CausalLM`.
@@ -66,8 +63,9 @@ class Gemma3Backbone(Backbone):
66
63
  window attention. Defaults to `False`.
67
64
  sliding_window_size: int. Size of the sliding local window. Defaults to
68
65
  `4096`.
69
- vision_encoder: `keras.Model` or `keras.layers.Layer` instance. `call()`
70
- takes in images and returns corresponding sequence of embeddings.
66
+ vision_encoder: A `Gemma3VisionEncoder` instance. `call()`
67
+ takes in images and returns corresponding sequence of embeddings. If
68
+ `None`, the model is a text-only model.
71
69
  layer_norm_epsilon: float. The epsilon value user for every layer norm
72
70
  in all transformer blocks. Defaults to `1e-6`.
73
71
  dropout: float. Dropout probability for the Transformer decoder blocks.
@@ -75,10 +73,12 @@ class Gemma3Backbone(Backbone):
75
73
  dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
76
74
  for the models computations and weights. Note that some
77
75
  computations, such as softmax and layer normalization will always
78
- be done a float32 precision regardless of dtype.
76
+ be done in float32 precision regardless of dtype. Defaults to
77
+ `bfloat16`.
79
78
 
80
79
  Example:
81
80
  ```python
81
+ # === Language Gemma3 model ===
82
82
  input_data = {}
83
83
  input_data["token_ids"] = np.ones(shape=(1, 300), dtype="int32")
84
84
  input_data["padding_mask"] = (
@@ -86,32 +86,90 @@ class Gemma3Backbone(Backbone):
86
86
  .astype(bool)
87
87
  )
88
88
 
89
+ # Pretrained Gemma3 decoder.
90
+ model = keras_hub.models.Gemma3Backbone.from_preset(
91
+ "gemma3_instruct_4b_text"
92
+ )
93
+ model(input_data)
94
+
95
+ # Randomly initialized Gemma3 decoder with a custom config.
96
+ model = keras_hub.models.Gemma3Backbone(
97
+ vocabulary_size=262144,
98
+ image_size=896,
99
+ num_layers=34,
100
+ num_query_heads=8,
101
+ num_key_value_heads=4,
102
+ hidden_dim=2560,
103
+ intermediate_dim=10240,
104
+ head_dim=256,
105
+ query_head_dim_normalize=True,
106
+ use_post_ffw_norm=True,
107
+ use_post_attention_norm=True,
108
+ final_logit_soft_cap=None,
109
+ attention_logit_soft_cap=None,
110
+ sliding_window_size=1024,
111
+ use_sliding_window_attention=True,
112
+ vision_encoder=None,
113
+ layer_norm_epsilon=1e-06,
114
+ dtype="bfloat16",
115
+ )
116
+ model(input_data)
117
+
118
+ # === Vision + Language Gemma3 model ===
119
+ input_data = {}
120
+ input_data["images"] = np.ones(shape=(1, 1, 896, 896, 3))
121
+ input_data["token_ids"] = np.ones(shape=(1, 300), dtype="int32")
122
+ # images after the text part of the sequence.
123
+ input_data["vision_mask"] = np.expand_dims(
124
+ np.array([0] * 30 + [1] * 256 + [0] * 14),
125
+ axis=0,
126
+ ).astype(bool)
127
+ input_data["vision_indices"] = (
128
+ np.expand_dims(np.arange(30, 286), axis=0)
129
+ )
130
+ input_data["padding_mask"] = (
131
+ np.expand_dims(np.array([1] * 286 + [0] * (300 - 286)), axis=0)
132
+ .astype(bool)
133
+ )
134
+
89
135
  # Pretrained Gemma3 decoder.
90
136
  model = keras_hub.models.Gemma3Backbone.from_preset("gemma3_instruct_4b")
91
137
  model(input_data)
92
138
 
93
- config = {
94
- 'vocabulary_size': 262144,
95
- 'image_size': 896,
96
- 'num_layers': 34,
97
- 'num_query_heads': 8,
98
- 'num_key_value_heads': 4,
99
- 'hidden_dim': 2560,
100
- 'intermediate_dim': 10240,
101
- 'head_dim': 256,
102
- 'query_head_dim_normalize': True,
103
- 'use_post_ffw_norm': True,
104
- 'use_post_attention_norm': True,
105
- 'final_logit_soft_cap': None,
106
- 'attention_logit_soft_cap': None,
107
- 'sliding_window_size': 1024,
108
- 'use_sliding_window_attention': True,
109
- 'vision_encoder': None,
110
- 'layer_norm_epsilon': 1e-06,
111
- dtype: "bfloat16",
112
- }
113
-
114
- model = keras_hub.models.Gemma3Backbone(**config)
139
+ # Randomly initialized Gemma3 decoder with a custom config.
140
+ vision_encoder = Gemma3VisionEncoder(
141
+ image_size=896,
142
+ patch_size=14,
143
+ num_heads=16,
144
+ hidden_dim=1152,
145
+ num_layers=27,
146
+ intermediate_dim=4304,
147
+ output_dim=2560,
148
+ pool_size=4,
149
+ layer_norm_epsilon=1e-6,
150
+ dtype="float32",
151
+ )
152
+
153
+ model = keras_hub.models.Gemma3Backbone(
154
+ vocabulary_size=262144,
155
+ image_size=896,
156
+ num_layers=34,
157
+ num_query_heads=8,
158
+ num_key_value_heads=4,
159
+ hidden_dim=2560,
160
+ intermediate_dim=10240,
161
+ head_dim=256,
162
+ query_head_dim_normalize=True,
163
+ use_post_ffw_norm=True,
164
+ use_post_attention_norm=True,
165
+ final_logit_soft_cap=None,
166
+ attention_logit_soft_cap=None,
167
+ sliding_window_size=1024,
168
+ use_sliding_window_attention=True,
169
+ vision_encoder=vision_encoder,
170
+ layer_norm_epsilon=1e-06,
171
+ dtype="bfloat16"
172
+ )
115
173
  model(input_data)
116
174
  ```
117
175
  """
@@ -134,18 +192,14 @@ class Gemma3Backbone(Backbone):
134
192
  final_logit_soft_cap=None,
135
193
  use_sliding_window_attention=False,
136
194
  sliding_window_size=1024,
195
+ local_rope_scaling_factor=1.0,
196
+ global_rope_scaling_factor=1.0,
137
197
  vision_encoder=None,
138
198
  layer_norm_epsilon=1e-6,
139
199
  dropout=0,
140
200
  dtype=None,
141
201
  **kwargs,
142
202
  ):
143
- if vision_encoder is not None:
144
- raise ValueError(
145
- "Currently, only the text version of the Gemma3 model is "
146
- "supported."
147
- )
148
-
149
203
  # === Layers ===
150
204
  self.token_embedding = ReversibleEmbedding(
151
205
  input_dim=vocabulary_size,
@@ -176,7 +230,11 @@ class Gemma3Backbone(Backbone):
176
230
  # 5 local, 1 global
177
231
  sliding_window = use_sliding_window_attention and (i % 6 < 5)
178
232
  rope_wavelength = 10_000.0 if sliding_window else 1_000_000.0
179
- rope_scaling_factor = 1.0 if sliding_window else 8.0
233
+ rope_scaling_factor = (
234
+ local_rope_scaling_factor
235
+ if sliding_window
236
+ else global_rope_scaling_factor
237
+ )
180
238
  layer = Gemma3DecoderBlock(
181
239
  hidden_dim=hidden_dim,
182
240
  intermediate_dim=intermediate_dim,
@@ -215,10 +273,11 @@ class Gemma3Backbone(Backbone):
215
273
  vision_indices_input = keras.Input(
216
274
  shape=(None,), dtype="int32", name="vision_indices"
217
275
  )
218
- # TODO: Consider removing `text_mask_input` and using
219
- # `vision_indices_input` to infer it directly.
220
- text_mask_input = keras.Input(
221
- shape=(None,), dtype="int32", name="text_mask"
276
+ # Truth be told, this is redundant, and we can infer this from
277
+ # `vision_indices_input`. But it is easier to return this from
278
+ # the preprocessor than to compute it here.
279
+ vision_mask_input = keras.Input(
280
+ shape=(None,), dtype="int32", name="vision_mask"
222
281
  )
223
282
 
224
283
  token_id_input = keras.Input(
@@ -239,7 +298,7 @@ class Gemma3Backbone(Backbone):
239
298
  if not text_only_model:
240
299
  img_embeddings = self.vision_encoder(image_input)
241
300
 
242
- ## == Interleaving text and images ==
301
+ # == Interleaving text and images ==
243
302
  # Place image embeddings in the right position in
244
303
  # `text_embeddings`.
245
304
  x = self.interleave_embeddings(
@@ -255,7 +314,7 @@ class Gemma3Backbone(Backbone):
255
314
  x = transformer_layer(
256
315
  x,
257
316
  padding_mask=padding_mask_input,
258
- text_mask=None if text_only_model else text_mask_input,
317
+ vision_mask=None if text_only_model else vision_mask_input,
259
318
  )
260
319
  sequence_output = self.layer_norm(x)
261
320
 
@@ -268,7 +327,7 @@ class Gemma3Backbone(Backbone):
268
327
  {
269
328
  "images": image_input,
270
329
  "vision_indices": vision_indices_input,
271
- "text_mask": text_mask_input,
330
+ "vision_mask": vision_mask_input,
272
331
  }
273
332
  )
274
333
 
@@ -296,6 +355,8 @@ class Gemma3Backbone(Backbone):
296
355
  self.final_logit_soft_cap = final_logit_soft_cap
297
356
  self.use_sliding_window_attention = use_sliding_window_attention
298
357
  self.sliding_window_size = sliding_window_size
358
+ self.local_rope_scaling_factor = local_rope_scaling_factor
359
+ self.global_rope_scaling_factor = global_rope_scaling_factor
299
360
  self.layer_norm_epsilon = layer_norm_epsilon
300
361
  self.dropout = dropout
301
362
 
@@ -330,6 +391,8 @@ class Gemma3Backbone(Backbone):
330
391
  self.use_sliding_window_attention
331
392
  ),
332
393
  "sliding_window_size": self.sliding_window_size,
394
+ "local_rope_scaling_factor": self.local_rope_scaling_factor,
395
+ "global_rope_scaling_factor": self.global_rope_scaling_factor,
333
396
  "vision_encoder": None
334
397
  if self.vision_encoder is None
335
398
  else keras.layers.serialize(self.vision_encoder),
@@ -339,6 +402,14 @@ class Gemma3Backbone(Backbone):
339
402
  )
340
403
  return config
341
404
 
405
+ def get_lora_target_names(self):
406
+ target_names = super().get_lora_target_names()
407
+
408
+ # Add these for `Gemma3VITAttention`.
409
+ if not self.text_only_model:
410
+ target_names += ["query_proj", "value_proj"]
411
+ return target_names
412
+
342
413
  @classmethod
343
414
  def from_config(cls, config):
344
415
  config.update(